Nick Harvey

February 16, 2008

Joint work with M. Goemans, S. Iwata and V. Mirrokni

Submodular Functions

Definition

 $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $A, B \subseteq [n]$:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

Equivalent definition

f is submodular if, for all $A \subseteq B$ and $i \notin B$:

$$f(A \cup \{i\}) - f(A) \ge f(B \cup \{i\}) - f(B)$$

- ▶ Discrete analogue of convex functions [Lovász '83]
- ► Arise in combinatorial optimization, probability, economics (diminishing returns), geometry, etc.
- ► Fundamental Examples

Rank function of a matroid, cut function of a graph, ...

Optimizing Submodular Functions

(Given Oracle Access)

Minimization

► Can solve $\min_S f(S)$ with polynomially many oracle calls [GLS], [Schrijver '01], [Iwata, Fleischer, Fujishige '01], ...

Example: Given matroids
$$\mathit{M}_1 = (\mathit{E}, \mathcal{I}_1)$$
 and $\mathit{M}_2 = (\mathit{E}, \mathcal{I}_2)$

$$\max\{|I|: I \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(E \setminus S): S \subseteq E\}$$

Maximization

► Can approximate $\max_S f(S)$ to within 2/5, assuming $f \ge 0$. [Feige, Mirrokni, Vondrák '07]

Definition

 $f: 2^{[n]} \to \mathbb{R}$ is monotone if, for all $A \subseteq B \subseteq [n]$:

$$f(A) \leq f(B)$$

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \le f(S) \le \alpha(n) \cdot \hat{f}(S) \quad \forall S \subseteq [n]$$

Definition

 $f: 2^{[n]} \to \mathbb{R}$ is monotone if, for all $A \subseteq B \subseteq [n]$:

$$f(A) \leq f(B)$$

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \le f(S) \le \alpha(n) \cdot \hat{f}(S) \quad \forall S \subseteq [n]$$

Approximation Quality

- ▶ How small can we make $\alpha(n)$?
- $ightharpoonup \alpha(n) = n$ is trivial

Positive Result

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function f such that:

$$\hat{f}(S) \le f(S) \le \alpha(n) \cdot \hat{f}(S) \quad \forall S \subseteq [n]$$

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Also, \hat{f} is submodular.

Approximating Submodular Functions Everywhere Almost Tight

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Application

Submodular Load Balacing

Problem (Svitkina and Fleischer '08)

Given submodular functions $f_i: 2^V \to \mathbb{R}$ for $i \in [k]$, partition V into V_1, \cdots, V_k to

$$\min_{V_1,...,V_k} \max_i f_i(V_i)$$

For $f_i(S) = \sum_{j \in S} c_{i,j}$, this is scheduling on unrelated machines. [Lenstra, Shmoys, Tardos '90]

Application

Submodular Load Balacing

Problem (Svitkina and Fleischer '08)

Given submodular functions $f_i: 2^V \to \mathbb{R}$ for $i \in [k]$, partition V into V_1, \dots, V_k to

$$\min_{V_1,...,V_k} \max_i f_i(V_i)$$

For $f_i(S) = \sum_{j \in S} c_{i,j}$, this is scheduling on unrelated machines. [Lenstra, Shmoys, Tardos '90]

Our solution

Approximate
$$f_i$$
 by $\hat{f}_i(S) = \sqrt{\sum_{j \in S} c_{i,j}}$ for each i . Then solve $\min_{V_1, \ldots, V_k} \max_i \ \hat{f}_i^{\, 2}(V_i)$

using Lenstra, Shmoys, Tardos. Get $O(\sqrt{n} \log n)$ -approx solution.

Problem (Golovin '05, Khot and Ponnuswami '07)

Given submodular functions $f_i: 2^V \to \mathbb{R}$ for $i \in [k]$, partition V into V_1, \cdots, V_k to

$$\max_{V_1,...,V_k} \min_i \ f_i(V_i)$$

For $f_i(S) = \sum_{j \in S} c_{i,j}$, this is Santa Claus problem. There is a $\tilde{O}(\sqrt{k})$ -approximation algorithm [Asadpour-Saberi '07].

