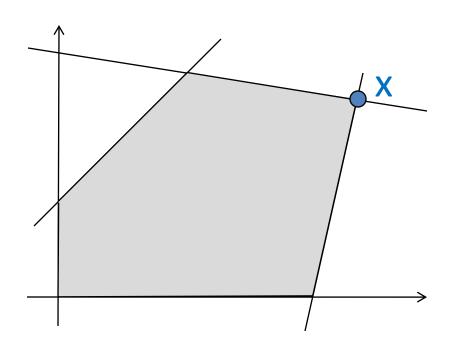
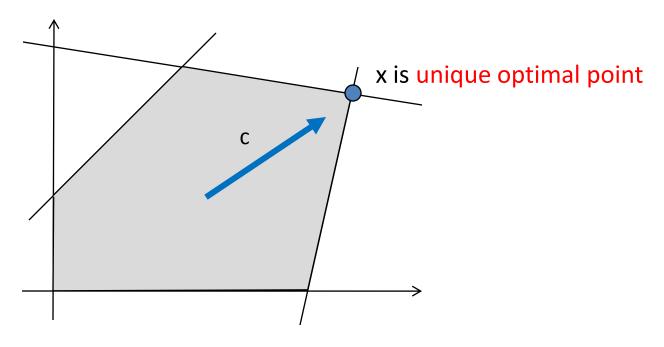
C&O 355 Mathematical Programming Fall 2010 Lecture 10

N. Harvey

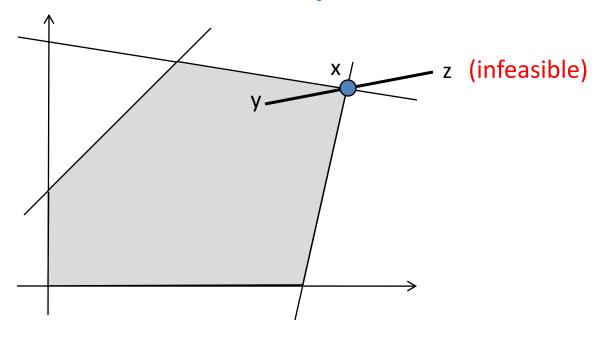
- How should we define corner points?
- Under any reasonable definition, point x should be considered a corner point



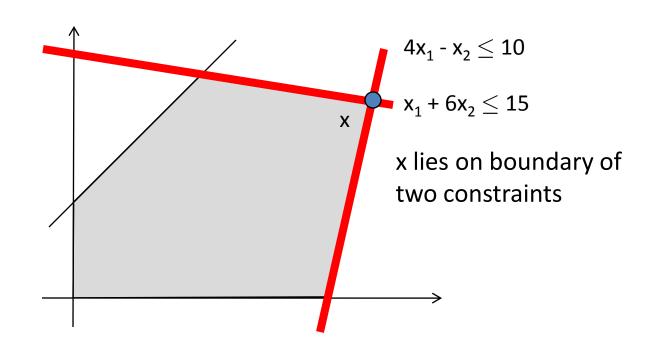
- Attempt #1: "x is the 'farthest point' in some direction"
- Let P = { feasible region }
- There exists $c \in \mathbb{R}^n$ s.t. $c^T x > c^T y$ for all $y \in P \setminus \{x\}$
- "For some objective function, x is the unique optimal point when maximizing over P"
- Such a point x is called a "vertex"



- Attempt #2: "There is no feasible line-segment that goes through x in both directions"
- Whenever $x=\alpha y+(1-\alpha)z$ with $y,z\neq x$ and $\alpha\in(0,1)$, then either y or z must be infeasible.
- "If you write x as a convex combination of two feasible points y and z, the only possibility is x=y=z"
- Such a point x is called an "extreme point"

