C&O 355 Lecture 20

N. Harvey

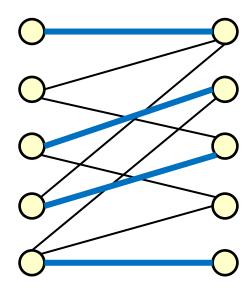
Topics

- Vertex Covers
- Konig's Theorem
- Hall's Theorem
- Minimum s-t Cuts

Maximum Bipartite Matching

- Let G=(V, E) be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

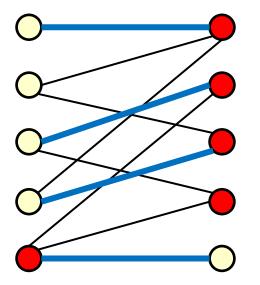
Blue edges are a maximum-size matching M



Vertex covers

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Proof: Every edge in M has at least one endpoint in C.
 Since M is a matching, its edges have distinct endpoints.
 So C must contain at least |M| vertices.

Blue edges are a maximum-size matching M



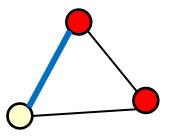
Red vertices form a vertex cover C

Vertex covers

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Proof: Every edge in M has at least one endpoint in C.
 Since M is a matching, its edges have distinct endpoints.
 So C must contain at least |M| vertices.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M must be a maximum cardinality matching: every other matching M' satisfies $|M'| \le |C| = |M|$.
- And C must be a minimum cardinality vertex cover: every other vertex cover C' satisfies |C'| ≥ |M| = |C|.
- Then M certifies optimality of C and vice-versa.

Vertex covers & matchings

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No...



Maximum size of a matching = 1

Minimum size of a vertex cover = 2

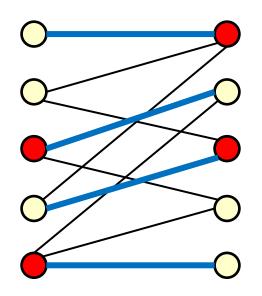
Vertex covers & matchings

- Let G=(V, E) be a graph.
- A set C⊆V is called a vertex cover if every edge e∈E has at least one endpoint in C.
- Claim: If M is a matching and C is a vertex cover then $|M| \le |C|$.
- Suppose we find a matching M and vertex cover C s.t. |M| = |C|.
- Then M certifies optimality of C and vice-versa.
- Do such M and C always exist?
- No... unless G is bipartite!
- **Theorem** (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. |M| = |C|.

Earlier Example

- Let G=(V, E) be a bipartite graph.
- We're interested in maximum size matchings.
- How do I know M has maximum size? Is there a 5-edge matching?
- Is there a certificate that a matching has maximum size?

Blue edges are a maximum-size matching M



Red vertices form a vertex cover C

Since | M | = | C | = 4, both M and C are optimal!

LPs for Bipartite Matching

- Let G=(V, E) be a bipartite graph.
- Recall our IP and LP formulations for maximum-size matching.

(IP)
$$\begin{aligned} &\max & \sum_{e \in E} x_e \\ &\mathrm{s.t.} & \sum_{e \text{ incident to } v} x_e & \leq 1 & \forall v \in V \\ &x_e & \in \{0,1\} & \forall e \in E \end{aligned}$$
 (LP)
$$\begin{aligned} &\max & \sum_{e \in E} x_e \\ &\mathrm{s.t.} & \sum_{e \text{ incident to } v} x_e & \leq 1 & \forall v \in V \\ &x_e & > 0 & \forall e \in E \end{aligned}$$

- Theorem: Every BFS of (LP) is actually an (IP) solution.
- What is the dual of (LP)?

(LP-Dual)
$$\min_{s.t.} \sum_{v \in V} y_v$$

$$s.t. \quad y_u + y_v \geq 1 \qquad \forall \{u, v\} \in E$$

$$y_v \geq 0 \qquad \forall v \in V$$

Dual of Bipartite Matching LP

What is the dual LP?

