- **Q1.** (a) Determine the character table of A_5 .
 - (b) Deduce that A_5 is a simple group.

Here are some suggestions for part (a). You will want to use the character table of S_5 .

- Given $\pi \in A_n$, we know how to determine its conjugacy class C in S_n : it consists of all permutations with the same cycle type as π . There are now two scenarios:
 - The centralizers of π in S_n and A_n coincide. (Equivalently, π does not commute with any odd permutation.) In this case, C splits into the disjoint union of two conjugacy classes in A_n with representatives π and $(1\ 2)\pi(1\ 2)$.
 - The centralizers of π in S_n and A_n differ. (Equivalently, π commutes with some odd permutation.) In this case, the conjugacy class of π in S_n coincides with its conjugacy class in A_n .

Note that the first scenario occurs if and only if the cycle decomposition of π consists of odd cycles of different lengths. This should allow you to determine the conjugacy classes of A_5 . You should find that there are five. [You may use the above facts without proof on the assignment. But you should think about why they are true. The key is that A_n has index 2 in S_n .]

- Restrict the irreducible characters of S_5 to A_5 . Determine which of them remain irreducible. Use the dimension formula to find the degrees of the characters that you're missing. Finally, the orthogonality relations should take you home.
- **Q2.** [Context: Although we have been working only over \mathbb{C} lately, a natural question you might ask is whether a given representation $\rho \colon G \to GL(V)$ can be **defined over** \mathbb{R} . That is, can we find a basis \mathcal{B} for V with respect to which all the matrices of $[\rho(g)]_{\mathcal{B}}$ have real entries? A necessary (but not sufficient!) condition is that χ_V should be real-valued. The exercises below (and A3Q3) will help answer this question. This story will be concluded later.]

Let χ be a character of G. The **Frobenius–Schur indicator** of χ is the number

$$\varepsilon(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(g^2).$$

Assume V is an irreducible $\mathbb{C}G$ -module and let $\chi = \chi_V$.

- (a) Prove $\operatorname{mult}(V_{\operatorname{triv}}, V \otimes V)$ is either 1 or 0 depending on whether $V \cong V^*$ or not.
- (b) Express $\varepsilon(\chi)$ in terms of the characters of $\mathrm{Sym}^2(V)$ and $V \otimes V$.
- (c) Hence show that

$$\varepsilon(\chi) = \begin{cases} \pm 1 & \text{if and only if } \chi_V \text{ is real valued} \\ 0 & \text{otherwise.} \end{cases}$$

- (d) Explain briefly how the space of bilinear forms on V can be identified with $(V \otimes V)^*$. Deduce that the space of G-invariant bilinear forms on V (as defined in A3Q3) can be identified with $(V^* \otimes V^*)^G \cong \operatorname{Sym}^2(V^*)^G \oplus \operatorname{Alt}^2(V^*)^G$.
- (e) Show that if there exists a non-zero G-invariant bilinear form B on V then it must belong to either $\operatorname{Sym}^2(V^*)^G$ (in which case it is a symmetric form, i.e. B(x,y) = B(y,x)) or else it must belong to $\operatorname{Alt}^2(V^*)^G$ (in which case it is a skew-symmetric form, i.e. B(x,y) = -B(y,x)).

[Hint: What is dim $(V^* \otimes V^*)^G$?]

- (f) Show that c_V from A3Q3 is the Frobenius-Schur indicator of χ_V . Hence conclude that
 - $\varepsilon(\chi_V) = \begin{cases} 1 & \text{if there exists a nonzero symmetric G-invariant bilinear form on V;} \\ -1 & \text{if there exists a nonzero skew-symmetric G-invariant bilinear form on V;} \\ 0 & \text{if V has no nonzero G-invariant bilinear forms.} \end{cases}$
- **Q3.** (a) For each partition $\lambda \vdash 4$, match up the Specth module S_{λ} with the appropriate irreducible representation $V \in \operatorname{Irr}_{\mathbb{C}}(S_4)$ that you determined in A4Q3.
 - (b) Let V be the standard representation of S_4 . Determine the isotypic decomposition of $\operatorname{Sym}^2(V)$. Express your answer in terms of the Specht modules S_{λ} with $\lambda \vdash 4$.
 - (c) Determine the dimension of the Specht module $S_{(n-1,1)} \in \operatorname{Irr}_{\mathbb{C}}(S_n)$ by using:
 - i. The Hook Length formula.
 - ii. The Frobenius character formula.
 - (d) Let $V \in \operatorname{Irr}_{\mathbb{C}}(S_n)$. Prove that χ_V is integer-valued by using:
 - i. The Specht module construction.
 - ii. The Frobenius character formula.
- **Q4.** (Bonus.) Let V be the standard representation of S_n .
 - (a) Show that $Alt^{n-1}(V)$ is isomorphic to the alternating representation.
 - (b) More generally, show that for $1 \le k \le n-1$, $\mathrm{Alt}^k(V)$ is isomorphic to the Specht module $S_{(n-k,1,\ldots,1)}$. [This is challenging. For partial credit, you may submit only part (a).]