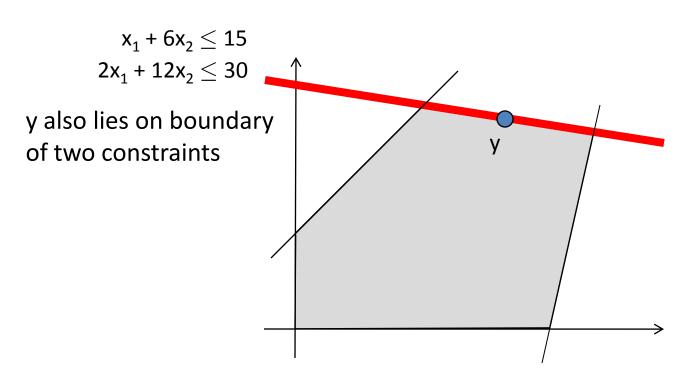


Attempt #3: "x lies on the boundary of many constraints"

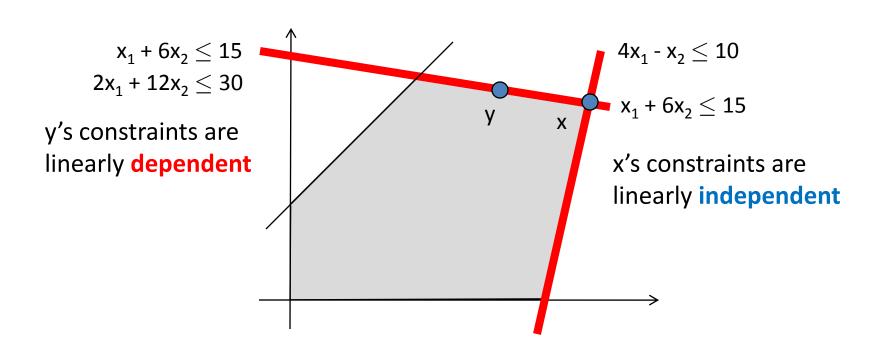


- Attempt #3: "x lies on the boundary of many constraints"
- What if I introduce **redundant** constraints?

Not the right condition



- Revised Attempt #3: "x lies on the boundary of many linearly independent constraints"
- Feasible region: $P = \{ x : a_i^T x \le b_i \forall i \} \subset \mathbb{R}^n$
- Let $\mathcal{I}_x = \{ i : a_i^T x = b_i \}$ and $\mathcal{A}_x = \{ a_i : i \in \mathcal{I}_x \}$. ("Tight constraints")
- x is a "basic feasible solution (BFS)" if rank $A_x = n$



Lemma: Let P be a polyhedron. The following are equivalent.

i. x is a vertex (unique maximizer)

ii. x is an extreme point (not convex combination of other points)

iii. x is a basic feasible solution (BFS) (tight constraints have rank n)

Proof of (i) \Rightarrow (ii):

x is a vertex $\Rightarrow \exists$ c s.t. x is unique maximizer of c^Tx over P Suppose x = α y + (1- α)z where y,z \in P and $\alpha\in$ (0,1).

Suppose y≠x. Then

$$c^{T}x = \alpha c^{T}y + (1-\alpha)c^{T}z$$

$$\leq c^{T}x \quad \text{(since } c^{T}x \text{ is optimal value)}$$

$$\leq c^{T}x \quad \text{(since } x \text{ is } \textbf{unique } \text{optimizer)}$$

$$\Rightarrow$$
 c^Tx < α c^Tx + (1- α) c^Tx = c^T x Contradiction!

So y=x. Symmetrically, z=x.