(LP-Dual)
$$\min_{\substack{v \in V \ y_v \\ \text{s.t.}}} \frac{\sum_{v \in V} y_v}{y_v} \\ y_u + y_v \geq 1 \qquad \forall \{u,v\} \in E$$

- Note that any optimal solution must satisfy $y_v \le 1 \ \forall v \in V$
- Suppose we impose integrality constraints:

(IP-Dual)
$$\min_{v \in V} \sum_{v \in V} y_v$$

$$\mathrm{s.t.} \quad y_u + y_v \geq 1 \qquad \forall \{u,v\} \in E$$

$$y_v \in \{0,1\} \qquad \forall v \in V$$

- Claim: If y is feasible for IP-dual then $C = \{ v : y_v = 1 \}$ is a vertex cover. Furthermore, the objective value is |C|.
- So IP-Dual is precisely the minimum vertex cover problem.
- Theorem: Every optimal BFS of (LP-Dual) is an (IP-Dual) solution.

• Let $G=(U\cup V, E)$ be a bipartite graph. Define A by

$$A_{v,e} = \begin{cases} 1 & \text{if vertex v is an endpoint of edge e} \\ 0 & \text{otherwise} \end{cases}$$

- **Lemma:** A is TUM.
- Claim: If A is TUM then A^T is TUM.
- **Proof:** Exercise on Assignment 5.
- Corollary: Every BFS of $P = \{x : A^T y \ge 1, y \ge 0\}$ is integral.
- But LP-Dual is

min
$$\sum_{v \in V} y_v$$

s.t. $y_u + y_v \ge 1$ $\forall \{u, v\} \in E$ = s.t. $A^\mathsf{T} y \ge \mathbf{1}$
 $y_v \ge 0$ $\forall v \in V$ $y \ge 0$

- So our Corollary implies every BFS of LP-dual is integral
- Every optimal solution must have $y_v \le 1 \ \forall v \in V$ \Rightarrow every optimal BFS has $y_v \in \{0,1\} \ \forall v \in V$, and hence it is a feasible solution for IP-Dual.

Proof of Konig's Theorem

Theorem (Konig's Theorem): If G is bipartite then there exists a matching M and a vertex cover C s.t. |M|=|C|.

Proof:

Let x be an optimal BFS for (LP).

Let y be an optimal BFS for (LP-Dual).

Let M = $\{ e : x_e = 1 \}$.

M is a matching with |M| = objective value of x. (By earlier theorem)

Let $C = \{ v : y_v = 1 \}.$

C is a vertex cover with |C| = objective value of y. (By earlier theorem)

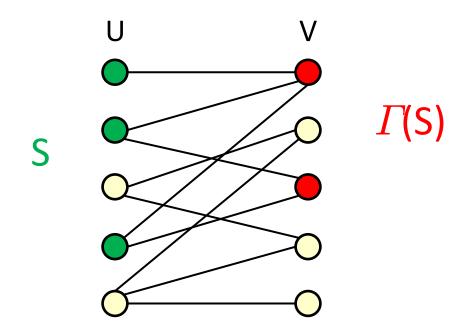
By Strong LP Duality:

|M| = LP optimal value = LP-Dual optimal value = |C|.

Hall's Theorem

- Let $G=(U\cup V, E)$ be a bipartite graph.
- Notation: For $S\subseteq U$, $\Gamma(S)=\{v:\exists u\in S \text{ s.t. } (u,v)\in E\}$
- **Theorem**: There exists a matching covering all vertices in U $\Leftrightarrow |\Gamma(S)| \ge |S| \ \forall S \subseteq U$.
- **Proof:** \Rightarrow : This is the easy direction.

If $|\Gamma(S)| < |S|$ then there can be no matching covering S.



- **Theorem**: There exists a matching covering all vertices in U $\Leftrightarrow |\Gamma(S)| \ge |S| \ \forall S \subseteq U$.
- **Proof:** \Leftarrow : Suppose $|\Gamma(S)| \ge |S| \ \forall S \subseteq U$.
- Claim: Every vertex cover C has $|C| \ge |U|$.
- Then Konig's Theorem implies there is a matching of size $\geq |U|$; this matching obviously covers all of U.

Proof of Claim:

Suppose C is a vertex cover with $|C \cap U| = k$ and $|C \cap V| < |U| - k$.

