Hyperspectral images as function-valued mappings, their self-similarity and a class of fractal transforms

E.R. Vrscay¹ D. Otero¹ Davide La Torre²

Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada

Department of Economics, Business and Statistics, University of Milan, Milan Italy

ervrscay@uwaterloo.ca, dotero@uwaterloo.ca, davide.latorre@unimi.it

ICIAR 2013, Povoa de Varzim, Portugal, June 26-28, 2013

- Introduction
- 2 A complete metric space (Y, d_Y) of function-valued images
- 3 Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- 5 A class of block fractal transforms on hyperspectral images

Outline

- Introduction
- ② A complete metric space (Y, d_Y) of function-valued images
- Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- A class of block fractal transforms on hyperspectral images

This study represents ongoing work on the development of multifunction representations of images, in particular,

Measure-valued image functions:

- D. La Torre, E.R.V., M. Ebrahimi, M.F. Barnsley, Measure-valued images, associated fractal transforms and the affine self-similarity of images, SIAM J Imaging Sciences 2 (2), 470-507 (2009)
- D. La Torre and E.R.V., Random measure-valued image functions, fractal transforms and self-similiarity, Applied Mathematics Letters 24, 1405-1410 (2011)

Function-valued image functions:

- O. Michailovich, D. La Torre and E.R.V., Function-valued mappings, total variation and compressed sensing for diffusion MRI, ICIAR 2012.
- I.C. Salgado Patarroyo, S. Dolui, O.V. Michailovich and E.R.V., Reconstruction of HARDI data using a split Bregman optimization approach, ICIAR 2013.

Our work is involved with generalizations of the usual mathematical representation of a (greyscale/colour) image, i.e.,

$$u:X\to R_g,$$

where

- X: base or pixel space, the support of the image, $X \subset \mathbb{R}^n$, n = 1, 2, 3,
- $R_g \subset \mathbb{R}$ (or \mathbb{R}^3): the greyscale (or colour) range.

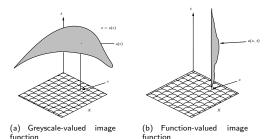
Representations of image functions

Greyscale-valued image function

At each pixel $x \in X$, u(x) is a **real value** (or a vector of real values, i.e., "RGB")

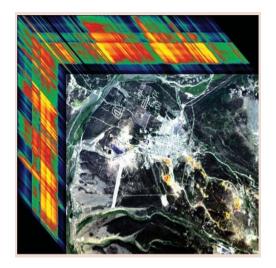
Function-valued image function

At each pixel $x \in X$, u(x) is a real-valued function, i.e., u(x;t)



Example: In multispectral/hyperspectral imaging, u represents the **spectral density function**. The values $u(x,t_k)$, $t_1 < t_2 < \cdots < t_M$ represent intensities of reflected radiation from point x on ground, as captured by satellite reading, at a discrete set of wavelengths, t_k .

Hyperspectral imaging



In practical situations, multispectral/hyperspectral images may be represented by vector-valued functions,

$$u: X \to \mathbb{R}^M$$
,

i.e.,

$$u(x) = (u_1(x), u_2(x), \cdots, u_M(x)),$$

where

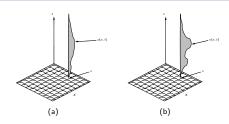
$$u_k: X \to \mathbb{R}, \quad 1 \le k \le M$$

are the usual real-valued **image functions**. (Of course, RGB images are special, low-dimensional, cases.)

That being said, it is instructive to start with the continuous, multifunction approach, from which definitions over vector-valued image functions naturally follow.

Outline

- Introduction
- 2 A complete metric space (Y, d_Y) of function-valued images
- 3 Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- A class of block fractal transforms on hyperspectral images



Linear space: For $u, v: X \to L^2(R_g)$, define

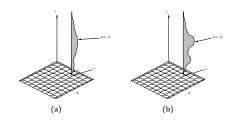
$$(c_1u + c_2v)(x, t) = c_1u(x, t) + c_2v(x, t)$$
, etc. (linear space)

Normed linear space Y: For $u: X \to L^2(R_g)$, norm of u(x) is given by

$$||u(x)||_{L^2(R_g)}^2 = \int_{R_g} u(x,t)^2 dt.$$

Integrate over all $x \in X$ to define norm of u:

$$||u||_Y^2 = \int_X ||u(x)||_{L^2(R_g)}^2 dx.$$



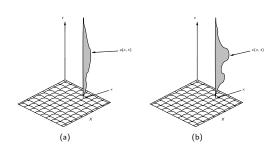
Complete metric space (Y, d_Y) :

1 At each $x \in X$, compute L^2 distance between functions u(x) and v(x):

$$||u(x) - v(x)||_{L^2(R_g)}^2 = \int_{R_g} [u(x, t) - v(x, t)]^2 dt$$

② Integrate over all $x \in X$:

$$[d_Y(u,v)]^2 = \int_Y ||u(x) - v(x)||_{L^2(R_g)}^2 dx.$$



Hilbert space:

Since $u(x), v(x) \in L^2(R_g)$, we may compute their inner product $\langle u(x), v(x) \rangle_{L^2(R_g)}$. Integrate over all $x \in X$ to define inner product between function-valued image mappings,

$$\langle u,v\rangle_Y = \int_X \langle u(x),v(x)\rangle_{L^2(R_g)} dx, \quad u,v\in Y.$$

Complete metric space (Y, d_Y) of function-valued image mappings

$$Y = \{u : X \to L^2(R_g) \mid ||u||_Y < \infty\}$$

where

$$||u||_Y^2 = \int_X ||u(x)||_{L^2(R_g)}^2 dx$$

In our applications,

$$R_g = [a,b] \subset R_+ = [0,\infty).$$

Outline

- Introduction
- 2 A complete metric space (Y, d_Y) of function-valued images
- Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- 5 A class of block fractal transforms on hyperspectral images

Self-similarity of greyscale images

S.K. Alexander, E.R.V. and S. Tsurumi, A simple, general model for the affine self-similarity of images, ICIAR 2008

It was shown that images generally possess a considerable degree of **affine self-similarity**, i.e.,

Subblocks of an image are well approximated by a number of other subblocks – with the possible help of affine greyscale transformations

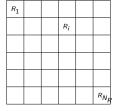
Self-similarity of images has been implicitly used in a number of **nonlocal image processing schemes**, including

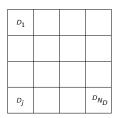
- Nonlocal-means denoising (A. Buades, B. Coll and J.M. Morel 2005, 2010).
- Method of "self-examples," and "examples" in general (e.g., BM3D method of K. Dabov et al., IEEE Trans. Image Proc. 2007).
- Fractal image coding (N. Lu, Fractal Imaging, Academic Press 1997).
- Yes, vector quantization! (Fractal image coding is, in fact, "self-vector quantization".)

A simple model of affine image self-similarity

For simplicity, consider the discrete case: X is an $n_1 \times n_2$ pixel array. Then:

- **●** Let \mathcal{R} be a set of $n \times n$ -pixel range subblocks R_i , $1 \le i \le N_R$, such that $\cup_i R_i = X$. (For convenience, assume that they are nonoverlapping.)
- ② Let $\mathcal D$ denote a set of $m \times m$ -pixel **domain** subblocks D_j , $1 \le j \le N_D$, where $m \ge n$ and $\cup_i D_i = X$.
- ① Let $w_{ij}: D_j \rightarrow R_i$ denote affine geometric transformation (along with decimation, if necessary). There are 8 possible mappings of squares to squares here we consider only one (no rotation/flipping).



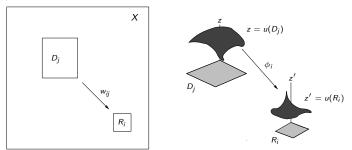


In ICIAR08 study, 8 \times 8-pixel range blocks R_j and 8 \times 8- or 16 \times 16-pixel domain blocks were used.

How well are subimages $u(R_i)$ approximated by subimages $u(D_j)$?

$$u(R_i) \approx \phi_i u(w_{ij}^{-1}(R_i)), \quad \ 1 \leq i \leq N_R,$$

where $\phi_i : \mathbf{R} \to \mathbf{R}$ is a greyscale transformation.



Left: Range block R_i and associated domain block D_i . **Right:** Greyscale mapping ϕ_i from $u(D_i)$ to $u(R_i)$.

Consider affine greyscale maps, i.e.,

$$\phi(t) = \alpha t + \beta$$

Simple in form, yet sufficiently flexible

Then examine the distribution of L^2 (RMS) approximation errors Δ_{ij} , $1 \le i \le N_R$, $1 < i < N_D$:

$$\Delta_{ij} = \parallel u(R_i) - \phi(u(w_{ij}^{-1}(R_i))) \parallel_2$$

Note that all images are assumed to be **normalized**, i.e., $0 \le u_{pq} \le 1$, so that

$$0 \leq \Delta_{ij} \leq 1$$

Four particular cases of self-similarity considered:

Quantification • Case 1 (Purely translational): The w_{ij} are translations and $\alpha_i = 1$, $\beta_i = 0$, i.e.,

$$u(R_i) \approx u(D_j)$$

Employed in nonlocal means denoising

② Case 2 (Translational + greyscale shift): The w_{ij} are translations and $\alpha_i = 1$, optimize β :

$$u(R_i) \approx u(D_j) + [\overline{u(R_i)} - \overline{u(D_j)}]$$

3 Case 3 (Affine, same scale): The w_{ij} are translations but we optimize α and β :

$$u(R_i) \approx \alpha_i u(D_j) + \beta_i$$

Case 4 (Affine, cross-scale): The w_{ij} are affine spatial contractions (which
involve decimations in pixel space).

$$u(R_i) \approx \alpha_i u(w_{ij}^{-1}(R_i)) + \beta_i$$

Employed in fractal image coding

Same-scale self-similarity - Cases 1, 2 and 3

Recall:

- Case 1: Purely translational
- Case 2: Translational + greyscale shift β
- Case 3: Translational + affine greyscale transformation $\alpha t + \beta$.