So x is an extreme point of P. ■

Lemma: Let $P=\{x: a_i^Tx \le b_i \ \forall i \ \} \subset \mathbb{R}^n$. The following are equivalent.

i. x is a vertex

(unique maximizer)

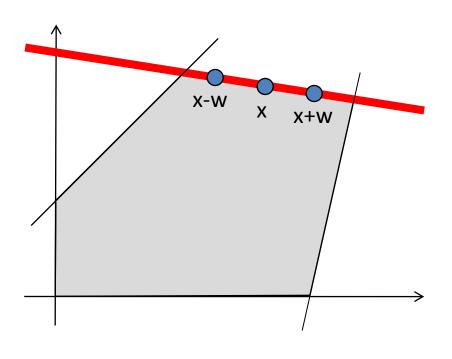
ii. x is an extreme point

(not convex combination of other points)

iii. x is a basic feasible solution (BFS) (tight constraints have rank n)

Proof Idea of (ii) \Rightarrow (iii):

x **not** a BFS \Rightarrow rank $\mathcal{A}_{\mathsf{x}} \leq$ n-1



- Each tight constraint removes one degree of freedom
- At least one degree of freedom remains
- So x can "wiggle" while staying on all the tight constraints
- Then x is a convex combination of two points obtained by "wiggling".
- So x is not an extreme point.

Lemma: Let $P=\{x: a_i^Tx \le b_i \ \forall i \} \subset \mathbb{R}^n$. The following are equivalent. i. x is a vertex (unique maximizer) ii. x is an extreme point (not convex combination of other points) iii. x is a basic feasible solution (BFS) (tight constraints have rank n) **Proof** of (ii) \Rightarrow (iii): x **not** a BFS \Rightarrow rank \mathcal{A}_x <n (Recall $\mathcal{A}_x = \{a_i : a_i^Tx = b_i\}$) **Claim:** $\exists w \in \mathbb{R}^n$, $w \ne 0$, s.t. $a_i^Tw = 0 \ \forall a_i \in \mathcal{A}_x$ (w orthogonal to all of \mathcal{A}_x) **Proof**: Let M be matrix whose rows are the a_i 's in \mathcal{A}_x .

Proof: Let M be matrix whose rows are the a_i 's in A_x . dim row-space(M) + dim null-space(M) = n But dim row-space(M)<n $\Rightarrow \exists w \neq 0$ in the null space. \square **Lemma**: Let $P=\{x: a_i^Tx \le b_i \forall i \} \subset \mathbb{R}^n$. The following are equivalent.

i. x is a vertex (unic

(unique maximizer)

ii. x is an extreme point (not convex combination of other points)

iii. x is a basic feasible solution (BFS) (tight constraints have rank n)

Proof of (ii) \Rightarrow (iii): x not a BFS \Rightarrow rank \mathcal{A}_x <n (Recall $\mathcal{A}_x = \{ a_i : a_i^T x = b_i \}$)

Claim: $\exists w \in \mathbb{R}^n$, $w \neq 0$, s.t. $a_i^T w = 0 \ \forall a_i \in \mathcal{A}_x$ (w orthogonal to all of \mathcal{A}_x)

Let $y=x+\epsilon w$ and $z=x-\epsilon w$, where $\epsilon>0$.

Claim: If ϵ very small then y,z \in P.

Proof: First consider tight constraints at x. (i.e., those in \mathcal{I}_x)

$$a_i^T y = a_i^T x + \epsilon a_i^T w = b_i + 0$$

So y satisfies this constraint. Similarly for z.

Next consider the loose constraints at x.

(i.e., those not in \mathcal{I}_{x})

$$b_i - a_i^T y = b_i - a_i^T x - \epsilon a_i^T w \ge 0$$
Positive As small as we like

So y satisfies these constraints. Similarly for z. \Box

Then $x=\alpha y+(1-\alpha)z$, where $y,z\in P$, $y,z\neq x$, and $\alpha=1/2$.

So x is **not** an extreme point. ■

Lemma: Let $P=\{x: a_i^Tx \le b_i \forall i \} \subset \mathbb{R}^n$. The following are equivalent.

i. x is a vertex

(unique maximizer)

ii. x is an extreme point (not convex combination of other points)

iii. x is a basic feasible solution (BFS) (tight constraints have rank n)

Proof of (iii) \Rightarrow (i): Let x be a BFS \Rightarrow rank $\mathcal{A}_{\mathbf{y}} = \mathbf{n}$ (Recall $\mathcal{A}_{\mathbf{x}} = \{ \mathbf{a}_i : \mathbf{a}_i^\mathsf{T} \mathbf{x} = \mathbf{b}_i \}$)

Let $c = \sum_{i \in \mathcal{I}_x} a_i$.