Immediately get $\tilde{O}(\sqrt{n} \, k^{1/4})$ -approximate solution.

Polymatroid

Definition

Given submodular f, polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \text{ for all } S \subseteq [n] \right\}$$

A few properties [Edmonds '70]:

- \triangleright Can optimize over P_f with greedy algorithm
- \triangleright Separation problem for P_f is submodular fctn minimization
- \blacktriangleright For monotone f, can reconstruct f:

$$f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$$

Our Approach: Geometric Relaxation

We know:

$$f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$$

Suppose that:

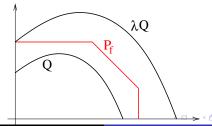
$$Q \subseteq P_f \subseteq \lambda Q$$

Then:

$$\hat{f}(S) \le f(S) \le \lambda \hat{f}(S)$$

where

$$\hat{f}(S) = \max_{x \in Q} \langle 1_S, x \rangle$$



Maximum Volume Ellipsoids

Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Maximum Volume Ellipsoids

Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Definition

An ellipsoid E is an α -ellipsoidal approximation of K if $E \subseteq K \subseteq \alpha \cdot E$.

Maximum Volume Ellipsoids

Definition

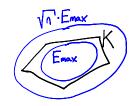
A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

Definition

An ellipsoid E is an α -ellipsoidal approximation of K if $E \subseteq K \subseteq \alpha \cdot E$.

Theorem

Let K be a centrally symmetric convex body in \mathbb{R}^n . Let E_{max} (or John ellipsoid) be maximum volume ellipsoid contained in K. Then $K \subseteq \sqrt{n} \cdot E_{max}$.



Maximum Volume Ellipsoids

Definition

A convex body K is centrally symmetric if $x \in K \iff -x \in K$.

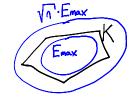
Definition

An ellipsoid E is an α -ellipsoidal approximation of K if $E \subseteq K \subseteq \alpha \cdot E$.

Theorem

Let K be a centrally symmetric convex body in \mathbb{R}^n . Let E_{max} (or John ellipsoid) be maximum volume ellipsoid contained in K. Then $K \subseteq \sqrt{n} \cdot E_{max}$.

Algorithmically?



Ellipsoids Basics

Definition

► An ellipsoid is

$$E(A) = \{x \in \mathbb{R}^n : x^T A x \le 1\}$$

where $A \succ 0$ is positive definite matrix.

Handy notation

• Write $||x||_A = \sqrt{x^T A x}$. Then

$$E(A) = \{x \in \mathbb{R}^n : ||x||_A \le 1\}$$

Optimizing over ellipsoids

Algorithms for Ellipsoidal Approximations

Explicitly Given Polytopes

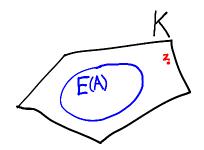
▶ Can find E_{max} in P-time (up to ϵ) if explicitly given as $K = \{x : Ax \leq b\}$ [Grötschel, Lovász and Schrijver '88], [Nesterov, Nemirovski '89], [Khachiyan, Todd '93], ...

Polytopes given by Separation Oracle

- ▶ only n+1-ellipsoidal approximation for convex bodies given by weak separation oracle [Grötschel, Lovász and Schrijver '88]
- ▶ No (randomized) $n^{1-\epsilon}$ -ellipsoidal approximation [J. Soto '08]

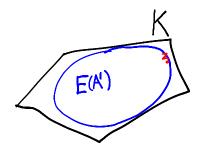
Informal Statement

- ▶ We have $A \succ 0$ such that $E(A) \subseteq K$.
- ▶ Suppose we find $z \in K$ but z far outside of E(A).
- ▶ Then should be able to find A' > 0 such that
 - \triangleright $E(A') \subseteq K$
 - $ightharpoonup \operatorname{vol} E(A') > \operatorname{vol} E(A)$



