C&O 355 Mathematical Programming Fall 2010 Lecture 12

N. Harvey

- What movie is this?
- What is the location for this scene?
- Who are the people in this scene?

Two-Player "Zero-sum" Games

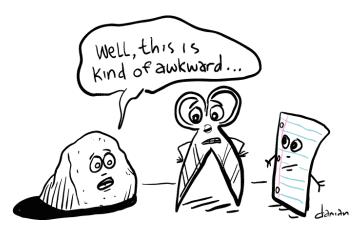
- Alice and Bob play the following game
 - Alice has m possible actions she can make
 - Bob has n possible actions he can make
 - They both simultaneously choose an action
 - If Alice chooses action i and Bob chooses action j then Bob pays Alice M_{ii} dollars
- "Zero-sum" means amount Alice wins equals amount Bob loses

Bob

Al	ice

	Rock	Scissors	Paper
Rock	0	1	-1
Scissors	-1	0	1
Paper	1	-1	0

M



Randomized Strategies

- As we know from Rock-Scissors-Paper, we seek randomized choices of actions that optimize the expected payoff
- Suppose Alice chooses a probability distribution $x \in \mathbb{R}^m$ over her actions and Bob chooses a distribution $y \in \mathbb{R}^n$ over his actions. (So $x \ge 0$, $\sum_i x_i = 1$, $y \ge 0$, $\sum_i y_i = 1$.)
- The expected amount Bob pays Alice is

$$\sum_{i} \sum_{j} M_{i,j} x_{j} y_{j} = x^{T} M y$$

- Alice is paranoid and thinks Bob might know her distribution x. She wants x that pays well no matter which y Bob chooses, and even if Bob knows x.
- So Alice wants to solve: $\max_{\mathbf{x}} \min_{\mathbf{y}} \mathbf{x}^\mathsf{T} \mathbf{M} \mathbf{y}$ (over all distributions \mathbf{x} and \mathbf{y})
- Similarly, Bob wants to solve: min_v max_x x^T M y

Von Neumann's Theorem

- We know: $\max_{x} \min_{y} x^{T} M y \leq \min_{y} \max_{x} x^{T} M y$ (Asst 2, Q6) (over all distributions x and y)
- Does equality hold?
 In other words, is Alice's paranoid strategy actually an optimal strategy?

- Theorem: [Von Neumann, 1926] Yes! There exist x^* and y^* s.t. $max_x min_y x^T M y = x^{*T} M y^* = min_y max_x x^T M y$
- Can be proven using LP duality. (Similar to Asst 2, Q7.)
- Conversely, LP duality can be proven by Von Neumann's Thm
- The strategies x* and y* are called **Nash equilibria**Nash's work came later, showing equilibria in more general, non-zero-sum games.

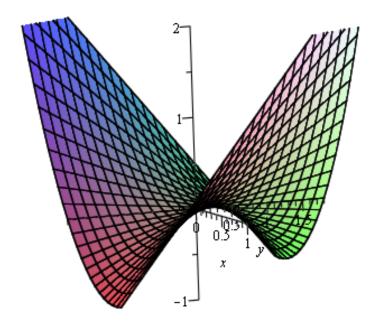
John Nash, Nobel Laureate

Hollywood's depiction of John Nash

It is **not** generally true that

$$\sup_{x \in P} \inf_{y \in Q} f(x, y) = \inf_{y \in Q} \sup_{x \in P} f(x, y).$$

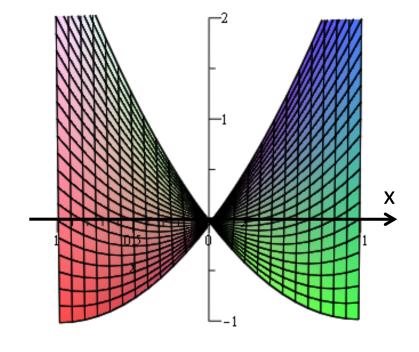
• Consider P = [-1,1], $Q = \mathbb{R}$ and $f(x,y) = x^2 + xy$



It is **not** generally true that

$$\sup_{x \in P} \inf_{y \in Q} f(x, y) = \inf_{y \in Q} \sup_{x \in P} f(x, y).$$