Claim: $c^Tx = \sum_{i \in \mathcal{I}_x} b_i$

Proof: $c^Tx = \sum_{i \in \mathcal{I}_x} a_i^Tx = \sum_{i \in \mathcal{I}_x} b_i$.

Claim: x is an optimal point of max $\{c^Tx : x \in P\}$.

Proof: $y \in P \Rightarrow a_i^T y \leq b_i$ for all i

 $\Rightarrow c^{\mathsf{T}}y = \Sigma_{i \in \mathcal{I}_{\mathsf{X}}} a_i^{\mathsf{T}}y \leq \Sigma_{i \in \mathcal{I}_{\mathsf{X}}} b_i^{\mathsf{T}} = c^{\mathsf{T}}x. \square$

If one of these is strict, then this is strict.

Claim: x is the unique optimal point of max $\{c^Tx : x \in P\}$.

Proof: If for any $i \in \mathcal{I}_x$ we have $a_i^T y < b_i$ then $c^T y < c^T x$.

So every optimal point y has $a_i^Ty=b_i$ for all $i\in\mathcal{I}_x$.

Since rank A_x =n, there is only one solution: y=x! \square

So x is a vertex.

Lemma: Let $P=\{x: a_i^Tx \le b_i \forall i \} \subset \mathbb{R}^n$. The following are equivalent.

- i. x is a vertex (unique maximizer)
- ii. x is an extreme point (not convex combination of other points)
- iii. x is a basic feasible solution (BFS) (tight constraints have rank n)

Interesting Corollary

Corollary: Any polyhedron has finitely many extreme points.

Proof: Suppose the polyhedron is defined by m inequalities.

Each extreme point is a BFS, so it corresponds to a choice of n linearly independent tight constraints.

There are $\leq {m \choose n}$ ways to choose these tight constraints.

Optimal solutions at extreme points

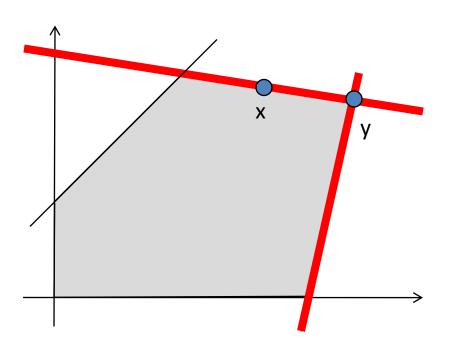
Definition: A line is a set L={ $r+\lambda s : \lambda \in \mathbb{R}$ } where $r,s \in \mathbb{R}^n$ and $s \neq 0$.

Lemma: Let $P=\{x: a_i^Tx \le b_i \forall i \}$. Suppose P does not contain any line.

Suppose the LP max $\{c^Tx : x \in P\}$ has an optimal solution.

Then some extreme point is an optimal solution.

Proof Idea: Let x be optimal. Suppose x not a BFS.



- At least one degree of freedom remains at x
- So x can "wiggle" while staying on all the tight constraints
- x cannot wiggle off to infinity in both directions because P contains no line
- So when x wiggles, it hits a constraint
- When it hits first constraint, it is still feasible.
- So we have found a point y which has a new tight constraint.
- Repeat until we get a BFS.

Lemma: Let $P=\{x: a_i^Tx \le b_i \forall i \}$. Suppose P does not contain any line.

Suppose the LP max $\{c^Tx : x \in P\}$ has an optimal solution.

Then some extreme point is an optimal solution.

Proof: Let x be optimal, with maximal number of tight constraints. Suppose x not a BFS.

Claim: $\exists w \in \mathbb{R}^n$, $w \neq 0$, s.t. $a_i^T w = 0 \ \forall i \in \mathcal{I}_x$

(We saw this before)

Let $y(\epsilon)=x+\epsilon w$. Suppose $c^Tw=0$.

