A General Framework for Graph Sparsification

Wai Shing Fung
University of Waterloo
Ontario N2L 3G1
wsfung@uwaterloo.ca

Ramesh Hariharan
Strand Life Sciences
Bangalore 560024

ramesh@strandls.com

Nicholas J. A. Harvey
University of Waterloo
Ontario N2L 3G1
harvey@uwaterloo.ca

Debmalya Panigrahi
CSAIL, MIT
Cambridge, MA 02139
debmalya@mit.edu

ABSTRACT

Categories and Subject Descriptors

We present a general framework for constructing cut sparsi- F.2.2 [Analysis of Algorithms and Problem Complexity]:
fiers in undirected graphs — weighted subgraphs for which Nonnumerical Algorithms and Problems

every cut has the same weight as the original graph, up to a

multiplicative factor of(1 £ ¢). Using this framework, we
simplify, unify and improve upon previous sparsification re-

General Terms

sults. As simple instantiations of this framework, we show that Theory, Algorithms
sparsifiers can be constructed by sampling edges according to

their strength(a result of Benczur and Kargegffective resis-
tance(a result of Spielman and Srivastavajlge connectivity
or by samplingandom spanning treeSampling according to

Keywords
Graph Sparsification, Edge Connectivity, Sampling

edge connectivity is the most aggressive method, and the most

challenging to analyze. Our proof that this method produces 1.

sparsifiers resolves an open question of Benczur and Karger.

INTRODUCTION

Can any dense graph be approximated by a sparse graph?

While the above results are interesting from a combinatorial Surprisingly, the answer is a resounding “yes”, under a variety

standpoint, we also prove new algorithmic results. In particu-

lar, we develop techniques that give the first (optin@{)n)-
time sparsification algorithm for unweighted graphs. Our al-
gorithm has a running time @ (m) + O(n/¢*) for weighted

of notions of approximation. For example, given any undi-
rected graph,there are sparse subgraphs that approxahate
pairwise distances up to a multiplicative and/or additive error
(seel[22] and subsequent researctspanner} everycut to

graphs, which is also linear unless the input graph is very an arbitrarily small multiplicative errof [3] 4] (callezlit spar-
sparse itself. In both cases, this improves upon the previous sifierg, every eigenvalue to an arbitrarily small multiplicative

best running times of (m log? n) (for the unweighted case)
andO(mlog® n) (for the weighted case) respectively. Our al-
gorithm produces sparsifiers containiéign log n/e?) edges
in expectation; the only known construction of sparsifiers with
fewer edges is by a substantially slower algorithm running in
O(n®m/é?) time.

A key ingredient of our proofs is a natural generalization of

A

error [2,[25,26[27] (calledpectral sparsifiefs and so on.
Such approximations are a cornerstone of numerous important
results in theoretical computer science.

In this work, we consider the problem of approximating ev-
ery cut arbitrarily well; this problem was originally studied by
Karger [10/11] and Benczar and Karger [3, 4]. They proved
that every undirected graph withvertices andn edges (and

Karger's bound on the number of small cuts in an undirected potentially non-negative weights on its edges) has a subgraph

graph. Given the numerous applications of Karger's bound,

with only O(nlogn/e?) edges (and a different set of weights

we suspect that our generalization will also be of independent on those edges) such that, for every cut, the weight of the cut in

interest.

Permission to make digital or hard copies of all or part of therkwfor

personal or classroom use is granted without fee providaddbpies are

the original graph and its subgraph agree up to a multiplicative
factor of (1 £ €). Such a subgraph is callectat sparsifier or
simply asparsifier Benczur and Karger also gave a random-
ized algorithm to construct a sparsifier @(m log® n) time
for unweighted graphs an@(m log®n) time for weighted
graphs. Their result has now become a standard tool with
widespread use in the design of fast algorithms relating to cuts
and flows[3[4,5, 13, 15,18, 24].

Spielman and Tend [27] realized that a stronger notion of

not made or distributed for profit or commercial advantage aatidbpies sparsification would be useful for efficiently solving systems
bear this notice and the full citation on the first page. Toyootherwise, to of linear equations defined by Lap|acian matrices. They de-

republish, to post on servers or to redistribute to listguiees prior specific

permission and/or a fee.
STOC’'11,June 6-8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

fined aspectral sparsifieto be a weighted subgraph such that
the quadratic forms defined by the Laplacians of these two
graphs agree up to a multiplicative factor(af+ €). Spectral

sparsifiers are also cut sparsifiers, as can be seen by evaluatind his lets us show that some other natural sampling schemes
these quadratic forms &6, 1}-vectors. An efficient algorithm also yield sparsifiers.

to construct a spectral sparsifier with(n logn/¢*) edges in
expectation was given by Spielman and Srivastava [25]; using
later improvements to linear system solvers| [16], this algo-
rithm runs inO(m log® n) time. Furthermore, a spectral spar-

4 H 2 3 2
sifier with onlyO(n/¢”) edges can be computeddr{n“m/¢”) graph would be disconnected and hence not approximate the

time [2]. , . . . original graph. Such examples also show that the Benczr-
The Benczur-Karger and Spielman-Srivastava sampling schem;%er and Spielman-Srivastava algorithms reqgife log n)

follow the same basic approach. First, they replace each edgeedges

¢ of weightuw, in the inpu_tgrapr by We parallel u_nweighted One way to circumvent these examples is via dependent

edgeﬂ NOW', gach ““We'gh‘ed edge is sampled independently sampling, such as sampling spanning trees. This idea was ex-

with .p_robablllty pe = min{p/Ac,1} for some parameters o,e4 by Goyal et al[]7] and was the key approach in the

p.’f.)‘e’ i ctr)losen, the V\;]e'?ht c_)fhedgels |ncreised in the gpar' recent progress on ATSPI[1]. Suppose we sarppleiformly

Z' 'e(rj.% y 1r{p:"" EOF a%\orlt ms choose = O(logn/€”), random spanning trees. Then the sampled graph is certainly
utdi %”nt %lrc qi)cecr)] ° . hoi f connected after choosing just one tree. Furthermore, sampling
In arder to describe their respective choice of parameters uniformly random spanning trees is closely related to sampling

Ae, We require some definitions. For an edget), th_e (lo- according to effective conductances, which leads to the follow-
cal) edge connectivitypetweens and ¢, denotedks,, is de- ing theorem

fined to be the minimum weight of a cut that separatesid
t. Theeffective conductanasf edge(s, t), denoted:,,, is the Theorem 1.2. Let G be a weighted graph. Lef. be the

Sampling by Random Spanning Trees. Can we setp =
o(log n) in the above sampling schemes? Unfortunately not.
To see this, consider a clique ofvertices — ifp = o(logn)
and\. = k. then with probability tending td the sampled

amount of current that flows when each edgef weightw. union of p = O(log?n/e*) uniformly random trees where
is viewed as a resistor of valugw,. and a unit voltage differ- each edge is assigned weighf p. ThenG. hasO(n log? n/€?)
ence is imposed betweenandt. The effective resistancef edges and>, € (1 ¢)G, whp.

