# CO 355 Lecture 13

## Convex functions

Vris Cheung

(Substitute class)

October 26, 2010

## Outline

1 Preliminaries

2 Convex functions

3 Equivalent conditions of convexity

# Basic notions (that you should know)

- + openness / closedness of a set
- + interior of a set
- + closure of a set
- + (in Euclidean space)a set is compact iff it is closed + bounded.
- + Bolzano-Weierstrass theorem:

A sequence in a compact set has a convergent subsequence.

+ Continuity of functions

## Calculus review

 $+f: S \subseteq \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\bar{x} \in \text{int}(S)$  if  $\exists d \in \mathbb{R}^n$  s.t.

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x}) - d^{\top}(x - \bar{x})}{\|x - \bar{x}\|} = 0.$$

Here *d* is called the gradient of *f* at  $\bar{x}$ . Notation :  $\nabla f(\bar{x})$ .

+ Recall:

$$\nabla f(\bar{x}) = \left(\frac{\partial f}{\partial x_1}(\bar{x}), \frac{\partial f}{\partial x_2}(\bar{x}), \dots, \frac{\partial f}{\partial x_n}(\bar{x})\right).$$

+ If the maps

$$x \mapsto \frac{\partial f}{\partial x_i}(x) \quad (i = 1, \dots, n)$$

are defined in a nbd. of and are continuous at  $\bar{x}$ , then f is continuously differentiable at  $\bar{x}$ .



### Calculus review

If the maps

$$x \mapsto \frac{\partial f}{\partial x_i}(x) \quad (i = 1, \dots, n)$$

are differentiable at  $\bar{x}$ , we may define the Hessian of f at  $\bar{x}$  as the matrix  $\nabla^2 f(\bar{x}) \in \mathbb{R}^{n \times n}$  by

$$\left[\nabla^2 f(\bar{x})\right]_{ij} := \frac{\partial^2 f}{\partial x_i \partial x_i}(\bar{x}).$$

If f is twice continuously differentiable at  $\bar{x}$ , the Hessian is symmetric.

\* In the course notes, the Hessian is denoted by  $Hf(\bar{x})$ .

## Calculus review

Let  $S \subseteq \mathbb{R}^n$  be nonempty open,  $\bar{x} \in \text{int}(S)$  and  $f : S \to \mathbb{R}$  be given.

+ Gradient of f at  $\bar{x}$ :

$$\nabla f(\bar{x}) = \left(\frac{\partial f}{\partial x_1}(\bar{x}), \frac{\partial f}{\partial x_2}(\bar{x}), \dots, \frac{\partial f}{\partial x_n}(\bar{x})\right).$$

+ Hessian of f at  $\bar{x}$ : the matrix  $\nabla^2 f(\bar{x}) \in \mathbb{R}^{n \times n}$  by

$$\left[\nabla^2 f(\bar{x})\right]_{ij} := \frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{x}).$$

## Outline

1 Preliminaries

2 Convex functions

3 Equivalent conditions of convexity

Let  $S \subseteq \mathbb{R}^n$  be convex (and non-empty).

### Definition

A real-valued function  $f: S \to \mathbb{R}$  is convex if for all  $x, y \in S, \lambda \in [0, 1]$ ,

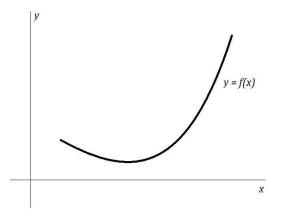
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

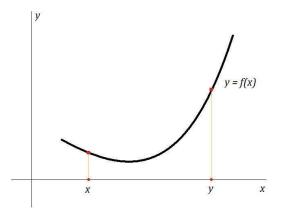
 $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$  is concave if -f is convex.

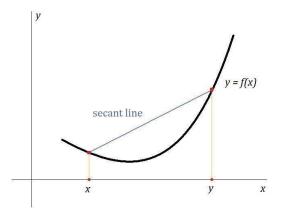
#### Definition

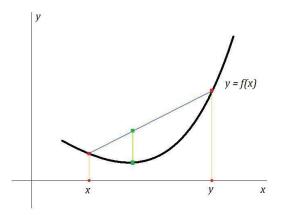
A function  $f: S \to \mathbb{R}$  is strictly convex if for all distinct  $x, y \in S, \lambda \in (0, 1)$ ,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$









### Examples:

+ affine functions: fox fixed  $a \in \mathbb{R}^n$ , b,

$$f(x) := a^{\top} x + b$$
  $(x \in \mathbb{R}^n).$ 

(If b = 0, the function is linear.)