Informal Statement

- ▶ We have $A \succ 0$ such that $E(A) \subseteq K$.
- ▶ Suppose we find $z \in K$ but z far outside of E(A).
- ▶ Then should be able to find A' > 0 such that
 - \triangleright $E(A') \subseteq K$
 - $ightharpoonup \operatorname{vol} E(A') > \operatorname{vol} E(A)$



Formal Statement

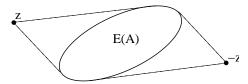
Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $d = ||z||_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in conv $\{E(A), z, -z\}$ where

$$A' = \frac{n}{d} \frac{d-1}{n-1} A + \frac{n}{d^2} \left(1 - \frac{d-1}{n-1} \right) Azz^T A$$

Moreover, vol $E(A') = k_n(d) \cdot \text{vol } E(A)$ where

$$k_n(d) = \sqrt{\left(\frac{d}{n}\right)^n \left(\frac{n-1}{d-1}\right)^{n-1}}$$



Formal Statement

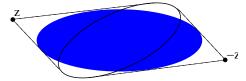
Theorem

If $A \succ 0$ and $z \in \mathbb{R}^n$ with $d = ||z||_A^2 \ge n$ then E(A') is max volume ellipsoid inscribed in conv $\{E(A), z, -z\}$ where

$$A' = \frac{n}{d} \frac{d-1}{n-1} A + \frac{n}{d^2} \left(1 - \frac{d-1}{n-1} \right) Azz^T A$$

Moreover, vol $E(A') = k_n(d) \cdot \text{vol } E(A)$ where

$$k_n(d) = \sqrt{\left(\frac{d}{n}\right)^n \left(\frac{n-1}{d-1}\right)^{n-1}}$$



$$\operatorname{vol} E(A') = k_n(d) \cdot \operatorname{vol} E(A)$$
 where

$$k_n(d) = \sqrt{\left(\frac{d}{n}\right)^n \left(\frac{n-1}{d-1}\right)^{n-1}}$$

Remarks

- $ightharpoonup k_n(d) > 1$ for d > n proves John's theorem
- Significant volume increase for $d \ge n + 1$: $k_n(n+1) = 1 + \Theta(1/n^2)$
- ▶ Polar statement previously known [Todd '82] A' gives formula for minimum volume ellipsoid containing

$$E(A) \cap \{ x : -b \leq \langle c, x \rangle \leq b \}$$

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

► Can reconstruct *f* from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}_+^n : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$
 by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}_+^n : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$
 by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

▶ Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

► Can reconstruct *f* from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$
 by $f(S) = \max_{x \in P_S} \langle 1_S, x \rangle$.

ightharpoonup Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

▶ Max volume ellipsoid E_{max} has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}.$$
 Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}^n_+ : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$
 by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

▶ Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

▶ Max volume ellipsoid E_{max} has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}.$$
 Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

▶ Compute ellipsoids $E_1, E_2, ...$ in $S(P_f)$ that converge to E_{max} .

▶ Given monotone, submodular f, make $n^{O(1)}$ queries, construct \hat{f} s.t.

$$\hat{f}(S) \leq f(S) \leq \tilde{O}(\sqrt{n}) \cdot \hat{f}(S) \qquad \forall S \subseteq V.$$

Can reconstruct f from the polymatroid

$$P_f = \left\{ x \in \mathbb{R}_+^n : \sum_{i \in S} x_i \le f(S) \qquad \forall S \subseteq [n] \right\}$$
 by $f(S) = \max_{x \in P_f} \langle 1_S, x \rangle$.

ightharpoonup Make P_f centrally symmetric by reflections:

$$S(P_f) = \{ x : (|x_1|, |x_2|, \cdots, |x_n|) \in P_f \}$$

▶ Max volume ellipsoid E_{max} has

$$E_{max} \subseteq S(P_f) \subseteq \sqrt{n} \cdot E_{max}.$$
 Take $\hat{f}(S) = \max_{x \in E_{max}} \langle 1_S, x \rangle$.