(s,t)is 1/cst. A k-strong componentf G is a maximalk- o)
edge-connected, vertex-induced subgraptofThe strength Surprisingly, we cannot take = o(log n) here either. For any
of edge(s, t), denotedk,, is the maximum value of such constantc > 1, if we wish to approximate all cuts to within
that ak-strong component off contains boths andt. Infor- a factorc, we show in sectiofi]6 that the sampling process of

mally, all three ofk.., c.; andk’,, measure the connectivity 1 heoreniLP requires = Q(log n).

betweens andt. e .
Benczlr and Karger requirk. < k., whereas Spielman 1.1 Sparsification Algorithms

and Srivastava requirk. < c.. These hypotheses are incom- Our framework yields sparsification algorithms that are not
parable since:,, can beﬁ(n) times larger thar,; or vice only simpler, but also faster. By a slight modification of known
versa. Howevek.; > max {cu, k., } always holds. techniques|[4], we can easily estimate the edge connectivities

k. and derive a linear-time algorithm that produces sparsifiers
Sampling by Edge Connectivities. The primary objective with O(nlog® n/e?) edges. This simple result is stated below
of this paper is to consider the more aggressive regime of as Theoreri 113. A stronger result is given by Thedrerh 1.4, in
sampling according to edge connectivities, iJe,,< k.. In which a more sophisticated approach is used to construct spar-
fact, Benczur and Kargef|[4] conjectured that such a sampling sifiers withO(n log n/€?) edges inD(m) + O(n/e?) time.
;cher_ne would alsq produ_ce sparsifiefs, and this would result Sampling by Nagamochi-Ibaraki indices. Nagamochi and
in a simpler analysis and simpler algorithms. Our work proves |harai devised a very simple method that finds good estimates
this conjecture. Theorefn 1.1 is a succinct corollary of our 5 5y edge connectivities. Their method simply partitions the
main theorem; more general results are described in Sédtion 2-graph into a sequence of maximal spanning forests. It can be
implemented inO(m)-time for unweighted graphs [21], and
O(m + nlogn)-time for weighted graph$[20].

More formally, a set of edge-disjoint spanning forests

Ty, T»,...,Ty ofagraphG is said to be &agamochi-Ibaraki
(NI) forestpacking if T; is a spanning forest on the edges left
in G after removing those iff1, Ts, ..., T;—1. For weighted
Sincek. > max{c., k.}, our aggressive sampling scenario graphs, an edge with weight. must appear im. contiguous
subsumes the scenarios of Benczur-Karger and of Spielman-forests. TheNI indexof edgee, denoted/., is the index of
Srivastava, the main caveat being that Spielman and Srivas-thelastNI forest in whiche appears. We obtain the following
tava prove spectral sparsification whereas we do not. On top theorem as a simple instantiation of our general framework.
of unifying these results, we also extend our technique to ob-]]
tain a general sparsification framework and set out sufficient Theorem 1.3. Let G be obtained from a weighted gragh
conditions for a sampling scheme to result in good sparsifiers. by independently sampling edgevith probabilityp. = p/Ae,
wherep = O(logn/c®) and A = £.. Then,G. contains
We assume throughout that all edge weights are integers. ~ O(nlog®n/®) edges in expectation, ad. € (1 % €)G
2@, € (14 €)G will denote thaty. approximates every cut ~ Whp. Moreover, this algorithm runs i@ (m) time.
in G to within a multiplicative factor of 1 + ¢).
8 A property is said to holavith high probability(or whp) if it Linear-time Sparsification Algorithm. We improve the above
does nohold with probability inverse polynomial in. algorithm further in the next theorem.

Theorem 1.1. Let G, be obtained from a weighted gragh
by independently sampling edgwith probabilityp. = p/ .,
wherep = O(log®n/e?) and A, = k.. Then,G. contains
O(nlog® n/e*) edges in expectation, an@. € (1 £ €)G
whpAd

Theorem 1.4. There is an algorithm that produces sparsifiers
containing O(nlogn/e*) edges in expectation, and runs in
O(m) time for unweighted graphs ar@(m) + O(n/e?) time
for weighted graphs.

Note that this algorithm has optimal time complexity for un-
weighted graphs; for weighted graphs, the time complexity is
slightly sub-optimal if the input graph is already very sparse.
The previous best time complexity for an identical guarantee
on the size of the sparsifier way(m log® n) for unweighted
graphs, and)(mlog®n) for weighted graphs [4]. On the
other hand, the only known algorithm that constructs sparsi-
fiers with fewer edges take9(n3m/e?) time [2], which is
substantially slower. Our sparsification algorithm improves
the running time for the numerous applications of sparsifiers
for dense input graphs (e.@. [13./15] 18, 24]).

1.2 Cut counting

An important ingredient in our proofs is an extension of
Karger’'s random contraction algorithm for computing global
minimum cuts|[9|_14]. We give a variant of this algorithm that
interleaves random edge contractions with edgktting-off
operations. The main purpose is to prove a generalization of
the following cut counting theorem.

Theorem 1.5(Karger [9/14]). For anya > 1, the number of
cuts of weight at mostK in an undirected weighted graph is
at mostn®*, whereK is the minimum weight of a cut in the
graph.

To state our generalization, we need some definitions. An
edge is said to b&-heavyif the edge connectivity of its end-
points is at least; otherwise, it is said to bg-light. The k-
projectionof a cut is the set of-heavy edges in it. Intuitively,
we show that the large number of cuts of siz& for large

«, as predicted by Karger’s theorem, arises froamydistinct
k-projections of these cuts for small valueskofwhile there
arefewdistinct k-projections of these cuts for large values of
k.

Theorem 1.6. LetG = (V, E) be a weighted, undirected
graph. For anyk and anya > 1, the number of distinck-
projections in cuts of weight at mosk is at mosin2“.

(Note that this theorem reduces to Karger’s cut counting the-
orem by settingk to the weight of a global minimum cut.)
Given the numerous applications of Karger's theorem, elg. [1,
6, [12,[23], we suspect our generalization may be of further
interest.

Roadmap. The next section contains an overview of the tech-

nigues used in obtaining the various results outlined above.
Sectior B contains a proof of the cut counting theorem (Theo-
rem[1.6), which is used in the proofs of the general framework

presented in Sectidd 4. We use the general framework to ob-

tain Theoreni_I]1 in Sectidn 4.1. We present the linear-time
sparsification algorithm in Sectigh 5. Finally, some sampling
lower bounds are presented in Secfibn 6.

2. OVERVIEW OF OUR TECHNIQUES

Our first goal is to demonstrate sampling using edge con-
nectivities, thereby proving Theordm1L.1. The basic intuition
behind sparsification is two-fold:

Figure 1: An example of a graph where Karger's cut
counting theorem is not sufficient to prove that sampling
using edge connectivities yields a good sparsifier.

1. Edges that arevell-connectéliare less critical to main-
taining connectivity of the graph and can hence be sam-
pled at lower probabilities than those that are not well-
connected.

2. Most edges in a dense graph are well-connected; hence,
most edges can be sampled at low probabilities leading
to a sparse sample.

Now, suppose we want to sample edgat probabilityp. =
O(logn/ke) and give it a weight ofl /p. in G if selected.
The next lemma formalizes (2).

