C&O 355 Mathematical Programming Fall 2010 Lecture 15

N. Harvey

Topics

- Minimizing over a convex set:
 Necessary & Sufficient Conditions
- (Mini)-KKT Theorem
 Minimizing over a polyhedral set:
 Necessary & Sufficient Conditions
- Smallest Enclosing Ball Problem

Minimizing over a Convex Set: **Necessary & Sufficient Conditions**

- Thm 3.12: Let $C \subseteq \mathbb{R}^n$ be a convex set. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Then x minimizes f over C iff $\nabla f(x)^T(z-x) \ge 0 \ \forall z \in C$.
- **Proof:** ← direction

Direct from subgradient inequality. (Theorem 3.5)

$$f(z) \geq f(x) + \nabla f(x)^T(z-x) \geq f(x)$$

Subgradient inequality

Our hypothesis

Minimizing over a Convex Set: Necessary & Sufficient Conditions

- Thm 3.12: Let $C \subseteq \mathbb{R}^n$ be a convex set. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Then x minimizes f over C iff $\nabla f(x)^T(z-x) \ge 0 \ \forall z \in C$.
- **Proof:** ⇒ direction

Let x be a minimizer, let $z \in C$ and let y = z-x.

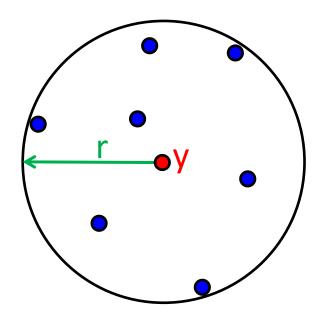
Recall that $\nabla f(x)^T y = f'(x;y) = \lim_{t\to 0} \frac{f(x+ty)-f(x)}{t}$.

If limit is negative then we have f(x+ty)< f(x) for some $t \in [0,1]$, contradicting that x is a minimizer.

So the limit is non-negative, and $\nabla f(x)^T y \geq 0$.

- Let $\{p_1,...,p_n\}$ be points in \mathbb{R}^d . Find (unique!) ball (not an ellipsoid!) of smallest volume that contains all the p_i 's.
- In other words, we want to solve:

min {
$$\mathbf{r} : \exists \mathbf{y} \in \mathbb{R}^d \text{ s.t. } \mathbf{p_i} \in \mathbf{B}(\mathbf{y}, \mathbf{r}) \ \forall i \ }$$



- Let $\{p_1,...,p_n\}$ be points in \mathbb{R}^d . Find (unique!) ball (not an ellipsoid!) of smallest volume that contains all the p_i 's.
- In other words, we want to solve: min $\{ r : \exists y \in \mathbb{R}^d \text{ s.t. } p_i \in B(y,r) \ \forall i \ \}$
- We will formulate this as a convex program.
- In fact, our convex program will be of the form min $\{f(x) : Ax=b, x\geq 0\}$, where f is convex.

Minimizing a convex function over a polyhedron

 To solve this, we will need optimality conditions for convex programs.

LP Optimality Conditions

Theorem:

Let $x \in \mathbb{R}^n$ be a feasible solution to the linear program max { $c^Tx : Ax=b, x>0$ }

Then x is optimal iff \exists dual solution $y \in \mathbb{R}^m$ s.t.

- 1) $A^T y > c$ ____jth column of A
- 2) For all j, if $x_i > 0$ then $A_i^T y = c_i$.
- **Proof:** Dual is min { $b^Ty : A^Ty > c$ }.
- x optimal \Rightarrow dual has optimal solution y.
- So (1) holds by feasibility of y.
- By optimality of x & y, $c^Tx=b^Ty$. Weak duality says:

• By optimality of x & y,
$$c^Tx=b^Ty$$
. Weak duality says:
$$c^Tx = \sum_{j=1}^n c_j x_j \le \sum_{j=1}^n \Big(\sum_{i=1}^m A_{i,j} y_i\Big) x_j = \sum_{i=1}^m \Big(\sum_{j=1}^n A_{i,j} x_j\Big) y_i = \sum_{i=1}^m b_i y_i = b^Ty$$

Equality holds here \Rightarrow (2) holds. (This is "complementary slackness")

LP Optimality Conditions

jth column of A

Theorem:

Let $x \in \mathbb{R}^n$ be a feasible solution to the linear program min { $-c^{T}x : Ax=b, x>0$ }

Then x is optimal iff \exists dual solution $y \in \mathbb{R}^m$ s.t.

