C&O 355 Mathematical Programming Fall 2010 Lecture 18

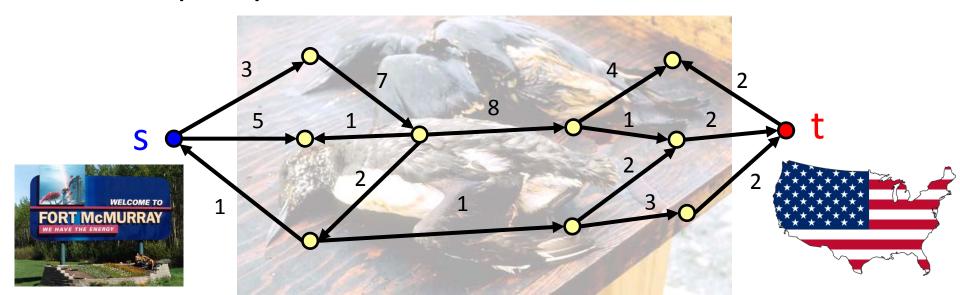
N. Harvey

Topics

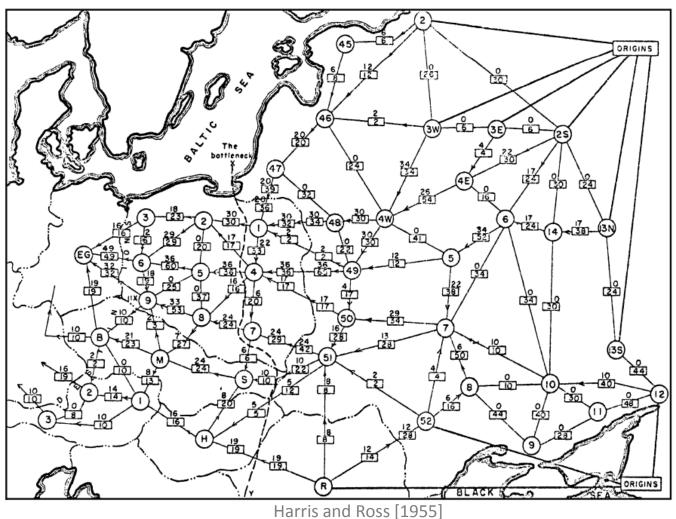
- Network Flow
 - Max Flow / Min Cut Theorem
- Total Unimodularity
- Directed Graphs & Incidence Matrices
- Proof of Max Flow / Min Cut Theorem

Network Flow

- Let D=(N,A) be a directed graph.
- Every arc a has a "capacity" $c_a \ge 0$. (Think of it as an oil pipeline)
- Want to send oil from node s to node t through pipelines
- Oil must not leak at any node, except s and t: flow in = flow out.
- How much oil can we send?
- For simplicity, assume no arc enters s and no arc leaves t.



Max Flow & Min Cut



Schematic diagram of the railway network of the Western Soviet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as 'The bottleneck'. [Schrijver, 2005]

Max Flow & Min Cut

- Let D=(N,A) be a digraph, where arc a has capacity c_a.
- **Definition:** For any $U\subseteq N$, the **cut** $\delta^+(U)$ is:

$$\delta^{+}(U) = \{ uv : u \in U, v \not\in U, uv \in A \}$$

The capacity of the cut is:

$$c(\delta^+(U)) = \sum_{a \in \delta^+(U)} c_a$$

Delbert Ray Fulkerson

- Theorem: [Ford & Fulkerson 1956]
 The maximum amount of flow from s to t equals the minimum capacity of a cut δ⁺(U), where s∈U and t∉U
- Furthermore, if c is integral then there is an integral flow that achieves the maximum flow.

LP Formulation of Max Flow

- Variables: x_a = amount of flow to send on arc a
- Constraints:

For every node except s & t, flow in = flow out. Flow through each arc can not exceed its capacity.

- Objective value: Total amount of flow sent by s.
- Notation: $\delta^+(v)$ = arcs with tail at v $\delta^-(v)$ = arcs with head at v
- The LP is:

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

Incidence Matrix of a Directed Graph

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

- What is the matrix M defining the constraints of this LP?
 - Row for every node (except s or t)
 - Column for every arc

$$M_{v,a} = \begin{cases} +1 & \text{if node v is the head of arc a} \\ -1 & \text{if node v is the tail of arc a} \\ 0 & \text{otherwise} \end{cases}$$

- Goal: Analyze extreme points of this LP.
- Plan: Show M is totally unimodular.