+ norm:

$$f(x) := ||x||^2 := \sum_{i=1}^n x_i^2$$
 for  $x \in \mathbb{R}^n$ .

+ some functions involving log:

$$f(t) := -\log t \qquad \text{for } t \in \mathbb{R} \text{ with } x > 0;$$

$$f(x) := -\log \left(\sum_{i=1}^{n} x_i\right) \quad \text{for } x \in \mathbb{R}^n \text{ with all } x_i > 0;$$

$$f(X) := -\log \det(X) \qquad \text{for positive definite symm. } X \in \mathbb{R}^{n \times n}.$$

### Outline

1 Preliminaries

2 Convex functions

3 Equivalent conditions of convexity

## How do we check convexity of a function?

- + by definition... or
- + using calculus.

Equivalent conditions of convexity: (assuming sufficient differentiability)

|                 | $g: \mathbb{R} \to \mathbb{R}$                                      | $f: \mathbb{R}^n 	o \mathbb{R}$                                       |
|-----------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| epigraph        | $\operatorname{epi}(g) \in \mathbb{R} \times \mathbb{R}$ is convex. | $\operatorname{epi}(f) \in \mathbb{R}^n \times \mathbb{R}$ is convex. |
| 1st order cond. | $g(y) \geqslant g(x) + g'(x)(y-x)$                                  | $f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x)$                    |
|                 | (i.e. $g'$ is non-decreasing)                                       |                                                                       |
| 2nd order cond. | $g''(x) \geqslant 0$                                                | $\nabla^2 f(x)$ is positive semidefinite.                             |

Here  $\operatorname{epi}(f) := \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) \leq r\}.$ 

# Easy observation (1)

If  $\lambda \in [0, 1]$ , then

$$x + \lambda(y - x) = (1 - \lambda)x + \lambda y$$

is a conv. combi. of x and y.

Also, if *f* is convex on a convex set containing *x* and *y*, then for any  $\lambda \in [0, 1]$ 

$$f(x + \lambda(y - x)) = f((1 - \lambda)x + \lambda y)$$

$$\leq (1 - \lambda)f(x) + \lambda f(y)$$

$$= f(x) + \lambda [f(y) - f(x)].$$

# Easy observation (1)

If  $\lambda \in [0, 1]$ , then

$$x + \lambda(y - x) = (1 - \lambda)x + \lambda y$$

is a conv. combi. of *x* and *y*.

Also, if *f* is convex on a convex set containing *x* and *y*, then for any  $\lambda \in [0, 1]$ 

$$f(x + \lambda(y - x)) \leq f(x) + \lambda [f(y) - f(x)].$$

# Easy observation (2)

Let  $S \subseteq \mathbb{R}^n$  be nonempty open,  $\bar{x} \in \text{int}(S)$ , non-zero  $d \in \mathbb{R}^n$  and  $f : S \to \mathbb{R}$  be given.

We can define

$$g(t) := f(\bar{x} + td) \quad (t \in I),$$

the evaluation of f along a line segment through  $\bar{x}$  parallel to d. (Here  $I \subseteq \mathbb{R}$  is s.t.  $\bar{x} + td \in S$  for all  $t \in I$ .)

(1) *f* is convex iff "all such functions *g* are convex".

(2) 
$$f ext{ diff. on } S \implies g ext{ diff. on some nbd. of } 0:$$
 
$$g'(t) = d^{\top} \nabla f(\bar{x} + td);$$
  $f ext{ twice ctsly diff. on } S \implies g ext{ twice diff. on some nbd. of } 0:$  
$$g''(t) = d^{\top} \nabla^2 f(\bar{x} + td)d.$$

### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g: I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

(1) g is convex.

(2) 
$$g(y) \ge g(x) + g'(x)(y - x)$$
 for all  $x, y \in I$ .

