C&O 355: Mathematical Programming Fall 2010 Lecture 20 Notes

Nicholas Harvey
http://www.math.uwaterloo.ca/~harvey/

1 Finding Neighbouring Vertices in the Simplex Method

Let x be a basic feasible solution of the polyhedron $P = \{x : Ax \leq b\}$. Let B be the subset of the constraints that are tight at x. Let A_B denote the submatrix of A corresponding to these constraints. Similarly, let b_B denote the portion of b corresponding to these constraints. So $A_B x = b_B$ holds.

Assume that we have perturbed the matrix A such that each vertex of P has exactly n tight constraints. Then |B| = n, so A_B is square. Since x is a basic feasible solution, rank $A_B = n$, and so A_B is invertible. Since A_B is invertible, we can express the objective function c as a linear combination of the tight constraints. That is, there exists a vector u such that $c^{\mathsf{T}} = u^{\mathsf{T}} A_B$.

Case 1: $u \ge 0$. In this case, we have expressed the objective function as a non-negative linear combination of the constraints that are tight at x. By Question 6 on Assignment 1, this implies that x is an optimal solution of the LP.

Case 2: $u \geq 0$. Let $k \in B$ be such that $u_k < 0$. Let a_i denote the i^{th} row of A. Since A_B is invertible, there exists a vector d such that

$$a_k^\mathsf{T} d = -1 \qquad \text{and} \qquad a_i^\mathsf{T} d = 0 \ \, \forall i \in B \setminus \{k\} \,.$$

The idea is to "move" from x in the direction d, either finding a new vertex or moving off to infinity. More formally, we consider points of the form $x + \lambda d$ for $\lambda > 0$. Any such point has a strictly better objective value because

$$c^{\mathsf{T}}(x + \lambda d) = c^{\mathsf{T}}x + \lambda c^{\mathsf{T}}d$$
$$= c^{\mathsf{T}}x + \lambda u^{\mathsf{T}}A_Bd$$
$$= c^{\mathsf{T}}x - \lambda u_k$$
$$> c^{\mathsf{T}}x.$$

Case 2a: $a_i^{\mathsf{T}} d \leq 0$ for all rows *i*. In this case $a_i^{\mathsf{T}} (x + \lambda d) \leq a_i^{\mathsf{T}} x \leq b_i$ for every row *i*, and so $x + \lambda d$ is feasible for all $\lambda > 0$. Since the LP objective value strictly increases with λ , this means that the LP must be unbounded.

Case 2b: $a_i^{\mathsf{T}}d > 0$ for some row *i*. In this case, we wish to find the maximum value of λ such that $x + \lambda d$ is still feasible. As we saw above, we do not need to worry about rows such that $a_i^{\mathsf{T}}d \leq 0$. So

 $x + \lambda d$ is feasible if and only if

$$a_i^{\mathsf{T}}(x + \lambda d) \leq b_i \qquad \forall i \text{ s.t. } a_i^{\mathsf{T}} d > 0$$

$$\iff \lambda a_i^{\mathsf{T}} d \leq b_i - a_i^{\mathsf{T}} x \qquad \forall i \text{ s.t. } a_i^{\mathsf{T}} d > 0$$

$$\iff \lambda \leq \frac{b_i - a_i^{\mathsf{T}} x}{a_i^{\mathsf{T}} d} \qquad \forall i \text{ s.t. } a_i^{\mathsf{T}} d > 0$$

So the largest value of λ we can take is simply

$$\lambda^* = \min \left\{ \frac{b_i - a_i^\mathsf{T} x}{a_i^\mathsf{T} d} : a_i^\mathsf{T} d > 0 \right\}.$$

Let i^* be a row achieving this minimum.

At every point $x + \lambda d$ the i^{th} constraint remains tight for every $i \in B \setminus \{k\}$. This is because

$$a_i^{\mathsf{T}}(x+\lambda d) = a_i^{\mathsf{T}}x = b_i.$$

Since those constraints have rank n-1, this moving through the points $x + \lambda d$ traverses an edge of the polyhedron. The point $x + \lambda^* d$ is an endpoint of this edge, so it is a vertex of the polyhedron. So the edge that we traversed is

$$\{ x + \lambda d : 0 \le \lambda \le \lambda^* \}$$

and the neighboring vertex is $x + \lambda^* d$.

We remark that $\lambda^* > 0$ because $i^* \notin B$, so constraint i^* is not tight at x.