CO 355 Lecture 14

Fundamentals of Nonlinear Optimization

Vris Cheung

(Substitute class)

October 28, 2010

Outline

1 Extremum: unconstrained optimization

2 Constrained optimization

3 Optimality conditions: Lagrangian

Extremum: unconstrained optimization

- + Given $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$.
- + x^* is a (global) minimizer of f:

$$f(x^*) \leq f(x)$$
 for all $x \in S$.

+ x^* is a *local* minimizer of f: for some nbd. N_{x^*} of x^* ,

$$f(x^*) \leq f(x)$$
 for all $x \in N_{x^*} \cap S$.

Extremum: unconstrained optimization

Necessary optimality conditions for local minimizer:

1st order cond.: $\nabla f(x^*) = 0$

2st order cond.: $\nabla^2 f(x^*) \succeq 0$

Sufficient optimality condition for local minimizer:

1st order cond.: $\nabla f(x^*) = 0$

AND 2st order cond.: $\nabla^2 f(x^*) > 0$

If $\nabla f(x) = 0$, x is said to be a saddle point / critical point.

Extremum: unconstrained optimization

When we try to solve

$$\min_{x \in S} f(x)$$
,

using only 1st order opt. cond.¹, we might end up

- + a global minimizer great!
- + or... a local minimizer,
- + or... a saddle point.... (or maybe *nothing*...)

But if f is convex, we don't have such a problem:

Theorem

If $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is convex (with S convex) and $\nabla f(x^*) = 0$, then x^* is a global minimizer of f.

We usually don't have 2nd order information because it is too expensive to obtain practice. < ₹ > ₹ ✓ २ ० ०

Extremum: convex case

Theorem

If $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is convex (with S convex) and $\nabla f(x^*) = 0$, then x^* is a global minimizer of f.

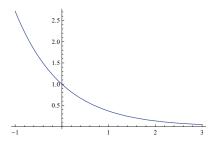
Proof.

For any $x \in S$, by convexity,

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\top} (x - x^*) = f(x^*).$$

Sadly, even in convex case, it could happen that a minimizer simply does not exist: consider²

$$f(x) := e^{-x} \qquad (x \in \mathbb{R}).$$



 $\inf_{x \in \mathbb{R}} e^{-x} = 0$ is finite, but not attained by any $x \in \mathbb{R}$.

²Graphics source: Wolfram Alpha.

So when would a minimizer exist?

An easy condition is *coerciveness*: $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is coercive if ³

$$\{x \in S : f(x) \leq \alpha\}$$

is bounded for all $\alpha \in \mathbb{R}$.

Lemma

Given $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ *, TFAE:*

- (1) $\{x: f(x) \leq \alpha\}$ is bounded for all $\alpha \in \mathbb{R}$.
- (2) $f(x) \to +\infty$ as $||x|| \to +\infty$.

³ In course text, this set is called a *level set* of *f*. In literature it is also called *sublevel set* of *f*, to be distinguished from *level set*, which is of the form $\{x \in S : f(x) = \alpha\}$.

$$f: S \subseteq \mathbb{R}^n \to \mathbb{R}$$
 is coercive if ³

$${x \in S : f(x) \leq \alpha}$$

is bounded for all $\alpha \in \mathbb{R}$.

Lemma

Given $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ *, TFAE:*

- (1) $\{x: f(x) \leq \alpha\}$ is bounded for all $\alpha \in \mathbb{R}$.
- (2) $f(x) \to +\infty$ as $||x|| \to +\infty$.

Examples of coercive functions:

+
$$f(x) := x^{\top}Ax - c^{\top}x$$
 for PD symm. $A \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$;
+ $f(x) := ||x||^2 \quad (= x^{\top}Ix)$.

³ In course text, this set is called a *level set* of *f*. In literature it is also called *sublevel set* of *f*, to be distinguished from *level set*, which is of the form $\{x \in S : f(x) = \alpha\}$. メロトス部トスミトスミト (重)

 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is coercive if

$${x \in S : f(x) \leq \alpha}$$

is bounded for all $\alpha \in \mathbb{R}$.

Theorem (3.7)

If $S \subseteq \mathbb{R}^n$ is nonempty closed and $f: S \to \mathbb{R}$ is continuous and coercive, then f has a minimizer.

 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is coercive if

$${x \in S : f(x) \leq \alpha}$$

is bounded for all $\alpha \in \mathbb{R}$.

Theorem (3.7)

If $S \subseteq \mathbb{R}^n$ is nonempty closed and $f: S \to \mathbb{R}$ is continuous and coercive, then f has a minimizer.