Claim: $\exists \delta$ s.t. $y(\delta) \notin P$. WLOG $\delta > 0$.

(Otherwise P contains a line)

Set δ =0 and gradually increase δ . What is largest δ s.t. $y(\delta) \in P$?

$$\begin{split} y(\delta) &\in P \iff a_i^T y(\delta) \leq b_i \ \, \forall i \\ &\Leftrightarrow a_i^T x + \delta a_i^T w \leq b_i \ \, \forall i \\ &\Leftrightarrow \delta \leq (b_i^- a_i^T x) / a_i^T w \ \, \forall i \text{ s.t. } a_i^T w > 0 \end{split}$$
 (Always satisfied if $a_i^T w \leq 0$)

Let h be the i that minimizes this. So $\delta = (b_h - a_h^T x)/a_h^T w$.

 $y(\delta)$ is also optimal because $c^{T}y(\delta) = c^{T}(x+\delta w) = c^{T}x$.

But $y(\delta)$ has one more tight constraint than x. Contradiction!

Lemma: Let $P=\{x: a_i^Tx \le b_i \forall i \}$. Suppose P does not contain any line.

Suppose the LP max $\{c^Tx : x \in P\}$ has an optimal solution.

Then some extreme point is an optimal solution.

Proof: Let x be optimal, with maximal number of tight constraints.

Suppose x not a BFS.

Claim: $\exists w \in \mathbb{R}^n$, $w \neq 0$, s.t. $a_i^T w = 0 \ \forall i \in \mathcal{I}_x$

(We saw this before)

Let $y(\epsilon)=x+\epsilon w$. Suppose $c^Tw > 0$.

Claim: $\exists \delta > 0$ s.t. $y(\delta) \in P$.

(Same argument as before)

But then $c^Ty(\delta) = c^T(x+\delta w) > c^Tx$.

This contradicts optimality of x.

Lemma: Let $P=\{x: a_i^Tx \le b_i \ \forall i \}$. Suppose P does not contain any line. Suppose the LP max $\{c^Tx: x \in P\}$ has an optimal solution. Then some extreme point is an optimal solution.

Interesting Consequence

A simple but finite algorithm for solving LPs

Input: An LP max { $c^Tx : x \in P$ } where $P = \{ x : a_i^Tx \le b_i \forall i = 1...m \}$.

Caveat: We assume P contains no line, and the LP has an optimal solution.

Output: An optimal solution.

For every choice of n of the constraints

If these constraints are linearly independent

Find the unique point x for which these constraints are tight If x is feasible, add it to a list of all extreme points.

End

End

Output the extreme point that maximizes c^Tx

Dimension of Sets

 Def: An affine space A is a set A = { x+z : x∈L }, where L is a linear space and z is any vector.
 The dimension of A is dim L.

- Let's say dim \emptyset = -1.
- **Def:** Let $C \subseteq \mathbb{R}^n$ be arbitrary. The **dimension** of C is min { dim A : A is an affine space with $C \subseteq A$ }.

Faces

- **Def:** Let $C \subseteq \mathbb{R}^n$ be any convex set. A halfspace $H = \{x : a^Tx \le b \}$ is called **valid** if $C \subseteq H$.
- **Def:** Let $P \subseteq \mathbb{R}^n$ be a polyhedron. A **face** of P is a set $F = P \cap \{x : a^Tx = b\}$ where $H = \{x : a^Tx \le b\}$ is a valid halfspace.
- Clearly every face of P is also a polyhedron.
- Claim: P is a face of P.
- Proof: Take a=0 and b=0.
- Claim: \emptyset is a face of P.
- **Proof:** Take a=0 and b=1.

k-Faces

• **Def:** Let $P \subseteq \mathbb{R}^n$ be a polyhedron. A **face** of P is a set $F = P \cap \{x : a^Tx = b\}$ where $H = \{x : a^Tx \le b\}$ is a valid halfspace.