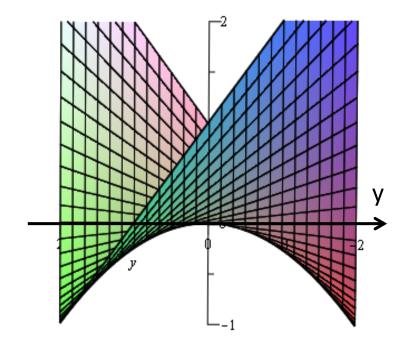
- Consider P = [-1,1], $Q = \mathbb{R}$ and $f(x,y) = x^2 + xy$
- Looking along the y-axis, $\sup_{x \in P} \inf_{y \in Q} f(x,y) = 0$



It is **not** generally true that

$$\sup_{x \in P} \inf_{y \in Q} f(x, y) = \inf_{y \in Q} \sup_{x \in P} f(x, y).$$

- Consider P = [-1,1], $Q = \mathbb{R}$ and $f(x,y) = x^2 + xy$
- Looking along the y-axis, $\sup_{x \in P} \inf_{y \in Q} f(x,y) = 0$
- Looking along the x-axis, $\inf_{y \in Q} \sup_{x \in P} f(x,y) = 1$



It is not generally true that

$$\sup_{x \in P} \inf_{y \in Q} f(x, y) = \inf_{y \in Q} \sup_{x \in P} f(x, y).$$

x*∈P and y*∈Q are called saddle points if

$$\sup_{x \in P} \inf_{y \in Q} f(x, y) = f(x^*, y^*) = \inf_{y \in Q} \sup_{x \in P} f(x, y).$$

- The question "when do saddle points exist?"
 is closely related to the question "when does a
 non-linear program satisfy strong duality?"
 - Nash Equilibria of zero-sum games are saddle points
 - Note: we only defined duals of linear programs

Learning a Near-Optimal Strategy for Alice

- Alice maintains weights on her actions $w \in \mathbb{R}^m$, $w \ge 0$
- For T rounds
 - Alice normalizes w to get distribution x = w / $\sum_i w_i$
 - Alice tells Bob she's going to play with distribution x
 - Bob chooses an action j that is optimal against x
 - Alice plays a random action chosen according to x, and Bob plays j
 - Alice increases the weight w_i if $M_{i,j} > 0$ and decreases the weight w_i if $M_{i,j} < 0$
- Amazing Fact: If this is done carefully, then x is now a nearly optimal strategy for Alice

Multiplicative Weights Update Method

- Alice increases and decreases her weights by a small multiplicative factor
- This method is useful for many problems
 - fast algorithms (max flow, …)
 - machine learning (AdaBoost, Winnow)
 - complexity theory (Yao's XOR Lemma)
 - quantum computing (QIP = PSPACE)
 - derandomization (pessimistic estimators, ...)
 - online optimization

— ...

procedure FindEquilibrium (M, δ)

input: An $m \times n$ matrix M and desired error δ . Assume $M_{i,j} \in [-1, 1] \ \forall i, j$. **output:** Distributions $\hat{x} \in \mathbb{R}^m$ and $\hat{y} \in \mathbb{R}^n$ satisfying

$$\min_{y} \hat{x}^{\mathsf{T}} M y \geq v - \delta \quad \text{and} \quad \max_{x} x^{\mathsf{T}} M \hat{y} \leq v + \delta,$$

where v is the value of the game.

Set $\epsilon = \delta/3$ and $T = (\ln m)/\epsilon^2$

Set $w_i^{(1)} = 1$ for every i = 1, ..., m

For t = 1, ..., T

Set $x^{(t)} = w^{(t)} / \sum_{i=1}^{m} w_i^{(t)}$

Let $j^{(t)}$ be a value of j minimizing $(x^{(t)}M)_j$

Let $y^{(t)}$ be the vector with 1 in coordinate $j^{(t)}$ and other coordinates 0

Set

$$w_i^{(t+1)} = \begin{cases} w_i^{(t)} \cdot (1+\epsilon)^{M_{i,j}(t)} & \text{(if } M_{i,j}(t) \ge 0) \\ w_i^{(t)} \cdot (1-\epsilon)^{-M_{i,j}(t)} & \text{(if } M_{i,j}(t) < 0) \end{cases}$$

Set $\hat{x} = \sum_{t=1}^{T} x^{(t)}/T$ and $\hat{y} = \sum_{t=1}^{T} y^{(t)}/T$ Return \hat{x} and \hat{y}