Corollary (3.8)

If $S \subseteq \mathbb{R}^n$ is nonempty closed, then any $z \in \mathbb{R}^n$ has a nearest point in S, i.e. $\exists x^* \in S$ s.t.

$$||x^*-z|| \leqslant ||x-z||.$$

If, moreover, S is convex, then z has exactly one nearest point in S.

Outline

1 Extremum: unconstrained optimization

2 Constrained optimization

3 Optimality conditions: Lagrangian

Given $f, g_1, \dots, g_p, h_1, \dots, h_q : S \subseteq \mathbb{R}^n \to \mathbb{R}$, a nonlinear program / constr. optimization problem is of the form (from eqn. 3.7 of course text)

(NLP)
$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $g_i(x) \le 0$ $(i = 1, ..., p)$, inequality constr.
 $h_j(x) = 0$ $(j = 1, ..., q)$, equality constr.
 $x \in S$.

It is a convention to write min instead of inf, even though a minimizer may not exist.

```
Given f, g_1, ..., g_p, h_1, ..., h_q: S \subseteq \mathbb{R}^n \to \mathbb{R}, a nonlinear program / constr. optimization problem is of the form (from eqn. 3.7 of course text)
```

(NLP)
$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x)$$
 s.t. $g_i(x) \leq 0$ $(i = 1, ..., p)$, inequality constr.
$$h_j(x) = 0 \quad (j = 1, ..., q) \text{ , equality constr.}$$
 $x \in S$.

```
+ x \in S is feasible for (NLP) if g_i(x) \le 0 \ \forall i = 1, ..., p and h_j(x) = 0 \ \forall j = 1, ..., q.
+ x^* \in S is optimal for / a minimizer of (NLP) if x^* is feasible and f(x^*) \le f(x) for all feasible x \in S.
```

Given f, g_1 , ..., g_p , h_1 , ..., h_q : $S \subseteq \mathbb{R}^n \to \mathbb{R}$, a nonlinear program / constr. optimization problem is of the form (from eqn. 3.7 of course text)

(NLP)
$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x)$$
 s.t. $g_i(x) \leq 0$ $(i = 1, \dots, p)$, inequality constr.
$$h_j(x) = 0 \quad (j = 1, \dots, q) \text{,}$$
 equality constr.
$$x \in S.$$

The set of optimal solutions of (NLP) is denoted by

$$\arg\min_{x} \{ f(x) : g_i(x) \leq 0 \ (i = 1, ..., p), h_j(x) = 0 \ (j = 1, ..., q) \}.$$

(NLP)
$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f(x)$$
s.t.
$$g_i(x) \leq 0 \quad (i = 1, ..., p) ,$$

$$h_j(x) = 0 \quad (j = 1, ..., q) ,$$

$$x \in S.$$

Special classes of NLP:

- + linear program: all functions are affine, and $S = \mathbb{R}^n$.
- + convex program: f, g₁, . . . , g_p are convex, and h₁, . . . , h_q are affine.

(NLP)
$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x)$$

$$\text{s.t.} \quad g_i(x) \leq 0 \quad (i = 1, \dots, p) ,$$

$$h_j(x) = 0 \quad (j = 1, \dots, q) ,$$

$$x \in S.$$

Four possibilities:

- (1) (NLP) is infeasible.
- (2) (NLP) is feasible...
 - (a) but unbounded (in objective value).
 - (b) and bounded (in objective value)...
 - (i) but does not attain optimality.
 - (ii) and attains optimality.

(NLP)
$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} f(x)$$

$$\text{s.t.} \quad g_i(x) \leq 0 \quad (i = 1, \dots, p) ,$$

$$h_j(x) = 0 \quad (j = 1, \dots, q) ,$$

$$x \in S.$$

Four possibilities:

- (1) (NLP) is infeasible.
- (2) (NLP) is feasible...
 - (a) but unbounded (in objective value).
 - (b) and bounded (in objective value)...
 - (i) but does not attain optimality. ← This is not possible in LP!
 - (ii) and attains optimality. (An LP is infeas., unbdd, or attains opt.)

13/20

- + feasibility
- + boundedness of the opt. problem
- + existence of optimal solutions
- + uniqueness of optimal solutions
- + computability of an (approximate) optimal solution:
 - how do we find an optimal solution?
- + certificate of optimality
 - how can we prove that what we find is optimal?

