Q1. For $a, b \in \mathbb{R}^{\times}$, define the generalized quaternion algebra $\mathbb{H}_{a,b}$ to be the 4-dimensional \mathbb{R} -vector space with basis 1, i, j, k and multiplication satisfying

$$i^2 = a$$
, $j^2 = b$ and $ij = -ji = k$.

Note that the Hamilton quaternion algebra is $\mathbb{H} = \mathbb{H}_{-1,-1}$.

- (a) Do not submit. Convince yourself that the above really defines an \mathbb{R} -algebra. In particular, what are the products ik, ki, jk, kj? Show that $k^2 = -ab$.
- (b) Show that there are isomorphisms of \mathbb{R} -algebras $\mathbb{H}_{a,b} \cong \mathbb{H}_{b,a}$ and $\mathbb{H}_{u^2a,v^2b} \cong \mathbb{H}_{a,b}$ for all $u,v \in \mathbb{R}^{\times}$. Hence deduce that $\mathbb{H}_{a,b}$ is isomorphic to one of $\mathbb{H}_{1,1}$, $\mathbb{H}_{1,-1}$ and $\mathbb{H}_{-1,-1}$.
- (c) Show that $\mathbb{H}_{1,1} \cong \mathbb{H}_{1,-1} \cong M_2(\mathbb{R})$ and that $\mathbb{H}_{-1,-1} \ncong M_2(\mathbb{R})$.

[So this "general" construction doesn't give us anything new—we either get $M_2(\mathbb{R})$ or \mathbb{H} ! However, note that the recipe for $\mathbb{H}_{a,b}$ works over other fields, in which case it can produce interesting algebras.]

- **Q2.** Let R = F[x]/(f(x)), where F is a field and deg $f \ge 1$. Suppose $f(x) = p_1(x)^{a_1} \cdots p_k(x)^{a_k}$ is the factorization of f into distinct irreducibles $p_i(x) \in F[x]$. Set $S_i := F[x]/(p_i(x))$.
 - (a) Show that S_i is a simple R-module.
 - (b) Show, conversely, that every simple R-module is isomorphic to some S_i .
 - (c) Conclude that there are k distinct simple R-modules up to isomorphism, and representatives for the isomorphism classes are given by S_i for $1 \le i \le k$.
- **Q3.** (a) Prove that $\mathbb{R}C_n \cong \mathbb{R}[x]/(x^n-1)$ as rings.
 - (b) Hence deduce:
 - i. If n is odd, $Irr_{\mathbb{R}}(C_n)$ consists of the trivial representation and $\frac{n-1}{2}$ two-dimensional representations.
 - ii. If n is even, $\operatorname{Irr}_{\mathbb{R}}(C_n)$ consists of two one-dimensional representations and $\frac{n-2}{2}$ two-dimensional representations.
- **Q4.** Let M be an R-module and let A, B, and C be submodules of M such that $C \subseteq A$. Prove:
 - (a) $A \cap (B + C) = (A \cap B) + C$.
 - (b) If there is a submodule C' such that $M=C\oplus C'$ then there is a submodule C'' such that $A=C\oplus C''$.