C&O 355 Mathematical Programming Fall 2010 Lecture 19

N. Harvey

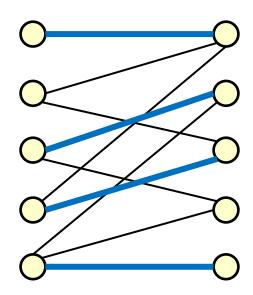
Topics

- Vertex Covers in Bipartite Graphs
- Konig's Theorem
- Vertex Covers in Non-bipartite Graphs

Maximum Bipartite Matching

- Let G=(V, E) be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

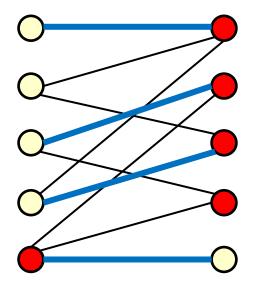
Blue edges are a maximum-size matching M



Vertex covers

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Proof: Every edge in M has at least one endpoint in C.
 Since M is a matching, its edges have distinct endpoints.
 So C must contain at least |M| vertices.

Blue edges are a maximum-size matching M



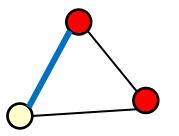
Red vertices form a vertex cover C

Vertex covers

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Proof: Every edge in M has at least one endpoint in C.
 Since M is a matching, its edges have distinct endpoints.
 So C must contain at least |M| vertices.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M must be a maximum cardinality matching: every other matching M' satisfies $|M'| \le |C| = |M|$.
- And C must be a minimum cardinality vertex cover:
 every other vertex cover C' satisfies | C' | ≥ | M | = | C |.
- Then M certifies optimality of C and vice-versa.

Vertex covers & matchings

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No...



Maximum size of a matching = 1

Minimum size of a vertex cover = 2

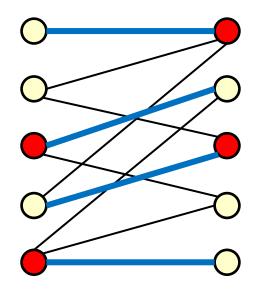
Vertex covers & matchings

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No... unless G is bipartite!
- **Theorem** (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. |M| = |C|.

Earlier Example

- Let G=(V, E) be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

Blue edges are a maximum-size matching M



Red vertices form a vertex cover C

Since |M|=|C|=4, both M and C are optimal!

LPs for Bipartite Matching

- Let G=(V, E) be a bipartite graph.
- Recall our IP and LP formulations for maximum-size matching.

- Theorem: Every BFS of (LP) is actually an (IP) solution.
- What is the dual of (LP)?

(LP-Dual)
$$\begin{aligned} & \min & \sum_{v \in V} y_v \\ & \text{s.t.} & y_u + y_v & \geq 1 & \forall \{u,v\} \in E \\ & y_v & \geq 0 & \forall v \in V \end{aligned}$$

Dual of Bipartite Matching LP

What is the dual LP?

(LP-Dual)
$$\min_{\substack{v \in V \ y_v \\ \text{s.t.}}} \frac{\sum_{v \in V} y_v}{y_v}$$

$$y_u + y_v \geq 1 \qquad \forall \{u,v\} \in E$$

$$y_v \geq 0 \qquad \forall v \in V$$

- Note that any optimal solution must satisfy $y_v \le 1 \ \forall v \in V$
- Suppose we impose integrality constraints:

(IP-Dual)
$$\min_{\substack{v \in V \ y_v \\ \text{s.t.}}} \frac{\sum_{v \in V} y_v}{y_v} \le 1 \qquad \forall \{u,v\} \in E$$

$$y_v \qquad \in \{0,1\} \qquad \forall v \in V$$

- Claim: If y is feasible for IP-dual then $C = \{ v : y_v = 1 \}$ is a vertex cover. Furthermore, the objective value is |C|.
- So IP-Dual is precisely the minimum vertex cover problem.
- **Theorem**: Every optimal BFS of (LP-Dual) is an (IP-Dual) solution (in the case of bipartite graphs).