Lemma 2.1. For any undirected, weighted gragh = (V, E)
wherew,. and k. respectively represent the weight and con-

nectivity of edge, >° ., 3¢ <n — L

Formalizing (1) turns out to be more tricky. For example,
consider the complete graph envertices. Here, all edges
have connectivityr — 1, and therefore are sampled at proba-
bility ©(logn/n). Now, consider a cut containing edges.
Since edges are sampled independently, Chernoff bounds (see
e.g. [19]) ensure that thiailure probability for this cut (i.e.,
the probability that the sampled weight of the cut is not in
(1+€)A)is1/n*A/™ If A = O(n), this bound is inverse
polynomial inn. But there are exponentially many cuts; so a
naive union bound that multiplies this probability by the num-
ber of cuts will not work.

A slightly more refined analysis would observe that there
are onlyn®®/™ cuts withA edges, either by a direct count-
ing argument or by applying Karger's cut counting theorem
(Theorem_Lb). Since each such cut has failure probability
1/n(4/™) we can apply a union bound for each valueof
Summing over all values ah gives an overall failure proba-
bility that is inverse polynomial im.

Unfortunately, this technique does not work for all graphs.
For example, consider the graph in Figlie 1. Here, the con-
nectivity of each edge is two, except that of thet) edge
is ©(n). Now, consider any cut separatingand¢ in this
graph. The(s,t) edge has the lowest sampling probability
(= ©(logn/n)), and therefore has high variance in the sam-
pled weight even though all the other edges have low vari-
ance. Unfortunately, the Chernoff bound does not recognize
this difference in variance between the edges and yields a fail-
ure probability inverse polynomial in. This is too weak, for

“The exact definition ofvell-connectednesgaries from one
sparsification scheme to another.

we have to union bound over the exponentially many cuts sep-

aratings and¢. The problem lies in the use of the Chernoff

2.1 The General Framework
Consider the proof sketch for Theor€m]1.1 outlined above.

bound — in spite of most edges in the cut being sampled at s j first abstraction, note that our argument does not depend

a relatively high probability (thereby reducing the variance
of the sample), the Chernoff bound is very weak. To over-
come this problem, we partition the edges of a cut in doubling
ranges[2°~1, 2 — 1] of their connectivity, and apply Cher-

on the exact value of the overlap overhead, i.e. the proof sketch
continues to hold witlV = wc¢ /o andp. = ©(alogn/e*2")
(wheree has connectivity if2°~!, 2° — 1]) for any valuex of
the overlap overhead. Generalizing further, suppose we iden-

noff bounds on each of these sets separately. Since edges injfy a subset of edge§’; (with weight we,) in every cutC

any such set (call the set of edges having connectivity in the
range[2°~*, 2¢ — 1] thei-segmenbf the cut) are sampled at

roughly the same probability, the bounds obtained are tighter,

especially for small values af We run into a technical hurdle
here. Consider the example in Figlile 1. Thet) edge is in

a connectivity range on its own, and clearly one cannot obtain
tight concentration bounds for just one edge. However, ob-

serve that whether this single edge appears in the sample hasl’hen N

almost no bearing on the quality of the sample. To formalize
this intuition, we will use the following generalization of the
Chernoff bound.

Theorem 2.2. Let X;1, Xs,..., X, ben random variables
such thatX; takes valuel /p; with probability p; and 0 oth-
erwise. Then, for any such thatp < p; for eachi, any
e € (0,1), and anyN > n, the following bound holdg:

p[zﬂjxi—n

=1

When we apply the above theorem to theegment of a cut
C, we setN to the weight of the cutvc, thereby obtaining a
meaningful tail bound. For example, in Figlide 1, if a segment
comprises the solitarys, t) edge, we define the failure event
as a deviation ofn from the expected value of one, thereby
ensuring that the (overwhelmingly probable) event of not in-
cluding the edgés, t) in the sample isiot defined as a failure
event. One deficiency of this approach is that the deviation
is ewc for each connectivity range, leading to an overall de-
viation of ew¢ log n. However, recall that the total deviation
needs to be at mostvc. So we can instead set the valuedf
towc / log n and, to ensure that the probability bound remains
unchanged, increase the sampling probability by a factor of
logn. (We call this extralogn in the sampling probability
the overlap overhead We now use Theorefn 1.6 to bound
the failure probability ovei-segments of all cuts of weighi.
Finally, we union bound over all values fand A to obtain
TheoreniLH.

As observed previously, Theordm1L.1 implies that sampling
using edge strengths (Benczur-Karder [4]) and effective re-

2
> EN:| < 2¢7 038 PN

sistances (Spielman-Srivastaval[25]) yields sparsifiers. Since

every edgee has NI index{. < k., Theoren{ 11l also im-
plies that sampling using NI indices yields a sparsifier. How-
ever, since the sampling probability &(log® n/e*).) (for

Xe = k., ce, L. respectively), the resulting sparsifiers have

such that:

e Each edge in thé-segment of a cut i€*-heavy in a
graph containing only the edgés for all cutsC.

e Each edge appears @@} for at mosta different values
of 4.

= we, /o andp. = O(alogn/?2) are sufficient
for the above proof. Moreover, we do not need to define
segments by edge connectivities, rather we can defing-the
segment of cu€' as the set of edges sampled with probability
De € [“:;f;”, 52(0510%] The proof sketch is valid provided
the above two properties are satisfieditgegments defined in
this manner.

We now formalize the above intuition. L&t = (V, E)
be an undirected graph where edghdas weightw.. Con-
sider anye € (0,1). We construct a sparse gragh where
the weight of edge is R./p., R. being an independent (of
other edges) binomial random variable with parameters
andp.[ll What values op. result in a sparsé&r. that satisfies

G. € (14)G whp? Letp, = min { 2127 11, where

« is independent of and). is some parameter ef satisfy-
ing A\e < 2™ — 1. The exact choice of values for and the
Ae's will vary from application to application. However, we
describe below a sufficient condition that characterizgsad
choice ofa and).’s.

To describe this sufficient condition, partition the edges in
G according to the value of. into setsFy, Fi, ..., Fi, where
k= [lgmaxcer{)l}| <n—1lande € F;iff 29 <)\, <
2711 _1. Now, letG = (Go, G1,Gx,...,Gi,...,Gr) (Where
G; = (V, E;)) be a set of subgraphs 6f (we allow edges of
G to be replicated multiple times in th&;’s) such thatF; C
E; for everyi. For a set of parameters= (mo, 1, ..., Tk),

G is said to be g,)-certificatecorresponding to the above
choice ofa and\.'s if the following properties are satisfied:

e m-connectivity. Fori > 0, any edge: € F; is m;-heavy
in Gi.

e «-overlap. For any cutC' of weightwc in G, let e§C>

be the weight of edges that cro§sin G;. Then, for all

(@ gi-1

cutsC, o8 G

< awc.

TheorenT2B describes the sufficient condition. We gave the

O(nlog? n/e?) edges, whereas the BenczUr-Karger sparsifiers intuition behind the theorem at the beginning of this section; a

have onlyO(nlogn/e?) edges.

