C&O 355 Mathematical Programming Fall 2010 Lecture 6

N. Harvey

Polyhedra

• **Definition:** For any $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, define

$$H_{a,b} = \left\{ x \in \mathbb{R}^n : a^\mathsf{T} x = b \right\}$$
 Hyperplane $H_{a,b}^+ = \left\{ x \in \mathbb{R}^n : a^\mathsf{T} x \ge b \right\}$ Halfspaces $H_{a,b}^- = \left\{ x \in \mathbb{R}^n : a^\mathsf{T} x \le b \right\}$

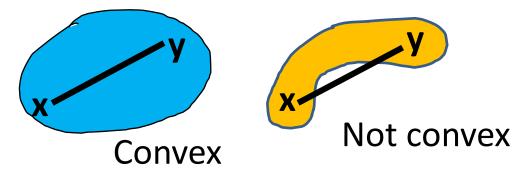
- Def: Intersection of finitely many halfspaces is a polyhedron
- **Def:** A **bounded** polyhedron is a **polytope**, i.e., $P \subseteq \{x : -M \le x_i \le M \ \forall i \}$ for some scalar M

• So the feasible region of LP is polyhedron $P = \bigcap_m H_{a_i,b_i}^-$

$$\begin{array}{ll}
\max & c^{\mathsf{T}} x \\
\text{s.t.} & a_i^{\mathsf{T}} x & \leq b_i \quad \forall i = 1...m
\end{array}$$

Convex Sets

- **Def:** Let $x_1,...,x_k \in \mathbb{R}^n$. Let $\alpha_1,...,\alpha_k$ satisfy $\alpha_i \geq 0$ for all i and $\sum_i \alpha_i = 1$. The point $\sum_i \alpha_i x_i$ is a **convex combination** of the x_i 's.
- **Def:** A set $C \subseteq \mathbb{R}^n$ is **convex** if for every $x, y \in C$ and $\forall \alpha \in [0,1]$, the convex combination $\alpha x + (1-\alpha)y$ is in C.



- Claim 1: Any halfspace is convex.
- Claim 2: The intersection of any number of convex sets is convex.
- Corollary: Every polyhedron is convex.

Convex Functions

- Let $C \subseteq \mathbb{R}^n$ be convex.
- **Def:** $f: C \to \mathbb{R}$ is a **convex function** if $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) \quad \forall x,y \in C$
- Claim: Let $f: C \to \mathbb{R}$ be a convex function, and let $a \in \mathbb{R}$. Then

$$\{x \in C : f(x) \le a\}$$
 (the "sub-level set") is convex.

- Example: Let $f(x) = ||x|| = \sqrt{x^T x}$. Then f is convex.
- Corollary: Let B = $\{x : ||x|| \le 1\}$. (The Euclidean Ball) Then B is convex.

Affine Maps

- **Def:** A map $f : \mathbb{R}^n \to \mathbb{R}^m$ is called an **affine map** if f(x) = Ax + b for some matrix A and vector b.
- Fact: Let $C \subseteq \mathbb{R}^n$ have defined volume. Let f(x) = Ax + b. Then vol $f(C) = |\det A| \cdot \text{vol } C$.
- Claim 1: Let $C \subseteq \mathbb{R}^n$ be convex and let $f : \mathbb{R}^n \to \mathbb{R}^m$ be an affine map. Then $f(C) = \{ f(x) : x \text{ in } C \}$ is convex.
- Question: If $P \subseteq \mathbb{R}^n$ is a polyhedron and f is an affine map, is it true that f(P) is a polyhedron?
- **Answer:** Yes, but it's not so easy to prove...