- 1) $-c^{T} + v^{T}A > 0$.
- 2) For all j, if $x_i > 0$ then $-c_i + y^T A_i = 0$.
- **Proof:** Dual is min { $b^Ty : A^Ty > c$ }.
- x optimal \Rightarrow dual has optimal solution y.
- So (1) holds by feasibility of y.

• By optimality of x & y,
$$c^Tx=b^Ty$$
. Weak duality says:
$$c^Tx = \sum_{j=1}^n c_j x_j \leq \sum_{j=1}^n \Big(\sum_{i=1}^m A_{i,j} y_i\Big) x_j = \sum_{i=1}^m \Big(\sum_{j=1}^n A_{i,j} x_j\Big) y_i = \sum_{i=1}^m b_i y_i = b^Ty$$

Equality holds here \Rightarrow (2) holds. (This is "complementary slackness")

(Mini)-KKT Theorem

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex, C^2 function. Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program $\min \{ f(x) : Ax = b, x \ge 0 \}$ Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t. 1) $\nabla f(x)^T + y^T A \ge 0$, 2) For all j, if $x_j > 0$ then $\nabla f(x)_j + y^T A_j = 0$.

- Natural generalization of LP optimality conditions: approximation at $\bar{\mathbf{x}}$ is $f(x) \approx f(\bar{x}) + \nabla f(\bar{x})^{\mathsf{T}}(x \bar{x})$
- Proven by Karush in 1939 (his Master's thesis!), and by Kuhn and Tucker in 1951.

Full KKT Theorem

Even stating it requires a lot of details!

See Section 3.7 and 3.8 of the course notes

(3.25)
$$\begin{cases} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq 0 & (i = 1, 2, \dots, p), \\ & h_j(x) = 0 & (j = 1, 2, \dots, q), \\ & x \in S. \end{cases}$$

Theorem 3.22 (Karush-Kuhn-Tucker Theorem) Consider the non-linear program (3.25). Suppose the Mangasarian-Fromowitz Constraint Qualification holds at the point $\bar{x} \in \mathbf{R}^n$, and assume furthermore that the objective function $f: S \to \mathbf{R}$ is differentiable there. Then a necessary condition for \bar{x} to be a local minimizer is the existence of Lagrange multipliers $\lambda_i \geq 0$ in \mathbf{R} (for the indices $i \in I(\bar{x})$) and $\mu_j \in \mathbf{R}$ (for the indices $j = 1, 2, \ldots, q$) with

(3.31)
$$\nabla f(\bar{x}) + \sum_{i \in I(\bar{x})} \lambda_i \nabla g_i(\bar{x}) + \sum_{j=1}^q \mu_j \nabla h_j(\bar{x}) = 0.$$

Mangasarian-Fromowitz Constraint Qualification

- (i) The point \bar{x} lies in the open set $S \subseteq \mathbb{R}^n$.
- (ii) The continuous functions $g_1, g_2, \ldots, g_p, h_1, h_2, \ldots, h_q : S \to \mathbf{R}$ satisfy

$$g_i(\bar{x}) = 0 \quad (i \in I(\bar{x}))$$

 $g_i(\bar{x}) < 0 \quad (i \notin I(\bar{x}))$
 $h_j(\bar{x}) = 0 \quad (j = 1, 2, ..., q)$

- (iii) The functions $g_i, h_j : S \to \mathbf{R}$ are continuously differentiable, for $i \in I(\bar{x})$ and $j = 1, 2, \dots, q$.
- (iv) The set of gradients $\{\nabla h_j(\bar{x}) : j = 1, 2, ..., q\}$ is linearly independent.
- (v) The set H of vectors $d \in \mathbb{R}^n$ satisfying

(3.29)
$$\begin{cases} \nabla g_i(\bar{x})^T d < 0 & (i \in I(\bar{x})) \\ \nabla h_j(\bar{x})^T d = 0 & (j = 1, 2, \dots, q), \end{cases}$$

is nonempty.