Next we describe our general framework which has sev-
eral applications, including constructing sparsifiers with only
O(nlogn/e?) edges under the sampling scheme of Benczur
and Karger (we omit the details of this construction due to
space limitations), and proving TheorEml|1.3.

SFor any event, P[£] represents the probability of evefit

formal proof appears in Sectigh 4.

Theorem 2.3. If there exists d, «)-certificate for a particu-
lar choice ofa: and\.’s, thenG. € (1 + €)G with probability

6

This is equivalent to taking. unweighted copies af, sam-
pling each copy independently with probability and adding
a weight of1 /p. to edgee in G. for each copy selected in the
sample.

at leastl — 4/n. FurthermoreG. hasO(* %" Y, ¥=)
edges in expectation.

2.2 Sparsification Algorithms

Ouir first algorithmic application of the general framework is

but very sparse input graphs. We need one additional idea to
turn this into a strictly linear-time algorithm for unweighted
graphs. Observe that we would ideally like to place as many
edges as we can in subséisfor large values of so as to ob-

tain a sparsé& .. On the other hand, the fact that these edges

to show that the expected size of the sparsifier obtained whenare retained till the later iterative stages implies that we pay

sampling by NI indicd$is O(n log? n/€?). This proves The-
orem[L3. In this sampling schema, is the NI index of
edgee. Our key observation is that any edge in NI forests
Toi, Toigs,- -, Toir1_1iS2° ' -heavy inagraplis; = (V, E;)
containing all edges ifiyi—1, Thi—141,...,Toi, ..., Toit1 4

(i.e., two successive doubling ranges of NI forests). This lets
us definer; = 27! anda = 2 since each edge is present in
at most twoFE;’s. Since the graph&’; are a(w, «)-certificate

for them in our time complexity repeatedly. To overcome this
dilemma, we use the following trick: instead of sampling these
edges with probability /2° in iteration:, we sample them with
probability 1/2 in each iteratiof < 4, and retain them in the
set of edges for the next iteration only if selected in the sam-
ple. Now, we are able to reduce the size of our edge set by a
factor of two (in expectation) in each iteration; therefore, im-
plementing a single iteration in linear time immediately yields

for this choice of parameters, we use Theokem 2.3 to conclude a linear time algorithm overall. However, this iterative sam-

that the expected size of the sparsifiedig: log? n/e?).

Our goal now is to improve the size of the sparsifier to
O(nlogn/e?) while maintaining linear running time. To this
end, we abstractly view the NI index-based sampling scheme
as an iterative algorithm that finds a set of edfe iteration
i (these are the edges in NI foredts:, Thi 4, . ..
and are sampled with probabili®y(log n/2%)) with the fol-
lowing properties:

7T2i+171

e (P1)Each edge itf5; has connectivity 0®(2°) in E;_.
e (P2) The number of edges iB; is ©(n - 2%).

Our first observation is that proper{f?1) can be weakened
— using the general framework, we show it is sufficient for
each edge inF; to have connectivity o®(2%) in G;_, =
(V,Fi—1) whereF;_, = E;_1UE;U. ... Since we are aiming
for a sparser sample than in the previous algorithm, we also
need to makéP2) stricter. Our new requirement is that the
number of edges iZ;_; from any connected compone@t

of G;—1 is O(2) times the number of components into which
C decompose ild7;. Itis not difficult to show that this stricter
condition ensures that the expected number of edgé&s.in
decreases t®(n logn/e?).

To complete the description of the algorithm, we need to
give a linear-time construction af;'s satisfying the above
properties. Iteratiori runs on each component 6f; sepa-
rately; we describe the algorithm for any one compor@nt
First, (2° + 1) NI forests Ty, T, . . ., Tyi,, are constructed
in C and all edges iff5,: ,; are contracted; let the resulting
graph beGc = (Vo, Ec). If |Ec| = O(|Vc| - 2*), we add
the edges inEc to E; and retain the remaining edges for it-
erations + 1. Otherwise, we constru¢2® + 1) NI forests on
Gc, contract the edges in th@® + 1)st NI forest, and up-
dateGc to this contracted graph. We repeat these steps until
|Ec| = O(|Vc| - 2%); then, we add the edges ffic to E;
and retain the remaining edges for iteratios 1. One may
verify that propertiegP1) and (P2) are satisfied by thé’;'s
constructed by this algorithm.

This algorithm, with a pre-processing step where the num-
ber of edges is reduced ©(n) by sampling using NI in-
dices, runs in0(m) 4+ O(n) time, and yields a sparsifier of
expected sizé&(nlogn/e?). This is already optimal for all

7 Supposing thatv, = n°™"), one would obtain a weaker

bound ofO(nloglﬁﬁ edges from a straightforward appli-
cation of Theore 1 and the previously known fact [4] that

> we/le = O(nlog ", we).

pling scheme creates several technical hurdles since it intro-
duces dependencies between the sampling processes for dif-
ferent edges. Our key technical contribution is in showing that
these dependencies are mild enough for us to continue to use
the framework that we have developed above for independent
sampling of edges. We present the details of this algorithm
and its analysis in Sectign 5.

Weighted Graphs. Weighted graphs pose additional chal-
lenges. First, consider a graph with super-polynomial edge
weights. An immediate concern for such graphs is that the
number of doubling categories of sampling probabilities can
now be polynomial rather than logarithmic. For example, in
Theorem_L1L, the overlap overhead will now be polynomial
instead of logarithmic.

We have two techniques, each separately solving this prob-
lem. First, a more refined use of the Chernoff bound allows us
to, roughly speaking, show that orilyg n doubling categories
have substantial contribution to the sampled weight of the cut.
The analysis is intricate; so we omit the details from this ex-
tended abstract. Second, we can useaimelowing technique
due to Benczur and Kargerl[4]. The basic idea is that if the
connectivity of an edge is k., then removing all edges with
weight at mostk. /n* and contracting all edges with weight
greater thark. does not significantly alter the connectivity of
e. This trick lets us deal with only a polynomial range of edge
weights at any point of time, thus alleviating the problem de-
scribed above. For algorithmic applications, we also need to
estimate the edge connectivities for making these alterations
to the input graph. The key observation (due to Benczdr and
Karger) is that anaximum spanning treman be used to obtain
a polynomial approximation to the connectivity values, and
this is sufficient for our purpose.

Edge weights also introduce complications in the analysis
of running times. Can we sample a weighted edg®in)
time? Recall (from the general framework) that sampling an
edgee involves the generation of a binomial random variable
with parametersv. andp.. This can be done i (wep.)
time for edgee (see e.g.[[8]), and therefo@(>_, . , wepe.)
time overall. It can be verified that this time complexity is
asymptotically identical to the bound on the size of the spar-
sifier obtained from Theoref 2.3 for the general framework,
and therefore can be ignored in the running time analysis.

Finally, we note that the linear-time sparsification algorithm
for unweighted graphs take(m) + O(nlog*® n) time on
weighted graphs (details omitted due to space limitations).