Fourier-Motzkin Elimination

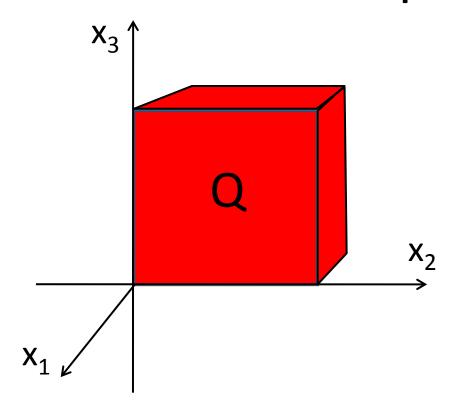
Theodore Motzkin

Joseph Fourier

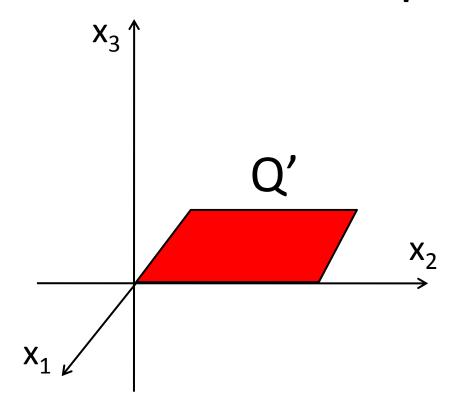
• Given a polyhedron $Q \subseteq \mathbb{R}^n$, we want to find the set $Q' \subseteq \mathbb{R}^{n-1}$ satisfying

$$(x_1,...,x_{n-1}) \in Q' \Leftrightarrow \exists x_n \text{ s.t. } (x_1,...,x_{n-1},x_n) \in Q$$

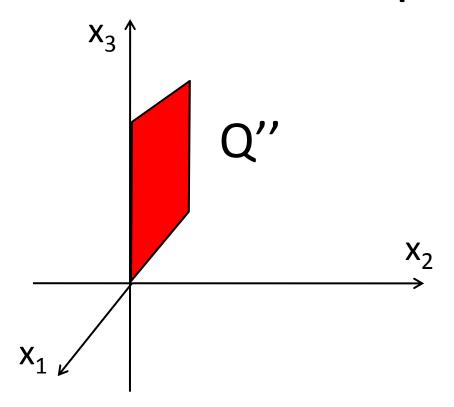
- Q' is called the **projection** of Q onto first n-1 coordinates
- Fourier-Motzkin Elimination constructs Q' by generating (finitely many) constraints from the constraints of Q.
- Corollary: Q' is a polyhedron.



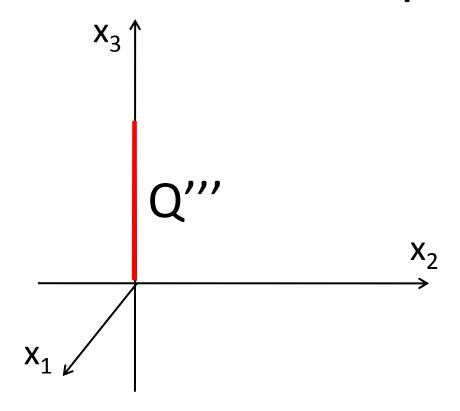
Project Q onto coordinates {x₁, x₂}...



- Project Q onto coordinates {x₁, x₂}...
- Fourier-Motzkin: Q' is a polyhedron.
- Of course, the ordering of coordinates is irrevelant.



- Of course, the ordering of coordinates is irrevelant.
- Fourier-Motzkin: Q" is also a polyhedron.
- I can also apply Elimination twice...



• Fourier-Motzkin: Q''' is also a polyhedron.

Projecting a Polyhedron Onto Some of its Coordinates

• **Lemma:** Given a polyhedron $Q \subseteq \mathbb{R}^n$.

Let $S=\{s_1,...,s_k\}\subseteq\{1,...,n\}$ be any subset of the coordinates. Let $Q_S=\{(x_{s1},...,x_{sk}):x\in Q\}\subseteq \mathbb{R}^k$.

In other words, Q_S is projection of Q onto coordinates in S. Then Q_S is a polyhedron.

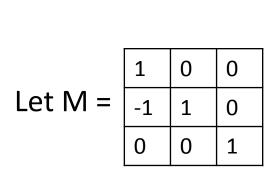
Proof:

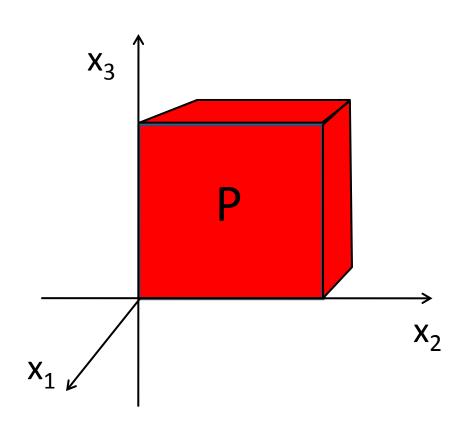
Direct from Fourier-Motzkin Elimination. Just eliminate all coordinates not in S.