- + feasibility
- + boundedness of the opt. problem
- + existence of optimal solutions
- + uniqueness of optimal solutions
- + computability of an (approximate) optimal solution:
 - how do we find an optimal solution? Necessary opt. cond.
- + certificate of optimality
 - how can we prove that what we find is optimal? Sufficient opt. cond.

Outline

1 Extremum: unconstrained optimization

2 Constrained optimization

3 Optimality conditions: Lagrangian

(NLP)
$$\min_{x \in S} f(x)$$
s.t. $g_i(x) \le 0 \quad (i = 1, ..., p)$,
$$h_i(x) = 0 \quad (j = 1, ..., q)$$
.

The Lagrangian of (NLP) is defined by the function

$$L(x, \lambda, \mu) := f(x) + \sum_{i=1}^{p} \lambda_i g_i(x) + \sum_{j=1}^{q} \mu_j h_j(x),$$

for $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^p$ and $\mu \in \mathbb{R}^q$.

From Calculus class:

Theorem

Consider the equality constrained problem

$$\min_{x \in S} f(x) \quad s.t. \quad h_j(x) = 0 \ (j = 1, ..., q) \ . \tag{1}$$

If, for some $\bar{\mu} \in \mathbb{R}^q$, $\bar{x} \in S$ *is feasible for* (1) *and solves*

$$\min_{x \in S} L(x, \bar{\mu}) := f(x) + \sum_{j=1}^{q} \bar{\mu}_j h_j(x),$$

then \bar{x} is optimal for (1).

Theorem (full version FYI)

Consider the constrained optimization problem

$$\min_{x \in S} \quad f(x) \quad s.t. \quad g_i(x) \le 0 \quad (i = 1, ..., p) ,$$

$$h_i(x) = 0 \quad (j = 1, ..., q) .$$
(2)

Suppose $\bar{x} \in S$. If

- (a) \bar{x} is feasible for (2),
- (b) there exist non-negative $\bar{\lambda} \in \mathbb{R}^p$ and $\bar{\mu} \in \mathbb{R}^q$ s.t.
 - (i) $\bar{x} \in S$ solves

$$\min_{\mathbf{x} \in S} L(\mathbf{x}, \bar{\mathbf{\lambda}}, \bar{\mathbf{\mu}}) := f(\mathbf{x}) + \sum_{i=1}^{p} \bar{\lambda}_i g_i(\mathbf{x}) + \sum_{j=1}^{q} \bar{\mathbf{\mu}}_j h_j(\mathbf{x}),$$

(ii) complementary slackness condition holds:

for each
$$i = 1, ..., p$$
, $\bar{\lambda}_i g_i(\bar{x}) = 0$,

then \bar{x} is optimal for (2).

Theorem

Consider the inequality constrained problem

$$\min_{x \in S} f(x)$$
 s.t. $g_i(x) \le 0$ $(i = 1, ..., p)$,. (3)

Suppose $\bar{x} \in S$. If

- (a) \bar{x} is feasible for (3),
- (b) there exists non-negative $\bar{\lambda} \in \mathbb{R}^p$ s.t.
 - (i) $\bar{x} \in S$ solves

$$\min_{x \in S} L(x, \bar{\lambda}) := f(x) + \sum_{i=1}^{p} \bar{\lambda}_i g_i(x),$$

(ii) complementary slackness condition holds:

for each
$$i = 1, ..., p$$
, $\bar{\lambda}_i g_i(\bar{x}) = 0$,

then \bar{x} is optimal for (3).

Sufficient optimality conditions: convex case

Recall: if a function ϕ is convex, then $\nabla \phi(\bar{x}) = 0$ implies \bar{x} is a minimizer.

Theorem (3.11, convex programs)

Consider the equality constrained problem

$$\min_{x \in S} \quad f(x) \quad s.t. \quad g_i(x) \leqslant 0 \quad (i = 1, \dots, p) , \tag{4}$$

where f, g_1, \ldots, g_p are convex functions. Suppose $\bar{x} \in S$. If

- (a) \bar{x} is feasible for (4),
- (b) there exists non-negative $\bar{\lambda} \in \mathbb{R}^p$ s.t.
 - (i) \bar{x} satisfies

$$\nabla_x L(\bar{x}, \bar{\lambda}) = \nabla f(\bar{x}) + \sum_{i=1}^p \nabla \bar{\lambda}_i g_i(\bar{x}) = 0,$$

(ii) complementary slackness condition holds:

for each
$$i = 1, ..., p$$
, $\bar{\lambda}_i g_i(\bar{x}) = 0$,

then \bar{x} is optimal for (4).