#### Proof.

 $(1) \implies (2)$ : (Prop. 3.2)

WLOG assume  $x \neq y$ . Note that if  $\lambda \in (0,1)$ , then

$$\lim_{\lambda \searrow 0} \frac{g(x+\lambda(y-x))-g(x)}{\lambda(y-x)} = g'(x).$$

But 
$$g(x + \lambda(y - x)) \le g(x) + \lambda [g(y) - g(x)]$$
 by (1). Then, if  $y > x$ ,

$$\frac{\lambda \left[ g(y) - g(x) \right]}{\lambda (y - x)} \geqslant \frac{g(x + \lambda (y - x)) - g(x)}{\lambda (y - x)} \quad \forall \lambda \in (0, 1).$$



15 / 22

### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \geqslant g(x) + g'(x)(y x) \text{ for all } x, y \in I.$

#### Proof.

 $(1) \implies (2)$ : (Prop. 3.2)

WLOG assume  $x \neq y$ . Note that if  $\lambda \in (0,1)$ , then

$$\lim_{\lambda \searrow 0} \frac{g(x+\lambda(y-x))-g(x)}{\lambda(y-x)} = g'(x).$$

But 
$$g(x + \lambda(y - x)) \le g(x) + \lambda [g(y) - g(x)]$$
 by (1). Then, if  $y > x$ ,

$$\frac{g(y)-g(x)}{y-x}\geqslant \frac{g(x+\lambda(y-x))-g(x)}{\lambda}\quad\forall\,\lambda\in(0,1).$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \geqslant g(x) + g'(x)(y x) \text{ for all } x, y \in I.$

#### Proof.

 $(1) \implies (2)$ : (Prop. 3.2)

WLOG assume  $x \neq y$ . Note that if  $\lambda \in (0,1)$ , then

$$\lim_{\lambda \searrow 0} \frac{g(x + \lambda(y - x)) - g(x)}{\lambda(y - x)} = g'(x).$$

But  $g(x + \lambda(y - x)) \le g(x) + \lambda [g(y) - g(x)]$  by (1). Then, if y > x,

$$\frac{g(y) - g(x)}{y - x} \geqslant \lim_{\lambda \searrow 0} \frac{g(x + \lambda(y - x)) - g(x)}{\lambda} = g'(x).$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- (2)  $g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .

#### Proof.

 $(1) \implies (2)$ : (Prop. 3.2)

WLOG assume  $x \neq y$ . Note that if  $\lambda \in (0,1)$ , then

$$\lim_{\lambda \searrow 0} \frac{g(x+\lambda(y-x))-g(x)}{\lambda(y-x)} = g'(x).$$

But  $g(x + \lambda(y - x)) \le g(x) + \lambda [g(y) - g(x)]$  by (1). Then, if y > x,

$$\frac{g(y) - g(x)}{y - x} \geqslant \lim_{\lambda \searrow 0} \frac{g(x + \lambda(y - x)) - g(x)}{\lambda} = g'(x).$$

The case y < x is similar.



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .

#### Proof.

(2)  $\Longrightarrow$  (1): fix any  $x, y \in I$  and  $\lambda \in [0, 1]$ . Let  $z := \lambda x + (1 - \lambda)y$ .

By (2),

$$g(x) \geqslant g(z) + g'(z)(x - z)$$
  
$$g(y) \geqslant g(z) + g'(z)(y - z)$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .

#### Proof.

(2) 
$$\Longrightarrow$$
 (1): fix any  $x, y \in I$  and  $\lambda \in [0, 1]$ . Let  $z := \lambda x + (1 - \lambda)y$ .

By (2),

$$\lambda g(x) \geqslant \lambda g(z) + g'(z) \left[ \lambda(x - z) \right]$$
$$(1 - \lambda)g(y) \geqslant (1 - \lambda)g(z) + g'(z) \left[ (1 - \lambda)(y - z) \right]$$



16 / 22

### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .

#### Proof.

(2) 
$$\Longrightarrow$$
 (1): fix any  $x, y \in I$  and  $\lambda \in [0, 1]$ . Let  $z := \lambda x + (1 - \lambda)y$ .

By (2),

$$\lambda g(x) \geqslant \lambda g(z) + g'(z) \left[ \lambda(x - z) \right]$$

$$(1 - \lambda)g(y) \geqslant (1 - \lambda)g(z) + g'(z) \left[ (1 - \lambda)(y - z) \right]$$

$$\implies \lambda g(x) + (1 - \lambda)g(y) \geqslant g(z)$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- (1) g is convex.
- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .

#### Proof.

(2) 
$$\Longrightarrow$$
 (1): fix any  $x, y \in I$  and  $\lambda \in [0, 1]$ . Let  $z := \lambda x + (1 - \lambda)y$ .

By (2),

$$\lambda g(x) \geqslant \lambda g(z) + g'(z) \left[ \lambda(x - z) \right]$$

$$(1 - \lambda)g(y) \geqslant (1 - \lambda)g(z) + g'(z) \left[ (1 - \lambda)(y - z) \right]$$

$$\implies \lambda g(x) + (1 - \lambda)g(y) \geqslant g(z)$$

$$= g(\lambda x + (1 - \lambda)y)$$

This is the definition of *g* being convex.

