CO 750 Randomized Algorithms (Winter 2011) Assignment 1

Due: Thursday January 27th.

Question 1: Prove $ZPP = RP \cap coRP$.

Question 2: Consider a sequence of n unbiased coin flips. Consider the length of the longest contiguous sequence of heads.

- (a): Show that you are unlikely to see a sequence of length $c + \log_2 n$ for c > 1. Give a decreasing bound as a function of c.
- (b): Show that with high probability you will see a sequence of length $\log_2 n O(\log_2 \log_2 n)$.

Question 3: Given a point x in $\{0,1\}^n$, its weight is

$$wt(x) := \Delta(x, 0) = ||x||_1 = \sum_i x_i.$$

A code $C \subseteq \{0,1\}^n$ is called a **constant weight code** if $wt(x) = wt(y) \ \forall x,y \in C$. Prove there exists a constant weight code of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^2)$ where every codeword has weight n/2.

Question 4: Let $X_1, ..., X_n$ be mutually independent random variables which have the geometric distribution with mean 2. Let $X = \sum_{i=1}^{n} X_i$ and let $\delta > 0$. Use a Chernoff-based approach to derive an upper bound on $\Pr[X \ge (1+\delta)2n]$.