Total Unimodularity

- Let M be a real mxn matrix
- Definition: Suppose that every square submatrix of M has determinant in {0, +1, -1}. Then M is totally unimodular (TUM).
 - In particular, every entry of M must be in {0, +1, -1}
- Key point: Polytopes defined by TUM matrices have integral extreme points.
- For example, last time we showed:

Lemma: Suppose M is TUM. Let b be any integer vector. Then every basic feasible solution of $P = \{x : Mx \le b\}$ is integral.

Total Unimodularity

- Let M be a real mxn matrix
- Definition: Suppose that every square submatrix of M has determinant in {0, +1, -1}. Then M is totally unimodular (TUM).
- **Lemma:** Suppose A is TUM. Let b be any integer vector. Then every extreme point of $P = \{x : Mx \le b\}$ is integral.
- Claim: Suppose M is TUM. Then $\begin{pmatrix} M \\ -M \\ I \end{pmatrix}$ is also TUM. Proof: Exercise?
- Corollary: Suppose M is TUM. Let b and c be integer vectors. Then every extreme point of $P = \{x : Mx=b, 0 \le x \le c\}$ is integral.

Incidence Matrices are TUM

• Let D=(N, A) be a directed graph. Define M by:

$$M_{u,a} = \begin{cases} +1 & \text{if node u is the head of arc a} \\ -1 & \text{if node u is the tail of arc a} \\ 0 & \text{otherwise} \end{cases}$$

- **Lemma:** M is TUM.
- **Proof:** Let Q be a $k_x k$ submatrix of M. Argue by induction on k. If k=1 then Q is a single entry of M, so det(Q) is either 0 or ± 1 . So assume k>1.

- Lemma: M is TUM.
- **Proof:** Let Q be a kxk submatrix of M. Assume k>1.

Case 1:

If some column of Q has **no** non-zero entries, then det(Q)=0.

Case 2:

Suppose jth column of Q has **exactly one** non-zero entry, say $Q_{t,j} \neq 0$ Use "Column Expansion" of determinant:

$$\det Q = \sum_{i} (-1)^{i+j} Q_{i,j} \cdot \det Q_{\text{del}(i,j)} = (-1)^{t+j} Q_{t,j} \cdot \det Q_{\text{del}(t,j)},$$

where t is the unique non-zero entry in column j.

By induction, det $Q_{del(t,j)}$ in $\{0,+1,-1\} \Rightarrow det Q$ in $\{0,+1,-1\}$.

Case 3:

Suppose every column of Q has exactly two non-zero entries.

For each column, one non-zero is a +1 and the other is a -1.

So summing all rows in Q gives the vector [0,0,...,0].

Thus Q is singular, and det Q = 0.

The Max Flow LP

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \qquad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \qquad \forall a \in A$$

Observations:

The LP is feasible

(assume the capacities are all non-negative)

The LP is bounded

- (because the feasible region is bounded)
- It has an optimal solution, i.e., a maximum flow. (by FTLP)
- The feasible region is

$$P = \left\{ x : \begin{pmatrix} M \\ -M \\ I \\ -I \end{pmatrix} x \le \begin{pmatrix} 0 \\ 0 \\ c \\ 0 \end{pmatrix} \right\}$$

where M is TUM.

- Corollary: If c is integral, then every extreme point is integral, and so there is a maximum flow that is integral.
- Q: Why does P have any extreme points? A: It contains no line.

Max Flow LP & Its Dual

$$\max \sum_{a \in \delta^{+}(s)} x_{a}$$
s.t.
$$\sum_{a \in \delta^{-}(v)} x_{a} - \sum_{a \in \delta^{+}(v)} x_{a} = 0 \quad \forall v \in N \setminus \{s, t\}$$

$$0 \le x_{a} \le c_{a} \quad \forall a \in A$$

Dual variables:

- A variable y_v for every $v \in N \setminus \{s,t\}^{-1}$
- A variable z_{uv} for every arc uv
- The dual is

$$\min \sum_{a \in A} c_a z_a
s.t. \quad -y_u + y_v + z_{uv} \geq 0 \qquad \forall uv \in A, v, w \in N \setminus \{s, t\}
y_v + z_{sv} \geq 1 \qquad \forall sv \in A
-y_u + z_{ut} \geq 0 \qquad \forall ut \in A
z \geq 0$$

