- **Q1.** Let $V \in \operatorname{Irr}_{\mathbb{C}}(G)$ and set $n = \dim_{\mathbb{C}}(V)$. The exercises below give a proof of Proposition 26.22.
 - (a) Show that $\dim_{\mathbb{R}} \operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}}) = \dim_{\mathbb{C}} \operatorname{End}_{\mathbb{C}G}(V \oplus \overline{V})$.
 - (b) Assume V cannot be defined over \mathbb{R} . Show that $V_{\mathbb{R}}$ must be irreducible. [Hint: Go for a contradiction and consider $(V_{\mathbb{R}})_{\mathbb{C}}$.]
 - (c) Assume χ_V is not real-valued.
 - (i) Show that $\dim_{\mathbb{R}} \operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}}) = 2$ hence deduce that $\operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}}) \cong \mathbb{C}$. [Hint: Lemma 23.8. For the last bit, note that $\operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}})$ contains a copy of \mathbb{C} since V is a \mathbb{C} -vector space.]
 - (ii) Explain why $V_{\mathbb{R}}$ is irreducible and show that the corresponding component in the Wedderburn decomposition of $\mathbb{R}G$ is $M_n(\mathbb{C})$.
 - (d) Assume χ_V is real-valued.
 - (i) Show that $\dim_{\mathbb{R}} \operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}}) = 4$. [Hint: Lemma 23.6.]
 - (ii) Assume that V can be defined over \mathbb{R} ; say $V = W_{\mathbb{C}}$ with $W \in \operatorname{Irr}_{\mathbb{R}}(G)$. Show that $\operatorname{End}_{\mathbb{R}G}(W) = \mathbb{R}$ and that the corresponding Wedderburn component in $\mathbb{R}G$ is $M_n(\mathbb{R})$. [Hint: Consider $\mathbb{C} \otimes \operatorname{End}_{\mathbb{R}G}(W)$.]
 - (iii) Assume that V cannot be defined over \mathbb{R} . By part (b), $V_{\mathbb{R}}$ is irreducible. Show that $\operatorname{End}_{\mathbb{R}G}(V_{\mathbb{R}}) = \mathbb{H}$ and that the corresponding Wedderburn component is $M_{\frac{n}{2}}(\mathbb{H})$. [Hint: Frobenius.]
- **Q2.** (a) Determine the Wedderburn decompositions of $\mathbb{C}A_4$, $\mathbb{C}A_5$, $\mathbb{R}A_4$ and $\mathbb{R}A_5$. [You are free to look up the character table of A_4 . It appears in Q2a of Sample Test 2.]
 - (b) Give a list of all semisimple \mathbb{R} -algebras of dimension 4 (up to isomorphism). For each algebra A in your list, either find a finite group G such that $\mathbb{R}G \cong A$ or else prove that no such group exists.
 - (c) Same problem as (b) but over \mathbb{C} and of dimension 10.

[Note: For (b) and (c) give an individual reason for why A cannot be a group ring. Do not argue along the lines of "The only groups of order N are (...), and their groups rings are (...)."]

- **Q3.** Let $H \leq G$ and suppose that χ_1, \ldots, χ_k are the irreducible characters of G. Let ψ be an irreducible character of H. Show that if $\operatorname{Ind}_H^G \psi = \sum_{i=1}^k d_i \chi_i$ then $\sum_{i=1}^k d_i^2 \leq (G:H)$.
- **Q4.** Let $G = S_4$ and $H = \langle (1\ 2), (3\ 4) \rangle \cong S_2 \times S_2$. Let ψ be the trivial character of H.
 - (a) Calculate $\langle \operatorname{Ind}_H^G \psi, \chi \rangle$ for $\chi \in \{\chi_{\operatorname{triv}}, \chi_{\operatorname{sgn}}, \chi_{\operatorname{std}}\}.$
 - (b) Determine the isotypic decomposition of $\operatorname{Ind}_H^G(\operatorname{triv})$.
- **Q5.** (Bonus) Give a "direct" (i.e. no FS indicators, etc.) argument that proves that the two-dimensional complex irrep of Q_8 cannot be defined over \mathbb{R} .