Consider the set $S = U \setminus C$.

Then $|\Gamma(S)| \ge |S| = |U|-k > |C \cap V|$.

So there must be a vertex v in $\Gamma(S) \setminus (C \cap V)$.

There is an edge $\{s,v\}$ with $s \in S$.

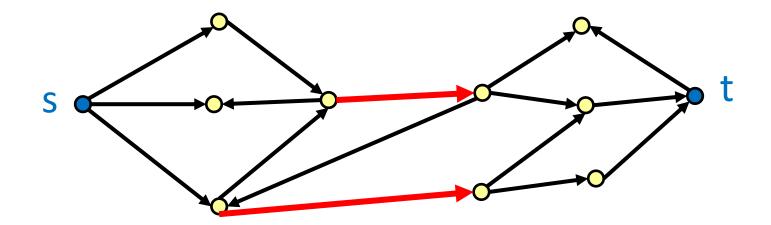
(since $v \in \Gamma(S)$)

But $s \notin C$ and $v \notin C$, so $\{s,v\}$ is not covered by C.

This contradicts C being a vertex cover.

Minimum s-t Cuts

- Let G=(V,A) be a digraph. Fix two vertices $s,t \in V$.
- An s-t cut is a set $F\subseteq A$ s.t. no s-t dipath in $G\setminus F=(V,A\setminus F)$



These edges are a **minimum** s-t cut

Minimum s-t Cuts

- Let G=(V,A) be a digraph. Fix two vertices s,t∈V.
- An s-t cut is a set $F\subseteq A$ s.t. no s-t dipath in $G\setminus F=(V,A\setminus F)$
- Make variable $y_a \forall a \in A$. Let \mathcal{P} be set of all s-t dipaths.

(IP)
$$\sup_{a \in A} y_a$$

 $\lim_{a \in A} \sum_{a \in P} y_a \ge 1$ $\forall p \in \mathcal{P}$
 $y_a \in \{0, 1\}$ $\forall a \in A$
(LP) $\sup_{a \in A} y_a$
 $\lim_{a \in P} \sum_{a \in P} y_a \ge 1$ $\forall p \in \mathcal{P}$
 $\lim_{a \in P} y_a \ge 0$ $\forall a \in A$

Delbert Ray Fulkerson

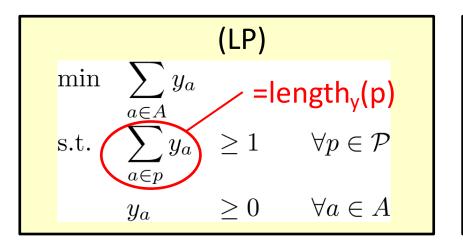
This proves half of the famous max-flow min-cut theorem, due to [Ford & Fulkerson, 1956].

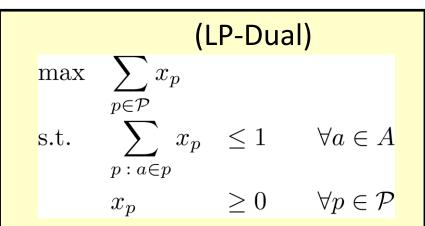
Theorem: (Fulkerson 1970)

There is an optimal solution to (LP) that is feasible for (IP)

Theorem: There is an optimal solution to (LP) that is feasible for (IP)

(Fulkerson's Proof is much more general and sophisticated than ours.)





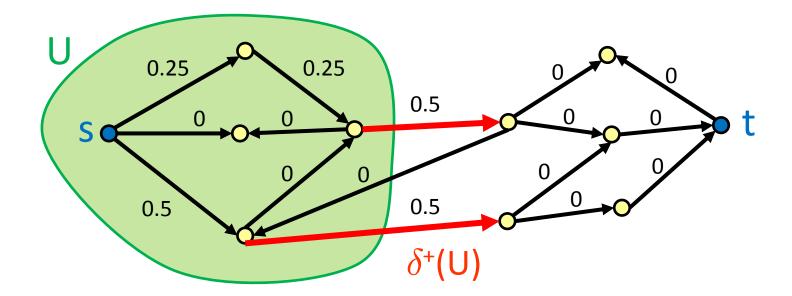
- We can think of y_a as the "length" of arc a
- Notation: length_y(p) = total length of path p dist_y(u,v) = shortest-path distance from u to v