• Let's simplify: Set $y_s = 1$ and $y_t = 0$

The Dual

min
$$\sum_{a \in A} c_a z_a$$

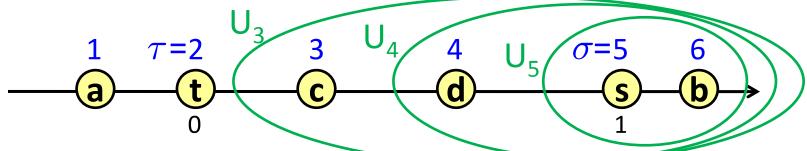
s.t. $-y_u + y_v + z_{uv} \ge 0$ $\forall uv \in A$
 $z > 0$

where y_s and y_t are **not** variables: $y_s = 1$ and $y_t = 0$

• We will show: Given an optimal solution (y,z), we can construct a cut $\delta^+(U)$ such that $\sum_{\alpha \in \mathcal{A}} \alpha \in \mathcal{A}$ "Rounding"

$$c(\delta^+(U)) = \sum_{a \in A} c_a z_a$$

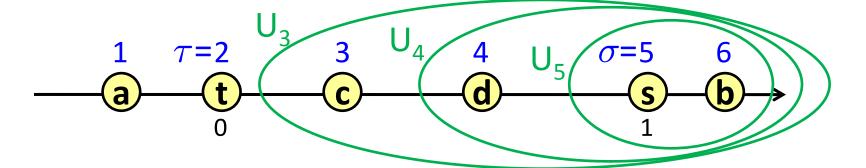
- In other words, the capacity of the cut $\delta^+(U)$ equals the optimal value of the dual LP.
- By strong LP duality, this equals the optimal value of the primal LP, which is the maximum flow value.
- Every cut has capacity at least the max flow value, so this must be a minimum cut.



- Let (y,z) be an optimal dual solution
- Every node u lies at some position y_u on the real line
- Number the nodes 1,...,n so that $y_1 \le \cdots \le y_n$
- Suppose node t numbered au and node s numbered σ
- Let $U_i = \{i, i+1, ..., n\}$, for $\tau < i \le \sigma$ (Here n=|N|, the total # nodes)
- Pick cut U_i with probability y_i y_{i-1}

$$\operatorname{Ex}[c(\delta^{+}(U_{i}))] = \sum_{i=\tau+1}^{\sigma} (y_{i} - y_{i-1}) \cdot c(\delta^{+}(U_{i}))$$

- Arc jk contributes 0 if j < k, and at most $(y_i y_k)c_{ik}$ if j > k
- So $\operatorname{Ex}[c(\delta^{+}(U_{i})] \leq \sum_{jk \in A: j > k} (y_{j} y_{k}) c_{jk}$



- Let $U_i = \{ i, i+1, ..., n \}$, for $\tau < i \le \sigma$
- Pick cut U_i with probability y_i y_{i-1}

$$\operatorname{Ex}[c(\delta^{+}(U_{i})] \leq \sum_{jk \in A: j > k} (y_{j} - y_{k}) c_{jk}$$

$$\leq \sum_{jk \in A: j > k} z_{jk} c_{jk}$$
By dual feasibility
$$\leq \sum_{a \in A} z_{a} c_{a} = \operatorname{Optimum value of Dual LP}$$

- So the average capacity of the U_i 's is \leq Dual Opt. Value
 - \Rightarrow minimum capacity of a U_i is \leq Dual Opt. Value, and so it is a minimum cut.

Summary

- We have proven:
- **Theorem:** [Ford & Fulkerson 1956] The maximum amount of flow from s to t equals the minimum capacity of a cut $\delta^+(U)$, where $s \in U$ and $t \notin U$ Furthermore, if c is integral then there is an integral flow that achieves the maximum flow.
- We also get an algorithm for finding max flow & min cut
 - Solve Max Flow LP by the ellipsoid method.
 - Get an extreme point solution. It is an integral max flow.
 - Solve Dual LP by the ellipsoid method.
 - Use rounding method to get a min cut.
- This algorithm runs in polynomial time