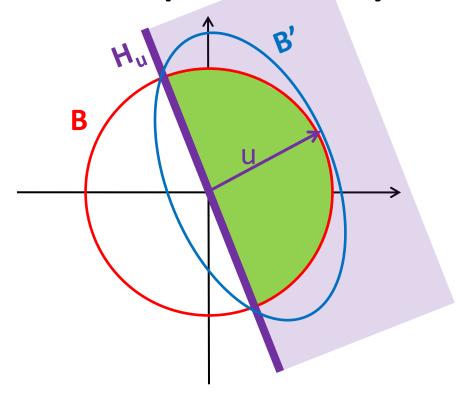
C&O 355 Mathematical Programming Fall 2010 Lecture 7

N. Harvey

Covering Hemispheres by Ellipsoids



- Let B = { unit ball }.
- Let $H_u = \{ x : x^T u \ge 0 \}$, where ||u|| = 1.
- Find a small ellipsoid B' that covers $B \cap H$.

Rank-1 Updates

- **Def:** Let z be a column vector and α a scalar. A matrix of the form $I + \alpha zz^{\mathsf{T}}$ is called a rank-1 update matrix.
- Claim 1: Suppose $\alpha \neq -1/z^Tz$. Then $(I + \alpha zz^T)^{-1} = I + \beta zz^T$ where $\beta = -\alpha/(1+\alpha z^Tz)$.
- Claim 2: If $\alpha \ge -1/z^T z$ then $I + \alpha z z^T$ is PSD. If $\alpha > -1/z^T z$ then $I + \alpha z z^T$ is PD.
- Claim 3: $det(I + \alpha zz^{\mathsf{T}}) = 1 + \alpha z^{\mathsf{T}}z$

Main Theorem:

Let B = { x : $||x|| \le 1$ } and H_u = { x : $x^Tu \ge 0$ }, where ||u|| = 1.

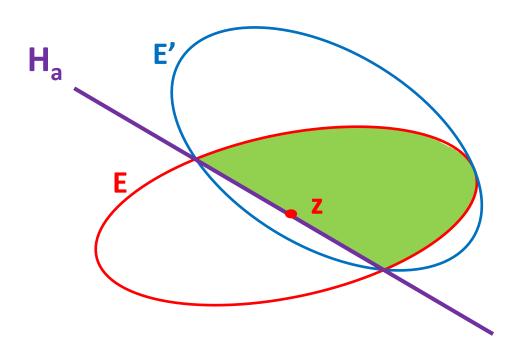
Let
$$M = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} u u^\mathsf{T} \right)$$
 and $b = \frac{u}{n+1}$.

Let B' = E(M, b). Then:

- 1) $B \cap H_u \subseteq B'$. 2) $\frac{\text{vol}(B')}{\text{vol}(B)} \le e^{-1/4(n+1)} \le 1 \frac{1}{8(n+1)}$

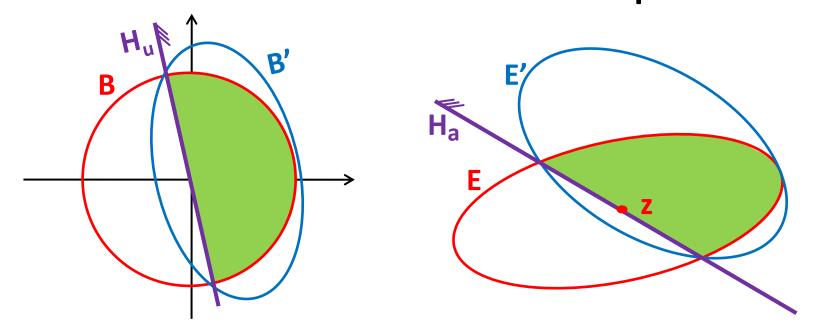
Remark: This notation only makes sense if M is positive definite. Claim 2 on rank-1 updates shows that it is, assuming $n \ge 2$.

Covering Half-ellipsoids by Ellipsoids



- Let E be an ellipsoid centered at z
- Let $H_a = \{ x : a^Tx \ge a^Tz \}$
- Find a small ellipsoid E' that covers E∩H_a

Use our solution for hemispheres!



Goal

Find an affine map f and choose u such that:

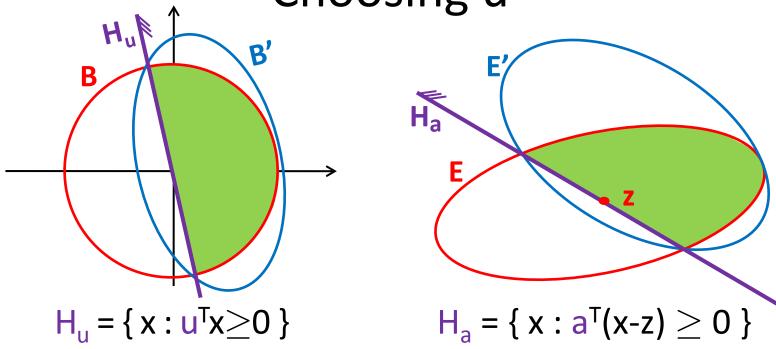
$$f(B) = E$$
 and $f(H_u) = H_a$

Define E' = f(B').

Claim: E' is an ellipsoid.

Claim: $E \cap H_a \subseteq E'$.

Choosing u



- Assume E=E(N,z) and consider the map $f(x) = N^{1/2}x + z$. In Lecture 6 we showed that E = f(B).
- Now choose u such that f(H_u) = H_a.

$$f(H_u) = \left\{ N^{1/2}x + z : u^{\mathsf{T}}x \ge 0 \right\} \\ = \left\{ x : u^{\mathsf{T}}N^{-1/2}(x - z) \ge 0 \right\} \implies \text{take } \mathsf{u} = \mathsf{N}^{1/2}\mathsf{a}$$