For any
$$U\subseteq V$$
: $\delta^+(U)=\{(u,v)\in A:u\in U,v\not\in U\}$ $\delta^-(U)=\{(v,u)\in A:u\in U,v\not\in U\}$

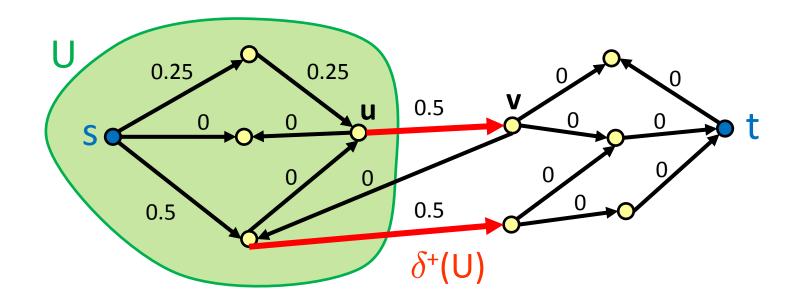
• **Theorem:** Let y be optimal for (LP). Let $U = \{ u : dist_v(s,u) < 1 \}$. Then $\delta^+(U)$ is also optimal for (LP).

Note:

- $s \in U$, since $dist_v(s,s) = 0$.
- $t \notin U$, since length_y(p) ≥ 1 for every s-t path p \Rightarrow dist_y(s,t) ≥ 1
- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- **Proof:** Every path $p \in \mathcal{P}$ starts at $s \in U$ and ends at $t \notin U$. So some arc of p must be in $\delta^+(U)$.

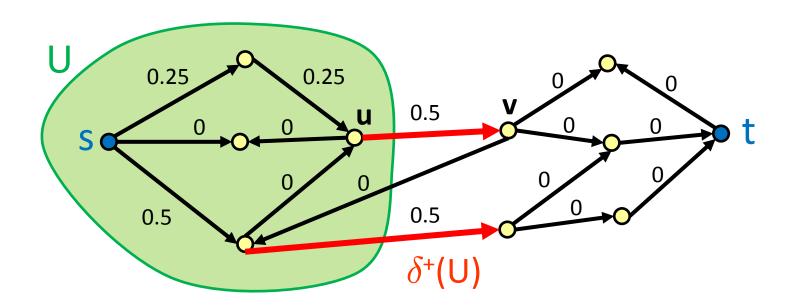


- **Theorem:** Let y be optimal for (LP). Let U = { u : dist_v(s,u)<1 }. Then δ ⁺(U) is also optimal for (LP).
- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- Let x be optimal for (LP-Dual).
- Claim 2: For every $(u,v) \in \delta^+(U)$, we have $y_{(u,v)} > 0$ and $\sum_{p:(u,v) \in p} x_p = 1$.
- **Proof:** $1 \le \text{dist}_{y}(s,v) \le \underbrace{\text{dist}_{y}(s,u)}_{<1} + y_{(u,v)}.$ This implies $y_{(u,v)} > 0$ since $v \notin U$ triangle inequality

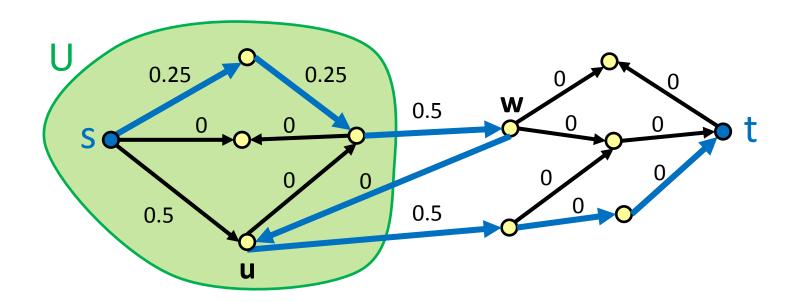


- **Theorem:** Let y be optimal for (LP). Let U = { u : dist_v(s,u)<1 }. Then δ ⁺(U) is also optimal for (LP).
- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- Let x be optimal for (LP-Dual).
- Claim 2: For every $(u,v) \in \delta^+(U)$, we have $y_{(u,v)} > 0$ and $\sum_{p:(u,v) \in p} x_p = 1$.
- **Proof:** $1 \leq dist_y(s,v) \leq dist_y(s,u) + y_{(u,v)}$.