- **Def:** A face F with dim F = k is called a **k-face**.
- Suppose dim P = d
 - A (d-1)-face is called a facet.
 - A (d-2)-face is called a ridge.
 - A 1-face is called an edge.
 - − A 0-face F has the form $F = \{v\}$ where $v \in P$.
- Claim: If F={v} is a 0-face then v is a vertex of P.

k-Faces

• **Def:** Let $P \subseteq \mathbb{R}^n$ be a polyhedron. A **face** of P is a set $F = P \cap \{x : a^Tx = b\}$ where $H = \{x : a^Tx \le b\}$ is a valid halfspace.

• **Def:** A face F with dim F = k is called a **k-face**.

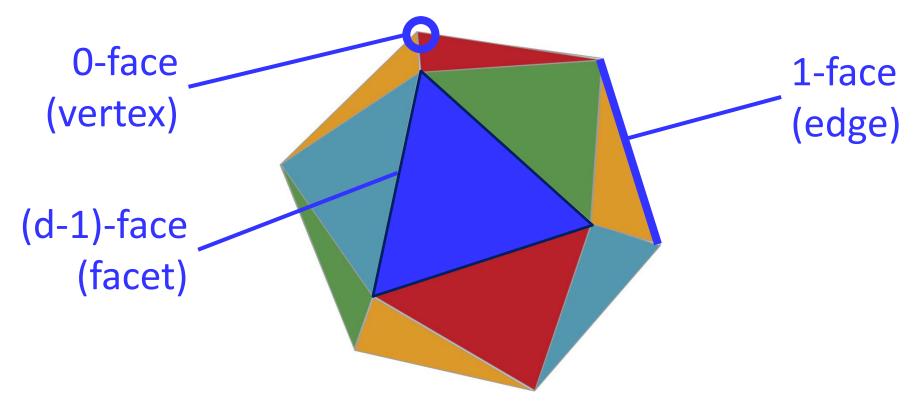


Image: http://torantula.blogspot.com/

The Simplex Method

• "The obvious idea of moving along edges from one vertex of a convex polygon to the next" [Dantzig, 1963]

```
Algorithm
Let x be any vertex
                                          (we assume LP is feasible)
For each edge containing x
   If moving along the edge increases the objective function
        If the edge is infinitely long,
             Halt: LP is unbounded
        Else
             Set x to be other vertex in the edge
             Restart loop
Halt: x is optimal
```

- In practice, very efficient.
- In theory, very hard to analyze.
- How many edges must we traverse in the worst case?

Why is analyzing the simplex method hard?

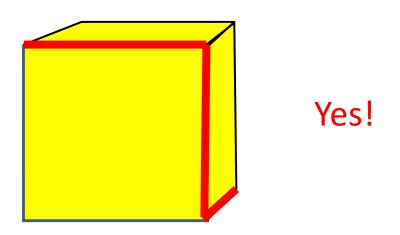
- For any polyhedron, and for any two vertices, are they connected by a path of few edges?
- The Hirsch Conjecture (1957)
 Let P = { x : Ax≤b } where A has size m x n. Then any two vertices are connected by a path of < m-n edges.

Example: A cube.

Dimension n=3.

constraints m=6.

Connected by a length-3 path?



Why is analyzing the simplex method hard?

- For any polyhedron, and for any two vertices, are they connected by a path of few edges?
- The Hirsch Conjecture (1957)
 Let P = { x : Ax≤b } where A has size m x n. Then any two vertices are connected by a path of ≤ m-n edges.
- We have no idea how to prove this.
- **Disproved!** There is a polytope with n=43, m=86, and two vertices with no path of length \leq 43 [Santos, 2010].
- Theorem: [Kalai-Kleitman 1992] There is always a path with $\leq m^{\log n+2}$ edges.
- Think you can do better? A group of (very eminent)
 mathematicians have a blog organizing a massively
 collaborative project to do just that.