Linear Transformations of Polyhedra

• Lemma: Let $P = \{ x : Ax \le b \} \subseteq \mathbb{R}^n$ be a polyhedron. Let M be any matrix of size $p_x n$.

Let $Q = \{ Mx : x \in P \} \subseteq \mathbb{R}^p$. Then Q is a polyhedron.





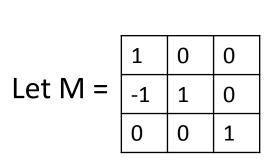
Linear Transformations of Polyhedra

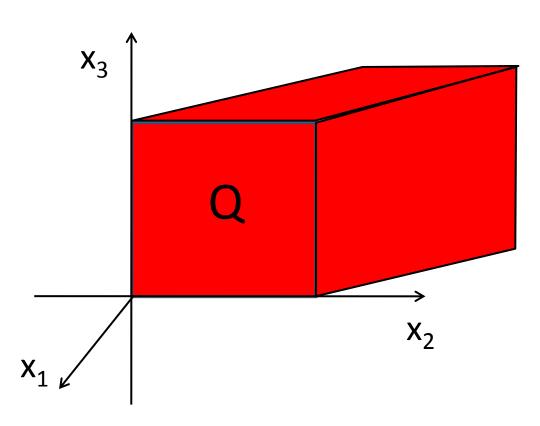
• Lemma: Let $P = \{ x : Ax \le b \} \subseteq \mathbb{R}^n$ be a polyhedron.

Let M be any matrix of size pxn.

Let $Q = \{ Mx : x \in P \} \subseteq \mathbb{R}^p$. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove...





Linear Transformations of Polyhedra

• Lemma: Let $P = \{ x : Ax \le b \} \subseteq \mathbb{R}^n$ be a polyhedron. Let M be any matrix of size $p_x n$. Let $Q = \{ Mx : x \in P \} \subseteq \mathbb{R}^p$. Then Q is a polyhedron.

Geometrically obvious, but not easy to prove...

...unless you know Fourier-Motzkin Elimination!

• Proof:

Let P' = { (x,y) : Mx=y, Ax \leq b } $\subseteq \mathbb{R}^{n+p}$, where $x\in\mathbb{R}^n$, $y\in\mathbb{R}^p$. P' is obviously a polyhedron.

Note that Q is projection of P' onto y-coordinates. By previous lemma, Q is a polyhedron.

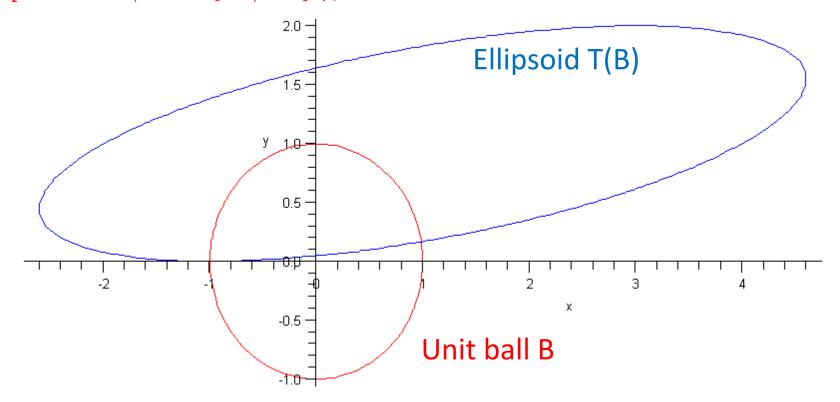
Ellipsoids

- **Def:** Let B = { $x : ||x|| \le 1$ }. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be an affine map. Then f(B) is an **ellipsoid**.
- We restrict to the case n=m and f invertible.
 (i.e., f(x) = Ax+b where A is square and non-singular)
- Claim 2: $f(B) = \{ x \in \mathbb{R}^n : (x-b)^T A^{-1} (x-b) \le 1 \}.$

2D Example

Define
$$T(x) = Ax + b$$
 where $A = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

implicitplot($[x^2+y^2=1,(x-1)^2-4*(x-1)*(y-1)+13*(y-1)^2=9]$, x=-5..5, y=-5..5, numpoints=10000, color=[red,blue]);