Since $y_{(u,v)}>0$, complementary slackness implies $\sum_{p:(u,v)\in p} x_p=1$.

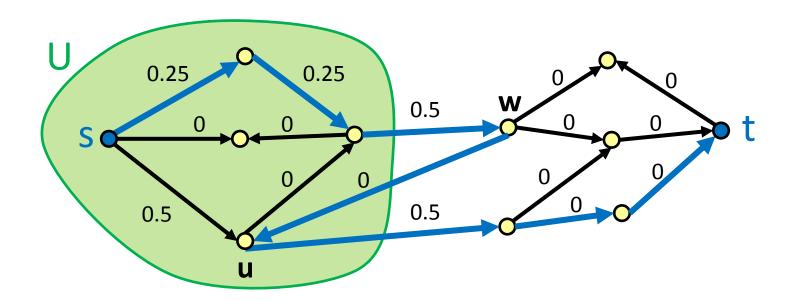


- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- Claim 2: For every (u,v) $\in \delta^+(U)$, we have $y_{(u,v)} > 0$ and $\sum_{p:(u,v) \in p} x_p = 1$.
- Claim 3: Every path $p \in \mathcal{P}$ with $x_p > 0$ has $|p \cap \delta^+(U)| = 1$.
- **Proof:** Consider a path p s.t. $|p \cap \delta^+(U)| \ge 2$. (i.e., p leaves U at least twice) Let (w,u) be any arc in p that re-enters U, i.e., (w,u) $\in p \cap \delta^-(U)$. length_y(p) \ge dist_y(s,w) + y_(w,u) + dist_y(u,t) > 1



- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- Claim 2: For every (u,v) $\in \delta^+(U)$, we have $y_{(u,v)}>0$ and $\sum_{p:(u,v)\in p} x_p=1$.
- Claim 3: Every path $p \in \mathcal{P}$ with $x_p > 0$ has $|p \cap \delta^+(U)| = 1$.
- **Proof:** Consider a path p s.t. $|p \cap \delta^+(U)| \ge 2$. (i.e., p leaves U at least twice) Let (w,u) be any arc in p that re-enters U, i.e., (w,u) $\in p \cap \delta^-(U)$. length_y(p) \ge dist_y(s,w) + y_(w,u) + dist_y(u,t) > 1 So pth constraint of (LP) is **not tight**.

So complementary slackness implies that $x_p=0$.



- Claim 1: For every path $p \in \mathcal{P}$, $|p \cap \delta^+(U)| \ge 1$.
- Claim 2: For every (u,v) $\in \delta^+(U)$, we have $y_{(u,v)}>0$ and $\sum x_p=1$.
- Claim 3: Every path $p \in \mathcal{P}$ with $x_p > 0$ has $|p \cap \delta^+(U)| = 1$.

Define the vector z by $z_{(u,v)}=1$ if $(u,v)\in\delta^+(U)$ and $z_{(u,v)}=0$ otherwise. Note that z is feasible for (LP) and (IP). (by Claim 1)

The LP objective value at z is:

he LP objective value at z is: by Claim 2
$$\sum_{(u,v)\in A} z_{(u,v)} = \sum_{(u,v)\in \delta^+(U)} 1 = \sum_{(u,v)\in \delta^+(U)} \sum_{p:(u,v)\in p} x_p$$

$$= \sum_{p} \sum_{(u,v)\in p\cap \delta^+(U)} x_p = \sum_{p} x_p \cdot |p\cap \delta^+(U)|$$
 by Claim 3
$$= \sum_{p} x_p = \text{Optimal value of (LP-Dual)}$$

So z is optimal for (LP).