- Compute ellipsoids $E_1, E_2, ...$ in $S(P_f)$ that converge to E_{max} . Given $E_i = E(A_i)$, need $z \in S(P_f)$ with $||z||_{A_i} \ge \sqrt{n+1}$.
 - ▶ If $\exists z$, can compute E_{i+1} of larger volume.
 - ▶ If $\nexists z$, then $E_i \approx E_{max}$.

Remaining Task

Ellipsoidal Norm Maximization

► Ellipsoidal Norm Maximization

Given A > 0 and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

$$\max_{x \in K} \|x\|_A$$

► Ellipsoidal Norm Maximization

Given $A \succ 0$ and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

$$\max_{x \in K} \|x\|_A$$

► Bad News

Ellipsoidal Norm Maximization NP-complete for $S(P_f)$ and P_f . (Even if f is a graphic matroid rank function.)

Ellipsoidal Norm Maximization

Given A > 0 and well-bounded convex body K by separation oracle. (So $B(r) \subseteq K \subseteq B(R)$ where B(d) is ball of radius d.) Solve

$$\max_{x \in K} \|x\|_A$$

► Bad News

Ellipsoidal Norm Maximization NP-complete for $S(P_f)$ and P_f . (Even if f is a graphic matroid rank function.)

Approximations are good enough

P-time α -approx. algorithm for Ellipsoidal Norm Maximization \implies P-time $\alpha \sqrt{n+1}$ -ellipsoidal approximation for K (in $O(n^3 \log(R/r))$ iterations)

Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Observation: Symmetry Helps

 $S(P_f)$ invariant under axis-aligned reflections.

(Diagonal $\{\pm 1\}$ matrices.)

 \implies same is true for E_{max}

 $\implies E_{max} = E(D)$ where D is diagonal.

Our Task

Given diagonal $D \succ 0$, and f find

$$\max_{x \in S(P_f)} ||x||_D$$

Equivalently,

$$\max \sum_{i} d_{i} x_{i}^{2}$$
s.t. $x \in P_{f}$

- Maximizing convex function over convex set
 - ⇒ max attained at vertex.

Remaining Task

Ellipsoidal Norm Maximization

Our Task

Given diagonal $D \succ 0$, and f find

$$\max \sum_{i} d_{i} x_{i}^{2}$$
 s.t. $x \in P_{f}$

► Maximizing convex function over convex set ⇒ max attained at vertex.

Matroid Case

If f is matroid rank function

$$\implies$$
 vertices in $\{0,1\}^n \implies x_i^2 = x_i$.

Our task is

max
$$\sum_{i} d_{i} x_{i}$$

s.t. $x \in P_{f}$

This is the max weight base problem, solvable by greedy algorithm.

Remaining Task

Ellipsoidal Norm Maximization

Our Task

Given diagonal $D \succ 0$, and f find

$$\max \sum_{i} d_{i} x_{i}^{2}$$
s.t. $x \in P_{f}$

► Maximizing convex function over convex set ⇒ max attained at vertex.

General Monotone Submodular Case

More complicated: uses approximate maximization of submodular function [Nemhauser, Wolsey, Fischer '78], etc. Can find $O(\log n)$ -approximate maximum.

Summary of Algorithm

Theorem

In P-time, construct a (submodular) function $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $\alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $\alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f.

The algorithm is deterministic.

$\Omega(\sqrt{n}/\log n)$ Lower Bound

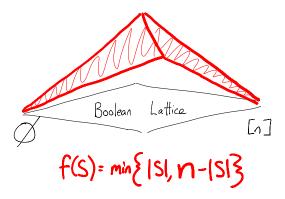
Theorem

With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.

$\Omega(\sqrt{n}/\log n)$ Lower Bound Informal Idea

Theorem

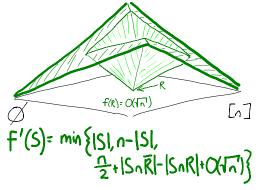
With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.