### Theorem (3.5)

Let  $S \subseteq \mathbb{R}^n$  be convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

(1) f is convex.

$$(2) f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x) \text{ for all } x, y \in S.$$

#### Proof.

 $(1) \implies (2)$ :

The map  $g : [0,1] \to \mathbb{R}$  defined by

$$g(t) := f(x + t(y - x))$$

is convex. Then by Thm. 3.4,

$$g(1) \geqslant g(0) + g'(0)(1-0)$$



### Theorem (3.5)

Let  $S \subseteq \mathbb{R}^n$  be convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE: (1) f is convex.

 $(2)f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x) \text{ for all } x, y \in S.$ 

#### Proof.

 $(1) \implies (2)$ :

The map  $g : [0,1] \rightarrow \mathbb{R}$  defined by

$$g(t) := f(x + t(y - x))$$

is convex. Then by Thm. 3.4,

$$\begin{split} g(1) &\geqslant g(0) + g'(0)(1-0) \\ \Longrightarrow & f(y) \geqslant f(x) + \nabla f(x)^\top (y-x). \end{split}$$



### Theorem (3.5)

Let  $S \subseteq \mathbb{R}^n$  be convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE: (1) f is convex.

 $(2)f(y) \geqslant f(x) + \nabla f(x)^{\top} (y-x)$  for all  $x, y \in S$ .

#### Proof.

 $(1) \implies (2)$ :

The map  $g : [0,1] \rightarrow \mathbb{R}$  defined by

$$g(t) := f(x + t(y - x))$$

is convex. Then by Thm. 3.4,

$$g(1) \geqslant g(0) + g'(0)(1 - 0)$$
 
$$\implies f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x).$$

The converse is similar to the proof of (2) implying (1) in Thm. 3.4.



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .
- (3) g' is nondecreasing.

#### Proof.

(2)  $\implies$  (3): Let x < y. Then

$$g(y) \geqslant g(x) + g'(x)(y-x)$$

$$g(x) \geqslant g(y) + g'(y)(x - y)$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- $(2) g(y) \geqslant g(x) + g'(x)(y x) \text{ for all } x, y \in I.$
- (3) g' is nondecreasing.

#### Proof.

(2)  $\implies$  (3): Let x < y. Then

$$g(y) \ge g(x) + g'(x)(y - x)$$

$$g(x) \ge g(y) + g'(y)(x - y)$$

$$\implies g(y) + g(x) \ge g(x) + g(y) + [g'(x) - g'(y)](y - x)$$



### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- $(2) g(y) \ge g(x) + g'(x)(y x)$  for all  $x, y \in I$ .
- (3) g' is nondecreasing.

#### Proof.

(2)  $\implies$  (3): Let x < y. Then

$$g(y) \geqslant g(x) + g'(x)(y - x)$$

$$g(x) \geqslant g(y) + g'(y)(x - y)$$

$$\implies g(y) + g(x) \geqslant g(x) + g(y) + [g'(x) - g'(y)] (y - x)$$

$$\implies 0 \leqslant [g'(y) - g'(x)] (y - x).$$

In particular,  $g'(y) \ge g'(x)$ .

### Theorem (3.4)

*Let*  $I \subseteq \mathbb{R}$  *and*  $g : I \to \mathbb{R}$  *be differentiable. Then TFAE:* 

- $(2) g(y) \geqslant g(x) + g'(x)(y x) \text{ for all } x, y \in I.$
- (3) g' is nondecreasing.

#### Proof.

(3)  $\implies$  (2): Let x < y lie in I. By mean-value theorem

$$g(y) - g(x) = g'(z)(y - x)$$

for some  $z \in [x, y]$ . By (3),  $g'(z) \ge g'(x)$ , so

$$g(y) - g(x) \geqslant g'(x)(y - x).$$



### Theorem (3.6)

Let  $S \subseteq \mathbb{R}^n$  be open convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

- $(2) f(y) \ge f(x) + \nabla f(x)^{\top} (y x)$  for all  $x, y \in S$ .
- (3)  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in S$ .

#### Proof.

(2)  $\implies$  (3): fix any  $x \in S$  and  $d \in \mathbb{R}^n$ . We show that

$$d^{\top} \nabla^2 f(x) d \geqslant 0.$$

Then g(t) := f(x + td) is defined on a nbd. I of 0.