Algorithm 1 An algorithm for finding a smalk-projection by
splitting off light vertices.
procedure Contract(, k, «)
input: A graphG = (V, E), a parametek > K where
K is the weight of a minimum cut id7, and an approxi-
mation factora
output: ak-projection
While there exists &-light vertexv
Perform admissible splitting-off at until v becomes
an isolated vertex

Removey
While there are more thaf2«] vertices remaining
Pick an edge uniformly at random
Contracte and remove any self loops
While there exists &-light vertexv

Perform admissible splitting-off at until v be-
comes an isolated vertex

Removev

Output thek-projection of a cut selected uniformly at ran-
dom

3. CUT COUNTING

In this sectiof] we will prove Theoreni_1]6. Our proof
strategy, as outlined in the introduction, is to give an algo-
rithm (Algorithm[d) with the following property, which imme-
diately implies Theoreri 116. Herg(F') denotes the mini-
mum weight of a cut whosk-projection isF'.

Theorem 3.1. For any k-heavy set of edgeB with ¢(F') <
ak, Algorithm[d outputs” with probability at least, 2.

To describe Algorithni]1, we need some additional defini-
tions. A vertex is said to bé&-heavyif it is incident to a
k-heavy edge; otherwise, it is-light. The algorithm adds
new edges ta@; for notational convenience, we will call these
edgesk-light irrespective of their connectivity. Therefore, the
k-projection of a cut does not include any of these edges.

Note that whenk is the minimum weight of a cut i,
there is nak-light vertex and Algorithnill reduces to Karger's
random contraction algorithm. The main idea is that we can
remove thek-light vertices while preserving the connectivities
of all k-heavy edges by using tlplitting-offoperation. This
operation replaces a pair of edges v) and (v, w) with the
edge(u, w), and is said to badmissiblef it does not change
the edge connectivity between any two vertiees # v. A
deep theorem of Mader [IL7] asserts that admissible splitting-
off exists under mild assumptions.

Theorem 3.2(Mader [17]). LetG = (V, E) be a connected
graph wherev € V is a vertex which has degreé 3 and is
not incident to any cut ed@e.Then, there is a pair of edges
(u,v) and (v, w) such that their splitting-off is admissible.

Since uniformly scaling edge weights does not affect the con-
ditions of Theoreni_3]1, we may assume thais Eulerian

8n the next two sections, an edge of weighis replaced by
w unweighted parallel edges.

and 2-edge-connected. Moreover these conditions are main-
tained in our algorithm. Therefore the inner while loop of Al-
gorithm[1 is feasible.

To prove Theorem 31, we fixiaprojectionF with ¢(F) <
ak. It is sufficient to show that, with good probability, the
algorithm maintains the following invariants.

(11): F is ak-projection in the remaining graph,

(12):

q(F) < ak (whereg(F) now minimizes over cuts
in the remaining graph), and

(13):

every remainingc-heavy edge: has connectivity at
leastk.

The only modifications to the graph made by Algorithin 1 are
admissible splitting-offs, contraction of edges, and removal of
self-loops. Clearly removing self-loops does not affect the
invariants. Now consider the splitting-off operatiofil) is
preserved because we only split-gffight edges{12) is pre-
served because splitting-off never increases the size of any cut;
(13) is preserved because we only split-off at a light vertex and
the splitting-offs are admissible.

Lemma 3.3. Let the number of remaining vertices beAs-
suming that the invariants hold, they will continue to hold after
the contraction operation with probability at leabt— 2a./r.

Proof. For (I13), note that since contraction does not create
new cuts, the edge connectivity of an uncontracted edge can-
not decrease. Now consider the graph before the contraction.
Since every remaining vertexis k-heavy, the degree of each
vertex is at leask; thus the number of remaining edges is at
leastkr /2. Let C be a cut such that is thek-projection ofC
andwc = ¢(F). Note that(I1) and(12) are preserved if the
contracted edge ¢ C'. Sincee is picked uniformly at random,

the probability thate € C isPle € C] < ¢(F)/(kr/2) =
2q(F)/kr < 2a/r. []

Let the number of remaining vertices after the splitting-off op-
erations of iterationi in Algorithm[1 ber;. Then, the proba-
bility that all the invariants hold throughout AlgoritHnh 1, and
Fis the output is at least

) () (o

4. THE GENERAL FRAMEWORK

We will now use Theoreri 116 to prove Theoreml2.3. We
re-use the notation defined in section| 2.1, and introduce some
additional notation. For any cut, let ch> = F;NnC and

E9 =B ncforo<i<kflets9 =|F and
el = |EL9)|. Also, let £ be the total weight of all edges
in F{°) inthe sampled grapf.. Note that the expected value

E[f(] = £9). We first prove a key lemma.

2c

’72 W — 1> 27((2({\71) > n72a‘
«

Lemma 4.1. For any fixedi, with probability at leastl —
4/n?, every cuiC in G satisfies
—) i—1
)2
fi(C) _fz‘(c) < ;max{@z - 7fi(c>}
T -

A cut edgeis an edge whose removal separates a connected'®For any cutC' and any set of edges, Z N C denotes the set

graph into two disconnected components.

of edges inZ that cross cu.

Proof. By ther-connectivity property described in sectionl2.1,
any edges € F; is m;-heavy inG; for anyi > 0. Therefore,
ez(-@ > 7;. LetC;; be the set of all cut€’ such thatr, - 27 <
el? < - 271 — 1,5 > 0. We will prove that with proba-
bility at leastl — 2n‘2j+1, all cuts inC;; satisfy the property
of the lemma. The lemma follows by the union bound oyer
(keezpingz‘ fixed) since2n 2 +2n 4 + ... +2n" ¥ 4+ ... <
an~

We now prove the above claim for cufs € C;;. Let X,fc)
denote the set of edgesl?jc) that are sampled with probabil-
ity strictly less than one; correspondingly,) = | x|

and Ietxﬁc) be the total weight of edges IKZ-(C) in the sam-

pled graphGc. Since edges ill'?fc) \Xfc) retain their weight
exactly inG., it is sufficient to show that with probability at

leastl — 22" "',
_ (©) | i1
=015 (5 o { S22)
2 T QU

for all cutsC' € C;;. Since each edge € Xfc) has\. <
2+ we can use Theorelm 2.2 with the lower bound on prob-

abilitiesp = 0;’32% There are two cases. In the first
(C) 5i—1
case, suppos&e(c> < 72 Then, for anyX(where

C € Cij;, by TheoreniZl2, we have

P{x

(C) 4i—1
—0 38£(96a lnn) €i 2"
774 \0.38.21F12 i

(C)

> (3) "%

21 1
Rye’

O

(©) _ 4!

< 2e < 9¢~6% Inn

)

sincee(c) > m; - 29 for any C' € C;;. In the second case,

e(€) i1
{9 > 2 Then, for anyX<C) whereC € Cy;, by

Theorer’riII? we have
96alnn (¢

P{x
0.38-2iF1¢ 2)

—0.38<2 (

© _

—6-27 Inn
b

< 2e <Ze

(C) 21‘- 1
sincez!”) >

have proved that

% foranyC € C;;. Thus, we

|

for any cutC € C;;. Now, by ther-connectivity property,

we know that edges iff“’, and therefore those iK(“, are
m;-heavy inG;. Therefore, by Theoreiin 1.6, the number of

B A
distinctXi(C> sets for cut<”' € C;; is at mostn <) =

. Using the union bound over these distiﬂéﬁm edge
sets, we conclude that with probability at least 2n*2'7+1,

all cuts inC;; satisfy the property of the lemma. |

(C) gi—1

> (%) max{ei. m(c)

, T,
T+ K

—2©

P |: (&

< 2e 0 I _ oy

_6.27

4.
n

We now use the above lemma to prove Thedrem 2.3.