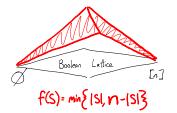
$\Omega(\sqrt{n}/\log n)$ Lower Bound Informal Idea

Theorem

With poly(n) queries, cannot approximate f better than $\frac{\sqrt{n}}{\log n}$. Even for randomized algs, and even if f is matroid rank function.



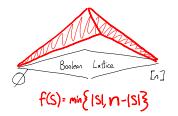
Discrepancy Argument

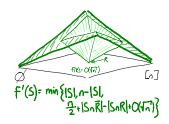


Algorithm performs queries S_1, \ldots, S_k . A query S_i distinguishes f from f' iff

$$|S_i \cap R| - |S_i \cap \bar{R}| > O(\sqrt{n})$$

Discrepancy Argument





Algorithm performs queries S_1, \ldots, S_k . A query S_i distinguishes f from f' iff

$$|S_i \cap R| - |S_i \cap \bar{R}| > O(\sqrt{n})$$

Standard discrepancy argument: For uniformly random R,

$$||S_i \cap R| - |S_i \cap \bar{R}|| \le \sqrt{2n\ln(2k)}$$
 $\forall i$

So algorithm fails to find random R.

Summary

Problem

Given a monotone, submodular f, construct using poly(n) oracle queries a function \hat{f} such that:

$$\hat{f}(S) \le f(S) \le \alpha(n) \cdot \hat{f}(S) \quad \forall S \subseteq [n]$$

Our Positive Result

A deterministic algorithm that constructs $\hat{f}(S) = \sqrt{\sum_{i \in S} c_i}$ with

- $ightharpoonup \alpha(n) = \sqrt{n+1}$ for matroid rank functions f, or
- $ightharpoonup \alpha(n) = O(\sqrt{n} \log n)$ for general monotone submodular f

Our Negative Result

With polynomially many oracle calls, $\alpha(n) = \Omega(\sqrt{n}/\log n)$ (even for randomized algs)

Backup Slides

Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Observation: Symmetry Helps

 $S(P_f)$ invariant under axis-aligned reflections.

(Diagonal $\{\pm 1\}$ matrices.)

 \implies same is true for E_{max}

 $\implies E_{max} = E(D)$ where D is diagonal.

Ellipsoidal Norm Maximization

Taking Advantage of Symmetry

Our Task

Given $A \succ 0$, and f find $\max_{x \in S(P_f)} ||x||_A$.

Observation: Symmetry Helps

 $S(P_f)$ invariant under axis-aligned reflections.

(Diagonal $\{\pm 1\}$ matrices.)

 \implies same is true for E_{max}

 $\implies E_{max} = E(D)$ where D is diagonal.

Stronger Observation

For any ellipsoid $E(A) \subseteq S(P_f)$, there exists diagonal D such that $E(D) \subseteq S(P_f)$ and $vol(E(D)) \ge vol(E(A))$.

Definition

$$Aut(K) = \{T(x) = Cx : T(K) = K\}$$

- ▶ Uniqueness of $E_{max} \Longrightarrow Aut(K) \subseteq Aut(E_{max})$
- \triangleright Same for E_{min}
- ▶ $S(P_f)$ is axis-aligned $(\operatorname{Aut}(\cdot) \supseteq \{\operatorname{Diag}(\{\pm 1\}^n)\})$ ⇒ $E_{max} = E(A^*)$ is axis-aligned, i.e. A^* is diagonal

Keeping Ellipsoids Axis-Aligned

when K is axis-aligned

Lemma

Given $A \succ 0$ with $E(A) \subseteq K$, let

$$A_{sym} = \left(\text{Diag} \left(\text{diag} \left(A^{-1} \right) \right) \right)^{-1}$$

(zero out all non-diagonal entries of A^{-1}). Then

- 1. $vol(E(A_{sym})) \ge vol(E(A))$ (Hadamard's ineq)
- 2. $E(A_{sym}) \subseteq conv(\bigcup_{C=Diag(\{\pm 1\}^n)} C(E(A))) \subseteq K$