We show that for all  $t < s \in I$ ,

$$g(s) \geqslant g(t) + g'(t)(s-t),$$

so that by Thm 3.4, we have that g'' > 0 on I.



### Theorem (3.6)

Let  $S \subseteq \mathbb{R}^n$  be open convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

- $(2) f(y) \geqslant f(x) + \nabla f(x)^{\top} (y x) \text{ for all } x, y \in S.$
- (3)  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in S$ .

#### Proof.

(2)  $\Longrightarrow$  (3): fix any  $x \in S$  and  $d \in \mathbb{R}^n$ . We show that

$$d^{\top} \nabla^2 f(x) d \ge 0.$$

Then g(t) := f(x + td) is defined on a nbd. I of 0. For all  $t < s \in I$ ,

$$f(x+sd) \geqslant f(x+td) + \nabla f(x+td)^{\top} [(s-t)d]$$
  

$$\implies g(s) \geqslant g(t) + g'(t)(s-t)$$

so by Thm. 3.4,

$$0 \leqslant g''(0) = d^{\top} \nabla^2 f(x) d.$$



### Theorem (3.6)

Let  $S \subseteq \mathbb{R}^n$  be open convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

- $(2) f(y) \ge f(x) + \nabla f(x)^{\top} (y x)$  for all  $x, y \in S$ .
- (3)  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in S$ .

#### Proof.

(3)  $\implies$  (2): fix any  $x, y \in S$ , and let d := y - x. Define

$$g:[0,1]\to\mathbb{R}:t\mapsto f(x+td).$$

$$\implies g''(t) = d^{\top} \nabla^2 f(x + td) d \geqslant 0$$

by positive semidefiniteness of  $\nabla^2 f(x+td)$ . By Thm 3.4,

$$g(1) \geqslant g(0) + g'(0)$$



### Theorem (3.6)

Let  $S \subseteq \mathbb{R}^n$  be open convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

- $(2) f(y) \ge f(x) + \nabla f(x)^{\top} (y x) \text{ for all } x, y \in S.$
- (3)  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in S$ .

#### Proof.

(3)  $\implies$  (2): fix any  $x, y \in S$ , and let d := y - x. Define

$$g: [0,1] \to \mathbb{R}: t \mapsto f(x+td).$$

$$\implies g''(t) = d^{\top} \nabla^2 f(x+td) d \geqslant 0$$

by positive semidefiniteness of  $\nabla^2 f(x+td)$ . By Thm 3.4,

$$g(1) \geqslant g(0) + g'(0)$$

$$\implies f(x+d) \geqslant f(x) + \nabla f(x)^{\top} d.$$



### Theorem (3.6)

Let  $S \subseteq \mathbb{R}^n$  be open convex and  $f: S \to \mathbb{R}$  be differentiable. Then TFAE:

- $(2) f(y) \ge f(x) + \nabla f(x)^{\top} (y x) \text{ for all } x, y \in S.$
- (3)  $\nabla^2 f(x)$  is positive semidefinite for all  $x \in S$ .

#### Proof.

(3)  $\implies$  (2): fix any  $x, y \in S$ , and let d := y - x. Define

$$g: [0,1] \to \mathbb{R}: t \mapsto f(x+td).$$

$$\implies g''(t) = d^{\top} \nabla^2 f(x+td) d \geqslant 0$$

by positive semidefiniteness of  $\nabla^2 f(x+td)$ . By Thm 3.4,

$$g(1) \geqslant g(0) + g'(0)$$

$$\implies f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x).$$



# Basic properties of convex functions

Suppose  $f: S \to \mathbb{R}$  ( $S \subseteq \mathbb{R}^n$  convex) is convex.

+ Jensen's inequality holds:

$$f\left(\sum_{i=1}^k \lambda_i x_i\right) \leqslant \sum_{i=1}^k \lambda_i f(x_i) \qquad \forall x_i \in S, \ \lambda_i \geqslant 0 \text{ with } \sum_{i=1}^k \lambda_i = 1.$$

- + f is continuous on int(S).
- + If  $A : \mathbb{R}^m \to \mathbb{R}^n$  is affine, then
  - (1) the preimage  $A^{-1}(S) \subseteq \mathbb{R}^m$  is convex, and
  - $(2) f \circ \hat{A}: A^{-1}(\hat{S}) \to \mathbb{R}$  is convex.
- + If  $g : \mathbb{R} \to \mathbb{R}$  is convex and non-decreasing, then  $g \circ f$  is convex.

(The non-decreasing condition *cannot* be removed.)