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C^2 function.

Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program

min {
$$f(x) : Ax=b, x \ge 0$$
 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

- 1) $\nabla f(x)^T + y^T A \geq 0$,
- 2) For all j, if $x_i > 0$ then $\nabla f(x)_i + y^T A_i = 0$.

Proof: \Leftarrow direction. Suppose such a y exists. Then

$$(\nabla f(x)^T + y^T A) x = 0.$$
 (Just like complementary slackness)

For any feasible $z \in \mathbb{R}^n$, we have

$$(\nabla f(x)^T + y^T A) z \geq 0.$$

Subtracting these, and using Ax=Az=b, we get

$$\nabla f(x)^T(z-x) \ge 0 \quad \forall \text{ feasible } z.$$

So x is optimal. (By Thm 3.12: "Minimizing over a Convex Set")

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C^2 function.

Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program

min {
$$f(x) : Ax=b, x \ge 0$$
 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

- 1) $\nabla f(x)^T + y^T A \geq 0$,
- 2) For all j, if $x_i > 0$ then $\nabla f(x)_i + y^T A_i = 0$.

Proof: \Rightarrow direction. Suppose x is optimal. Let c=- $\nabla f(x)$.

Then $\nabla f(x)^T(z-x) \ge 0 \Rightarrow c^Tz \le c^Tx$ for all feasible points z.

By Thm 3.12: "Minimizing over a Convex Set"

Theorem: Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex, C^2 function.

Let $x \in \mathbb{R}^n$ be a feasible solution to the convex program

min {
$$f(x) : Ax=b, x \ge 0$$
 }

Then x is optimal iff $\exists y \in \mathbb{R}^m$ s.t.

- 1) $\nabla f(x)^T + y^T A \geq 0$,
- 2) For all j, if $x_i > 0$ then $\nabla f(x)_i + y^T A_i = 0$.

Proof: \Rightarrow direction. Suppose x is optimal. Let c=- $\nabla f(x)$.

Then $\nabla f(x)^T(z-x) \ge 0 \Rightarrow c^Tz \le c^Tx$ for all feasible points z.

So x is optimal for the LP max { $c^Tx : Ax=b, x \ge 0$ }.

So there is an optimal solution y to dual LP min { $b^Ty : A^Ty \ge c$ }.

So
$$\nabla f(x)^T + y^T A = -c^T + y^T A \ge 0 \implies (1)$$
 holds.

Furthermore, x and y are both optimal so C.S. holds.

 \Rightarrow whenever $x_i>0$, the jth dual constraint is tight

$$\Rightarrow$$
 y^T A_i = c_i \Rightarrow (2) holds.

- Let $P=\{p_1,...,p_n\}$ be points in \mathbb{R}^d .
 - Let Q be dxn matrix s.t. $Q_i = p_i$.

Let $z \in \mathbb{R}^n$ satisfy $z_i = p_i^T p_i$.

Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = x^T Q^T Q x - x^T z$.

- Claim 1: f is convex.
- Consider the convex program

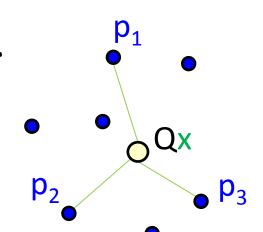
min {
$$f(x) : \sum_{j} x_{j} = 1, x \ge 0$$
 }.

Interpretation

- Qx is an "average" (convex combination) of the p_i's
- x^TQ^TQx is norm² of this average point
- x^Tz is average norm² of the p_i's
- If $x^TQ^TQx \ll x^Tz$, the p_i 's are "spread out"

 $(Q_i = i^{th} \text{ column of } Q)$

(Hessian is PSD)



x = [1/3, 1/3, 1/3, 0, 0, ...]