Positive Semi-Definite Matrices

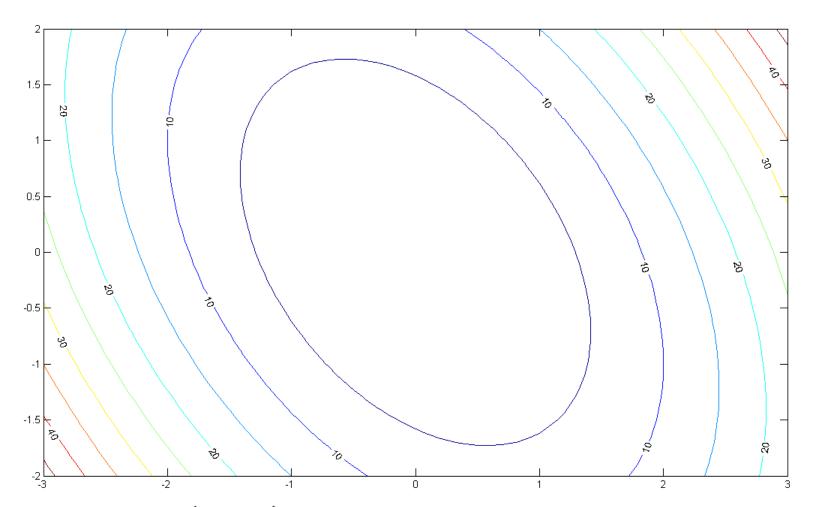
 Def: A real, symmetric matrix M is called positive semi-definite if

 $M = V^{T}V$, for some matrix V (not necessarily square). If M is also non-singular it is called **positive definite**.

- From now on "positive definite" means "real, symmetric, positive definite".
- **Fact:** If M is positive definite, then M⁻¹ is also positive definite.
- Fact: If M is positive definite, there is a unique positive definite matrix $M^{1/2}$ such that $M = M^{1/2} M^{1/2}$. $M^{1/2}$ is called the square root of M.
- Claim: If M is positive definite then $(M^{1/2})^{-1} = (M^{-1})^{1/2}$.

More on Ellipsoids

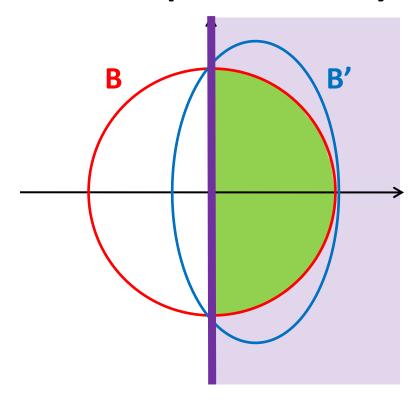
- We're studying ellipsoids of the form $\{x \in \mathbb{R}^n : (x-b)^T A^{-T} A^{-1} (x-b) \le 1 \}$, for some (non-singular) matrix A and vector b.
- Equivalently, this is ellipsoids of the form
 E(M,b) = {x∈ℝⁿ : (x-b)^TM⁻¹(x-b) ≤ 1 },
 for some positive definite matrix M and vector b.
- This helps us understand positive definite matrices. Consider $f(x) = x^T M x$, where M is positive definite. Its sub-level sets are $\{x \in \mathbb{R}^n : x^T M x \leq a\} = E(aM^{-1},0)$.
- Note: E(M,b) = f(B) where $f(x) = M^{1/2}x + b$. So vol $E(M,b) = |\det M^{1/2}| \cdot \text{vol B} = |\det M|^{1/2} \cdot \text{vol B}$.



• Let
$$M = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$

• Plot of level sets of $\mathbf{x}^\mathsf{T} \, \mathbf{M} \, \mathbf{x}$.

Covering Hemispheres by Ellipsoids



- Let B = { unit ball }.
- Let $H = \{ x : x^T e_1 \ge 0 \} = \{ x : x_1 \ge 0 \}.$
- Find a small ellipsoid B' that covers $B \cap H$.

Rank-1 Updates

- **Def:** Let z be a column vector and α a scalar. A matrix of the form $I + \alpha zz^{\mathsf{T}}$ is called a **rank-1** update matrix.
- Claim 1: Suppose $\alpha \neq -1/z^Tz$. Then $(I + \alpha zz^T)^{-1} = I + \beta zz^T$ where $\beta = -\alpha/(1+\alpha z^Tz)$.
- Claim 2: If $\alpha \ge -1/z^T z$ then $I + \alpha z z^T$ is PSD. If $\alpha > -1/z^T z$ then $I + \alpha z z^T$ is PD.
- Claim 3: $det(I + \alpha zz^{\mathsf{T}}) = 1 + \alpha z^{\mathsf{T}}z$