Proof (of TheoremT2ZB). Lemm&4.1 bounds the sampling
error for a fixedi. In this theorem we bound the total error by
summing fromi = 0, ..., k. Recall thatt < n — 1.

Let we andwe be the weight of edges crossing a ¢utn
G andG. respectively. By a union bound, the conclusion of
Lemmd4.1L holds for every value éfvith probability at least
1 — 4/n. Therefore
k

Z|f(c) 79 < Z()max{
< Z (c) — O

for all cutsC. Then, with probability at least — 4/n,
=0

(C) .91

()
- 7f7;

uss

ko k

Zfi(C) _ Zfi(C)

i=0 =0

¢ k egc)_2¢71 k ©
So X T r ST s

=0

|we —wel| =

(C) gi—1
since>"F_,
Zi:o
inC.

We now prove the bound on the expected number of edges
in G. The expected number of distinct edgeginis

S - (1-p)®) <Y wepe.

ecE

——— < wc by thea-overlap property and
fi(C> < we sinceFi(C) 's form a partition of the edges

The bound follows by substituting the valuemf. |

4.1 Sampling using Edge Connectivities

We now use the general framework to prove Thedrerh 1.1.
For any edgee = (u,v), setA. to the connectivityk. of e
also setn = 3+ lgn andm; = 271, F; is defined as the
set of all edges with 2¢ < X\, < 2! — 1 for anyi > 0.
For anyi > 1 + lgn, let G, contain all edges in NI forests
Tyi—1-1gn, Thi—1-togn1,- .., oi+1_, and all edges inf;.
Fori < lgn, G; contains all edges ifiy,T>,...,T; and all
edges inF;. For any: > 0, letY; denote the set of edges
in G; but not inF;. For any:i # j, F; N F; = () and each
edge appears il; for at most2 + log n different values of
1; this provesa-overlap. To prover-connectivity, we note
that for any pair of vertices;, v with connectivit{] k(u,v)
and for anyi > 1, u, v are at leastnin{k(u, v), ¢ }-connected
in the firsti NI forests, i.e. inTy UT> U ... U T;. Thus,
any edgee € F; is at least2‘-heavy in the (union of) the
NI forestsTy, T, ..., Toi+1_,. Since there are at mogt~*
edges overall iy, 1o, ..., Thi—1-1gn_4, aNy edges € F; is
2'~1.heavy inG;. This provesr-connectivity. Theoreri 111
now follows directly from Theoren 2.3 and Leminal2.1.

5. LINEAR-TIME ALGORITHM

The algorithm has three phases. The first phase has the fol-
lowing steps:

1014Inn
0.38¢2 '

o If m < 2pn, wherep = thenG. = G.

e Otherwise, we construct a set of NI forestgofind all
edges in the firsp NI forests are included i with
weight one. We call these edgé€s. The edge se€Y) is
then defined a& \ Fo.

1The connectivity of a pair of vertices is the minimum weight
of a cut separating them.

The second phase is iterative. The input to iteratisra graph
(V,Yi—1), which is a subgraph of the input graph to iteration
i—1(.e. Y;—1 C Y;_o). Iteration: comprises the following
steps:

o If the number of edges ii; 1 is at most2pn, we take
all those edges it with weight2:~! each, and termi-
nate the algorithm.

e Otherwise, all edges ilr; are sampled with probability
1/2; call the sampleX; and letG; = (V, X;).

e We identify a set of edges iX; (call this setF;) that
has the following properties:

— The number of edges iF; is at mosRk; | V.|, where
k; = p-2'T1, andV, is the set of components in
(V,Y:), whereY; = X; \ F;.

— Each edge ifY; is k;-heavy inG;.

* We give a sampling probability; = min { {m5-25=5,1}
to all edges inF;.

The final phase consists of replacing each eddg itfor each

i) with 2¢ parallel edges, and then sampling each parallel edge
independently with probability;. If an edge is selected in the
sample, it is added t6&. with weight1/p;.

We now give a short description of the sub-routine that con-
structs the seF; in the second phase of the algorithm. This
sub-routine is iterative itself: we start witth = V andE. =
X, and letG. = (V., E.). We repeatedly construgt + 1 NI
forests forG. wherek; = p - 27! and contract all edges in
the (k; + 1)st forest to obtain a new., until | E.| < 2k;|V;|.

The set of edge&. that finally achieves this property forms
F;.
The complete algorithm is given in Algorithioh 2.

Cut Preservation. We use the following notation throughout:

for any set of unweighted edgés, ¢Z denotes these edges

with a weight ofc given to each edge. Our goal is to prove the
following theorem.

Theorem 5.1. G € (1 + €)G with probability at leastl —
8/n.

Let K be the maximum value of for which F; # 0; let

S = (U2 F) U2X YKk andGs = (V, S). Then, we prove
the following two theorems, which together yield Theofem 5.1
using the union bourld

Theorem 5.2. Gs € (1 £ ¢/3)G with probability at least
1—4/n.

Theorem 5.3. G. € (1 + ¢/3)Gs with probability at least
1—4/n.
The following property is key to proving both theorems.

Lemma 5.4. For anyi > 0, any edgee € Y; is k;-heavy in
Gi = (V, X;), wherek; = p - 2¢T1,

Proof. Since all edges iy are in Nl forests%,+1, Top+2, - - -
of Gy = G, the lemma holds foi = 0.

20pserve that since< 1, (14+¢/3)? < 14+eand(1—¢/3)% >
1—e

Algorithm 2 The linear-time sparsification algorithm.
procedure Sparsify (&)
input: An undirected unweighted graght = (V, E), a
parametet € (0,1)
output: An undirected weighted grapghi. = (V, E¢)
Setp = 10tz
If m < 2pn, thenG. = G and terminate; else, continue.
Construct NI forest§, Ts, . .. for G.
Set: =0; Xo = FE; Iy = U1§j§2ij; Yo = Xo \ Fo.
Add each edge iy to G with weight 1.

OuterLoop: If |Y;| < 2pn, then add each edge Ir} to
G with Weigthi’1 and terminate; else, continue.
Sample each edge iri with probability 1/2 to construct
X1'+1.
Incrementi by 1; setE. = X;; Vo =V, k; = p - 2011,
InnerLoop: If |E.| < 2k;|V¢|, then
SetF; = E;;Y; = X; \ E..
For each edge € F;, set\. = p - 4.
Go toOuterLoop.
Else,
Construct NI forestsTi, Tx,.
Ge = (Ve, Ec).
UpdateG. by contracting all edges i, 1.
Go tolnnerLoop.
For eachi, for each edge € F;,

_ 3 92161Inn _ H 3
Setp. = min { 0‘38&('2' , 1} = min {W7 1}.
Generate,. from Binomial (2°, p..).
If r. > 0, add edge to G with weightr. /p..