- Let $P=\{p_1,...,p_n\}$ be points in \mathbb{R}^d .
 - Let Q be dxn matrix s.t. $Q_i = p_i$.

 $(Q_i = i^{th} \text{ column of } Q)$

Let $z \in \mathbb{R}^n$ satisfy $z_i = p_i^T p_i$.

Define $f : \mathbb{R}^n \to \mathbb{R}$ by $f(x) = x^T Q^T Q x - x^T z$.

• Claim 1: f is convex.

(Hessian is 2Q^TQ, which is PSD)

Consider the convex program

min {
$$f(x) : \sum_{i} x_{i} = 1, x \ge 0$$
 }.

- Claim 2: This program has an optimal solution x. (By Weierstrass' Theorem: the high-dimensional extreme value theorem)
- Claim 3: Assume x is optimal. Let $p^*=Qx$ and $r=\sqrt{-f(x)}$. Then $P \subset B(p^*,r)$.
- Claim 4: B(p*,r) is the smallest ball containing P.

- Claim 3: The ball B(p*,r) contains P.
- **Proof:** By KKT, $\exists y \in \mathbb{R}$ s.t. $\nabla f(x) + A^T y \geq 0$

For us
$$\nabla f(x) = 2Q^TQx - z = 2Q^Tp^* - z$$
 and $A = [1, ..., 1]$
So $y \ge p_i^Tp_i - 2p_i^Tp^* \ \forall j$. (Here $y \in \mathbb{R}$)

KKT also says: equality holds $\forall j$ s.t. $x_j > 0$.

So
$$\mathbf{y} = \sum_{j} \mathbf{x}_{j} \mathbf{y} = \sum_{j} \mathbf{x}_{j} \mathbf{p}_{j}^{\mathsf{T}} \mathbf{p}_{j} - 2 \sum_{j} \mathbf{x}_{j} \mathbf{p}_{j}^{\mathsf{T}} \mathbf{p}^{*} = \sum_{j} \mathbf{x}_{j} \mathbf{p}_{j}^{\mathsf{T}} \mathbf{p}_{j} - 2 \mathbf{p}^{*\mathsf{T}} \mathbf{p}^{*}.$$

So
$$y + p^{*T}p^* = \sum_j x_j p_j^T p_j - p^{*T}p^* = -f(x) \Rightarrow r = \sqrt{y + p^{*T}p^*}$$

It remains to show that $B(p^*,r)$ contains P.

This holds iff $\|\mathbf{p}_i - \mathbf{p}^*\| \le r \ \forall j$.

Now
$$\|\mathbf{p}_{j}-\mathbf{p}^{*}\|^{2} = (\mathbf{p}_{j}-\mathbf{p}^{*})^{T}(\mathbf{p}_{j}-\mathbf{p}^{*})$$

$$= \mathbf{p}^{*T}\mathbf{p}^{*}-2\mathbf{p}_{j}^{T}\mathbf{p}^{*}+\mathbf{p}_{j}^{T}\mathbf{p}_{j}$$

$$\leq \mathbf{p}^{*T}\mathbf{p}^{*}+\mathbf{y}=\mathbf{r}^{2} \ \forall \mathbf{j}.$$

- Claim 4: B(p*,r) is the smallest ball containing P.
- **Proof:** See Matousek-Gartner Section 8.7.

Smallest Ball Problem: Summary

• Consider the convex program

min {
$$f(x) : \sum_{j} x_{j} = 1, x \ge 0$$
 }.

- Claim 2: This program has an optimal solution x.
- Claim 3: Let $p^* = Qx$ and $r = \sqrt{-f(x)}$. Then $P \subset B(p^*, r)$.
- Claim 4: B(p*,r) is the smallest ball containing P.
- This example is a bit strange:
 - Not obvious how convex program relates to balls
 - Claim 3 is only valid when x is the optimal point
- Still, KKT tells us interesting things:
 - optimal value of convex program gives radius of smallest ball containing P