• Let $G=(U\cup V, E)$ be a bipartite graph. Define A by

$$A_{v,e} = \begin{cases} 1 & \text{if vertex v is an endpoint of edge e} \\ 0 & \text{otherwise} \end{cases}$$

- **Lemma:** A is TUM.
- Claim: If A is TUM then A^T is TUM.
- **Proof:** Exercise?
- Corollary: Every BFS of P = $\{x : A^T y \ge 1, y \ge 0\}$ is integral.
- But LP-Dual is

min
$$\sum_{v \in V} y_v$$
 min $\sum_{v \in V} y_v$
s.t. $y_u + y_v \ge 1$ $\forall \{u, v\} \in E$ = s.t. $A^\mathsf{T} y \ge \mathbf{1}$
 $y_v \ge 0$ $\forall v \in V$ $y \ge 0$

- So our Corollary implies every BFS of LP-dual is integral
- Every optimal solution must have $y_v \le 1 \ \forall v \in V$ \Rightarrow every optimal BFS has $y_v \in \{0,1\} \ \forall v \in V$, and hence it is a feasible solution for IP-Dual.

Proof of Konig's Theorem

Theorem (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. |M|=|C|.

Proof:

Let x be an optimal BFS for (LP).

Let y be an optimal BFS for (LP-Dual).

Let $M = \{ e : x_e = 1 \}.$

M is a matching with |M| = objective value of x. (By earlier theorem)

Let $C = \{ v : y_v = 1 \}.$

C is a vertex cover with |C| = objective value of y. (By earlier theorem)

By Strong LP Duality:

|M| = LP optimal value = LP-Dual optimal value = |C|.

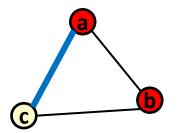
• Given a bipartite graph, we can efficiently find a minimum-size vertex cover. Just compute a BFS of

(LP-Dual)
$$\min_{\substack{v \in V \ y_v}} \sum_{v \in V} y_v$$

$$\mathrm{s.t.} \quad y_u + y_v \geq 1 \qquad \forall \, \{u,v\} \in E$$

$$y_v \geq 0 \qquad \forall v \in V$$

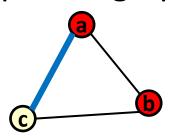
• For non-bipartite graphs, this doesn't work:



Maximum size of a matching = 1 Minimum size of a vertex cover = 2

- Setting $y_a = y_b = y_c = 0.5$ gives a feasible solution to LP-Dual with objective value 1.5
- So optimal BFS has value ≤ 1.5 . But no vertex cover has size < 2.

• For non-bipartite graphs, this doesn't work:

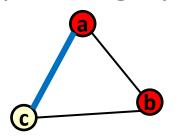


Maximum size of a matching = 1 Minimum size of a vertex cover = 2

- Setting $y_a = y_b = y_c = 0.5$ gives a feasible solution to LP-Dual with objective value 1.5.
- So optimal BFS has value \leq 1.5. But no vertex cover has size < 2.
- Key point: (IP) captures vertex cover problem,
 but (LP) does not. We have no efficient way to solve (IP).

$$\begin{array}{llll} & & & \text{(LP)} \\ \min & \sum_{v \in V} y_v & & \min & \sum_{v \in V} y_v \\ \text{s.t.} & y_u + y_v & \geq 1 \ \forall \{u, v\} \in E \\ & y_v & \in \{0, 1\} \ \forall v \in V & y_v & \geq 0 \ \forall v \in V \end{array}$$

For non-bipartite graphs, this doesn't work:



Maximum size of a matching = 1 Minimum size of a vertex cover = 2

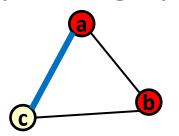
Key point: (IP) captures vertex cover problem,
 but (LP) does not. We have no efficient way to solve (IP).

$$\begin{array}{llll} & & & \text{(IP)} & & \text{(LP)} \\ \min & \sum_{v \in V} y_v & & \min & \sum_{v \in V} y_v \\ \text{s.t.} & y_u + y_v & \geq 1 \ \forall \{u, v\} \in E \\ & y_v & \in \{0, 1\} \ \forall v \in V & & y_v & \geq 0 \ \forall v \in V \end{array}$$

• What's the problem? The constraint matrix A is **not** totally unimodular: $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \implies \det A = 2$$

For non-bipartite graphs, this doesn't work:

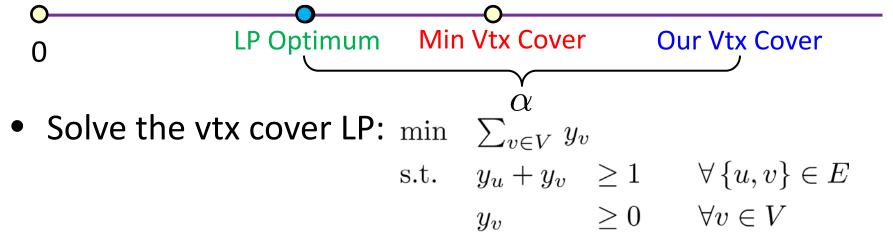


Maximum size of a matching = 1 Minimum size of a vertex cover = 2

- Setting $y_a = y_b = y_c = 0.5$ gives a feasible solution to LP-Dual with objective value 1.5.
- So optimal BFS has value \leq 1.5. But no vertex cover has size < 2.
- Theorem: There is no efficient algorithm to find a min size vertex cover in general graphs. (Assuming P≠NP)
- Theorem: There is an efficient algorithm to find a vertex cover whose size is at most twice the minimum.

Our Game Plan

Objective Value



- Rounding: Extract Our Vtx Cover from LP optimum solution
- Prove that Our Vtx Cover is close to LP Optimum, i.e. $\alpha = \frac{\text{Size of Our Vtx Cover}}{\text{LP Opt Value}}$ is as **small** as possible. \Rightarrow Our Vtx Cover is close to Min Vtx Cover, i.e., $\frac{\text{Size of Our Vtx Cover}}{\text{Size of Min Vtx Cover}} \leq \alpha$
- So Our Vtx Cover is within a factor α of the minimum

• Theorem: [Folklore]
There exists an algorithm to extract a vertex cover from the LP optimum such that $\alpha = \frac{\text{Size of Vtx Cover}}{\text{Size of Min Vtx Cover}} \leq 2$

- Astonishingly, this seems to be optimal:
- Theorem: [Khot, Regev 2003]
 No efficient algorithm can approximate the min vtx cover with factor better than 2, assuming a certain conjecture in complexity theory. (Similar to P≠NP)

Solve the vertex cover LP

min
$$\sum_{v \in V} y_v$$

s.t. $y_u + y_v \ge 1$ $\forall \{u, v\} \in E$
 $y_v \ge 0$ $\forall v \in V$

- Return $C = \{ v \in V : y_v \ge \frac{1}{2} \}$
- Claim 1: C is a vertex cover.
- Claim 2: |C| is at most twice the size of the minimum vertex cover.

Solve the vertex cover LP

min
$$\sum_{v \in V} y_v$$

s.t. $y_u + y_v \ge 1$ $\forall \{u, v\} \in E$
 $y_v \ge 0$ $\forall v \in V$

- Return $C = \{ v \in V : y_v \ge \frac{1}{2} \}$
- Claim 1: C is a vertex cover.
- Proof: Consider any edge {u,v}.

Since $y_u + y_v \ge 1$, either $y_u \ge 1$ or $y_v \ge 1$.

So either $u \in \mathbb{C}$ or $v \in \mathbb{C}$.

Solve the vertex cover LP

$$\min \sum_{v \in V} y_v$$
s.t. $y_u + y_v \ge 1 \quad \forall \{u, v\} \in E$

$$y_v \ge 0 \quad \forall v \in V$$

- Return $C = \{ v \in V : y_v \ge \frac{1}{2} \}$
- Claim 2: $|C| \le 2 \cdot |minimum vertex cover|$.

• Proof:
$$|C| = |\{v \in V : y_v \ge 1/2\}|$$

 $\leq 2 \cdot \sum_{y_v \ge 1/2} y_v$
 $\leq 2 \cdot \sum_{v \in V} y_v$
 $= 2 \cdot \text{LP optimum value}$
 $\leq 2 \cdot |\text{minimum vertex cover}|$

Summary

- Bipartite graphs
 - Vertex cover problem is dual of matching problem
 - Vertex Cover (IP) and (LP) are equivalent (by Total Unimodularity)
 - Can efficiently find minimum vertex cover
- Non-bipartite Graphs
 - Vertex cover not related to matching problem
 - Vertex Cover (IP) and (LP) are not equivalent
 - Cannot efficiently find minimum vertex cover
 - Can find a vertex cover of size at most twice minimum