.., Tk, +1 for graph

We now prove the lemma far> 1. LetG. = (V., E.) be
the component of7; containinge. We will show thate is k;-
heavy inG.; sinceG. is a subgraph of/;, the lemma follows.

In the execution of the else block tbfnerLoop on G., there

are multiple contraction operations, each comprising the con-
traction of a set of edges. We show that any such contracted
edge isk;-heavy inG.; it follows thate is k;-heavy inGL.

Let G. havet contraction phases and let the graph produced
after contraction phasebeG. .. We now prove that all edges
contracted in phasemust bek;-heavy inG. by induction on
r. Forr = 1, sincee appears in thék; + 1)st NI forest of
phase 1g¢ is k;-heavy inG.. For the inductive step, assume
that the property holds for phasg, . .., r. Any edge that is
contracted in phase+ 1 appears in thék; + 1)st NI forest
of phaser + 1; therefore.e is k;-connected irGG. .. By the
inductive hypothesis, all edges 6f. contracted in previous
phases aré;-heavy inG.; therefore, an edge thatis-heavy
in G.,» must have beeh;-heavy inG.. |

Proof of Theorem[5.2.The next lemma (proof omitted due to
space limitations) follows from the general framework.

Lemma 5.5. With probability at leastl — 4/n?, for every

cutCin Gy, 220) + £ — 2{9] < £33 2P, where
xg.C), xifi and fi(C> respectively denote the weight &% N

C, Xit1 N CandF;NC.

We use the above lemma to prove the following lemma, of crossing cutC' in F; and W,,;) respectively for any' > 0.

which Theoreni 5]2 is a corollary fgr= 0

Lemma 5.6. LetS; = (Uf<,;2°7F;) U2 7Yk for any
j > 0. Then,S; € (1 + (¢/3)277/2)G; with probability at
leastl — 4/n, whereG; = (V, X;).

Proof. To prove this lemma, we need to use the following fact
(proof omitted due to space limitations).

Fact 5.1. Letz € (0,1] andr; = 13 -2"/2, Then, for any

k>0,T1 (1 +a/ri) <1+a/3and]]F (1 —a/r:) >
1—=z/3.

For any cutC in G, let the edges crossing in S; be S(c)

and let their total weight be\”’. Also, let X\, v,/“” and
Fi(m be the set of edges crossing cutin X;, Y; and F; re-
spectively, and let their weights béc>, yEC) andfl.(C).

SinceK < n—1, we can use the union bound on Lenimd 5.5

to conclude that with probability at least— 4/n, for every
0 < ¢ < K and for all cutsC,

20{0) + {7 < (L+ ¢/
20{0) + 19 > (1= ¢/r)al®,
wherer; = 13 - 2//2. Then,
s = 28Iy 4 oK p @ oK (D 4 flO
= 9RO L oK1 O oy (@)

since yK + f(c) EKC)

gK—1- 7(2 (C)+f(C))+(2K—2—jf(c)2+)

< (Ut e/ri-)2 7 a0 + 2RI, 4)

< (Ut e/rron)@H <C>1+2K TN)

< (L4 efrm)(L+e/ri—z) ... (1+¢/r))z’

< A+ (2777 frica) (14 (2 J”)/rx—z—j)m
(14 (e27 J/2)/7‘) 9 sincer;y; =r; - 2772

< (1+(¢/3)279%)2(? by Fact5d

Similarly, we can show thatS > (1 — (¢/3)277/%)z(”). ®

Proof of Theorem[5.3. First, observe that edgd$ U 28 Y
are identical inGs andG.. Therefore, we do not consider
these edges in the analysis below. For any 1, let ¢ (7)
be such thap*® < p.4° < 2¥®+1 _ 1 Note that for
any j, ¥ (i) = j for at most one value of. Then, for any
j>1,R; = F;if j = (@) andR; = 0 if there is noi
such thatj = ¥(i). We seta = 32/3; m; = p - 4% for any
j >1, Qj = (‘/, WJ) Wherer = Ui,1§7-§K4K_T+12TFT
if R; # 0 andj = (i), andW; = 0 if R; = 0.

The following lemma ensures-connectivity (proof omitted
due to space limitations).

Lemma 5.7. With probability at leastl — 4/n, every edge
e € F; = Ry, for eachi > 1is p - 4% -heavy inQy ;).

We now prove thex-overlap property. For any cuf, let
719 andw!? respectively denote the total weight of edges

Further, let the number of edges crossing €uin UX ;2! F;
be f(©). Then,

K ,w(c)2’¢)(i)—1 K K f(c) o7 . 4K7?"+1
_ i £ § 2041 % iQT © _ 32f(0).
r=0 i=1 r=0

Using Theorerfi 213, we conclude the proof of Theoerm 5.3.

Size of G.. We now prove that the expected number of edges
in G is O(nlogn/e?). Fori > 1, defineD; to be the set of
connected components in the gra@h = (V, X;); let Do be

the single connected componentGh For any: > 1, if any
connected component if; remains intactirD; 41, then there

is no edge from that connected componenkjnOn the other
hand, if a component ifv; splits intor, components iD; 1,
then the algorithm explicitly ensures that . 7[5 from

21 2z+2 9t
that connected componentys, . -2 o < (P T)77 =
4n < 8(n — 1). Therefore, ifd; = |D |, then

K K
S TS 8l — di) <8,
¢ =1

i=1 ecF;

since we can have at mastsingleton components. It follows
from Theoreni 213 that the expected number of edges added to
G. by the sampling i©)(n log n/e?).

Time complexity. If m < 2pn, the algorithm terminates after
the first step which take®(m) time. Otherwise, we prove
that the expected running time of the algorithmGgm +
nlogn/e?) = O(m) sincep = O(logn/e®). First, ob-
serve that phase 1 také¥(m + nlogn) time. In iteration

1 of phase 2, the first step takB$_1| time. Using arguments
similar to [4], we can show that all the remaining steps take
O(]X;i| + nlogn) time. SinceX; C Y;_; and the steps are
executed only ifY;_1 = Q(nlogn/e?), it follows that the
total time complexity of iterationi of phase 2 iSO (]Y;—1]).
SinceY; C X; andE[|X;|] = E[X;-1]]/2, and|Yp| <
m, it follows that the expected overall time complexity of
phase 2 i90(m). Finally, the time complexity of phase 3 is
O(m + nlogn/c®) (see e.gl]8]).

6. LOWER BOUNDS

We have already noted that independent sampling of edges
cannot produce sparsifiers containir{g log n) edges. A pos-
sible alternative is to sample spanning trees uniformly at ran-
dom, and Theoreifn 1.2 asserts that this sampling technique in-
deed produces cut sparsifiers. We now give a lower bound for
the tradeoff between the number of trees (i.e., the vajand
the quality of sparsification in Theordm1L.2.

Lemma 6.1. For any constant > 1, there is a graph such
that p = Q(logn) spanning trees have to be sampled uni-
formly at random to approximate all cuts within a factor
with constant probability.

Buw, is the number of parallel copies ein the Binomial sam-

pling step.

Proof. Let G be a graph defined as follows. Its vertices are

{uty .. ;untU{v1,...,vnq1}. Foreveryi=1,...,n,add
k parallel edgesjwﬁl, cee vivﬁ_)l, and a single length-two

pathv;-u;-vi;+1. The edges;wgi)1 are calledheavy and the
edgesv;u; andu;v;+1 are calledight. Note that the heavy
edges each have effective conductance exdety+ 1)/2.
The light edges each have effective conductance exéitly-

1)/(k+1) <2

A uniform random spanning tree in this graph can be con-
structed by repeating the following experiment independently

for eachi = 1,...,n. With probability2k/(2k + 1), add a
uniformly selected heavy edggvfi)l to the tree, and add a
uniformly selected light edge;u; or u;v;+1 to the tree. In
this case we say that the tree is “heavy in positionOther-

wise, with probabilityl /(2k + 1), add both light edges;u;

andu;v;+1 to the tree but no heavy edges. In this case we say

that the tree is “light in positioi’.

Our sampling procedure produces a sparsifier that is the

union of p trees, where every edgein the sparsifier is as-
signed weight. /p. Suppose there is d@rsuch that all sampled
trees are light in position. Then the cut defined by vertices
{v1,u1,v2,uz,...,v;} has weight exactly2k+1)/(k+1) <
2 in the sparsifier, whereas the true value of the cétdis1.
The probability that at least one tree is heavy in posititn
1—(2k+1)~". The probability that there exists asuch that
every tree is light in positionisp =1 — (1 — (2k +1)7")".
Suppose = Inn/In(2k + 1). Thenlim, o p =1 —1/e.
So with constant probability, there is asuch that every tree
is light in position:, and so the sparsifier does not approximate
the original graph better than a factéf . []

Acknowledgments. Partial support for conducting this re-

search was provided by an NSERC Discovery Grant for W. S.

Fung and N. J. A. Harvey, and by NSF-STC Award 0939370
for D. Panigrahi. D. Panigrahi would like to thank David
Karger for helpful discussions.

7. REFERENCES

[1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan,
and A. Saberi. ArO(log n/ log log n)-approximation
algorithm for the asymmetric traveling salesman
problem. InProc. 21st Annual ACM-SIAM Symposium
on Discrete Algorithmspages 379-389, 2010.

[2] J. D. Batson, D. A. Spielman, and N. Srivastava.
Twice-Ramanujan sparsifiers. Broc. 41st Annual
ACM Symposium on Theory of Computipgges
255-262, 2009.

[3] A. A. Benczir and D. R. Karger. Approximaset

min-cuts inO(n?) time. InProc. 28th Annual ACM
Symposium on Theory of Computii§96.
[4] A. A. Benczdr and D. R. Karger. Randomized

approximation schemes for cuts and flows in capacitated

graphs, 2002.

http://arxiv.org/abs/cs/ 0207078.
[5] A. Goel, M. Kapralov, and S. Khanna. Perfect
matchings inO(n'-?) time in regular bipartite graphs,
2009.htt p: // arxi v. org/ abs/ 0902. 1617.
M. X. Goemans, N. J. A. Harvey, K. Jain, and M. Singh.
A randomized rounding algorithm for the asymmetric
traveling salesman problem, 2009.
http://arxiv.org/abs/0909. 0941.
N. Goyal, L. Rademacher, and S. Vempala. Expanders
via random spanning trees. Rroc. 20th Annual

6]

(7]

ACM-SIAM Symposium on Discrete Algorithmages
576-585, 2009.

[8] V. Kachitvichyanukul and B. W. Schmeiser. Binomial

random variate generatioBommun. ACM

31(2):216-222, 1988.

D. R. Karger. Global min-cuts in RNC, and other

ramifications of a simple min-cut algorithm. Rroc. 4th

Annual ACM-SIAM Symposium on Discrete Algorithms

pages 21-30, 1993.

D. R. Karger. Random sampling in cut, flow, and

network design problems. Froc. 26th Annual ACM

Symposium on Theory of Computii§94.

[11] D. R. Karger. Random sampling in cut, flow, and

network design problem#4athematics of Operations

Research24(2):383—-413, May 1999.

D. R. Karger. A randomized fully polynomial time

approximation scheme for the all-terminal network

reliability problem.SIAM J. Comput.29(2):492-514,

1999.

] D. R. Karger and M. S. Levine. Random sampling in
residual graphs. IRroc. 34th Annual ACM Symposium
on Theory of Computingpages 63-66, 2002.

[14] D. R. Karger and C. Stein. A new approach to the
minimum cut problemJournal of the ACM
43(4):601-640, July 1996.

[15] R. Khandekar, S. Rao, and U. V. Vazirani. Graph
partitioning using single commodity flowdournal of
the ACM 56(4), 2009.

[16] I. Koutis, G. L. Miller, and R. Peng. Approaching
optimality for solving SDD systems. IRroc. 51th
Annual IEEE Symposium on Foundations of Computer
Sciencepages 235-244, 2010.

[17] W. Mader. A reduction method for edge-connectivity in
graphsAnn. Discrete Math.3:145-164, 1978.

[18] A. Madry. Fast approximation algorithms for cut-based
problems in undirected graphs. Rmoc. 51th Annual
IEEE Symposium on Foundations of Computer Science
pages 245-254, 2010.

[19] R. Motwani and P. RaghavaRandomized Algorithms
Cambridge University Press, 1997.

[20] H. Nagamochi and T. Ibaraki. Computing
edge-connectivity in multigraphs and capacitated
graphsSIAM J. Discrete Math5(1):54-66, 1992.

[21] H. Nagamochi and T. Ibaraki. A linear-time algorithm
for finding a sparse k-connected spanning subgraph of a
k-connected graptAlgorithmica 7(5&6):583-596,

1992.

[22] D. Peleg and A. A. Schaffer. Graph spanndrsGraph
Th, 13(1):99-116, 1989.

[23] S. Rao and S. Zhou. Edge disjoint paths in moderately

connected graph&IAM J. Comput.39(5):1856-1887,

2010.

J. Sherman. Breaking the multicommodity flow barrier

for O(+/log n)-approximations to sparsest cut.Rroc.

50th Annual IEEE Symposium on Foundations of

Computer Sciencgages 363—-372, 2009.

D. A. Spielman and N. Srivastava. Graph sparsification

by effective resistances. Proc. 40th Annual ACM

Symposium on Theory of Computipgges 563-568,

2008.

D. A. Spielman and S.-H. Teng. Nearly-linear time

algorithms for graph partitioning, graph sparsification,

and solving linear systems. Froc. 36th Annual ACM

Symposium on Theory of Computipgges 81-90,

2004.

http://arxiv.org/abs/cs. DS/ 0310051.

D. A. Spielman and S.-H. Teng. Spectral sparsification

of graphs, 2008.

http://arxiv.org/abs/0808. 4134.

9]

(10]

(12]

(24]

[25]

[26]

[27]

	Introduction
	Sparsification Algorithms
	Cut counting

	Overview of Our Techniques
	The General Framework
	Sparsification Algorithms

	Cut Counting
	The General Framework
	Sampling using Edge Connectivities

	Linear-time Algorithm
	Lower Bounds
	References