We expect that

$$0 \leq \Delta_{ij}^{(\textit{Case } 3)} \leq \Delta_{ij}^{(\textit{Case } 2)} \leq \Delta_{ij}^{(\textit{Case } 1)}$$

"World's most self-similar image"

The "flat" image,

$$u(x, y) = C$$
 (constant)

 $\Delta^{(Case\ q)}$ -error distributions have single peaks at $\Delta=0$, for q=1,2,3 and 4.

Next on the list:

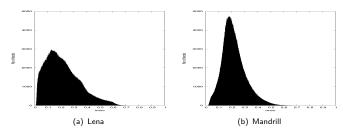
"Ramped" images,

$$u(x, y) = C + Ax + By$$

 $\Delta^{(\textit{Case q})}$ -error distributions have single peaks at $\Delta=0$, for q=2,3 and 4.

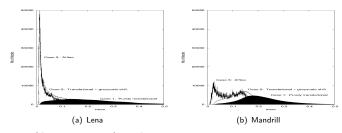
And now on to more realistic images ...

Case 1 (Purely translational)



Case 1 (same-scale) self-similarity error distributions $\Delta_{ij}^{(\textit{Case }1)} = \|u(R_j) - u(R_i)\|_2, \quad i \neq j, \text{ for normalized } 512 \times 512\text{-pixel } \textit{Lena} \text{ and } \textit{Mandrill} \text{ images. In all cases, } 8 \times 8\text{-pixel blocks } R_i = D_i \text{ were used.}$

Same-scale self-similarity - Cases 1, 2 and 3



Same-scale (Cases 1,2 and 3) RMS self-similarity error distributions for normalized Lena and Mandrill images. Again, 8×8 -pixel blocks $R_i = D_i$ were used. Case 1 distributions are shaded.

Outline

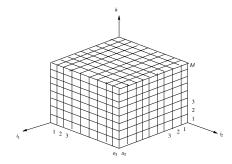
- Introduction
- 2 A complete metric space (Y, d_Y) of function-valued images
- Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- A class of block fractal transforms on hyperspectral images

Self-similarity of hyperspectral images

Assume that digital hyperspectral image is supported on an $N_1 \times N_2$ pixel array, as before, but now M channels per pixel.

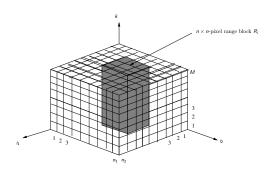
At a pixel location $(i_1,i_2)\in X$, the hyperspectral image function is a non-negative M-vector with components

$$u_k(i_1,i_2), \quad 1 \leq k \leq M.$$



Also as before:

- Let \mathcal{R} be a set of $n \times n$ -pixel range subblocks R_i , $1 \leq i \leq N_R$, such that $\cup_i R_i = X$. (For convenience, assume that they are nonoverlapping.)
- ② Let $\mathcal D$ denote a set of $m \times m$ -pixel **domain** subblocks $D_j, \ 1 \leq j \leq N_D$, where $m \geq n$ and $\bigcup_j D_j = X$.
- **①** Let $w_{ij}: D_j \rightarrow R_i$ denote affine geometric transformation (along with decimation, if necessary).



Let $u(R_i)$ denote portion of hyperspectral image function supported on subblock $R_i \in X$. Here, $u(R_i)$ will be an $n \times n \times M$ cube of nonnegative real numbers.

The L^2 (RMS) distance, Δ_{ij} , between two hyperspectral image subblocks $u(R_i)$ and $u(R_i)$ will be given by

$$\Delta_{ij} = \frac{1}{n\sqrt{M}} \left[\sum_{i_1=l_1}^{l_1+n-1} \sum_{i_2=l_2}^{l_2+n-1} \sum_{k=1}^{M} [u_k(i_1,i_2,) - u_k(i_1+J_1,i_2+J_2)]^2 \right]^{1/2}$$

This may also be viewed as the error associated with the (Case 1) approximation,

$$u(R_i) \approx u(R_i)$$
 (Case 1)

Case 2 approximations with spectral shifts

• Simplest case - the same shift, $\beta \in \mathbb{R}$, for all channels

$$u(R_i) \approx u(R_i) + \beta$$
, (Case 2(a))

This does not improve the Case 1 approximation significantly.

• Separate shift, β_k , for each channel

$$u(R_i) \approx u(R_j) + \underline{\beta}, \quad \text{(Case 2(b))}$$

Componentwise,

$$u_k(i_1, i_2) \approx u_k(j_1, j_2) + \beta_k, \quad 1 \le k \le M$$

Case 3 approximation with affine scaling + spectral shift

$$u(R_i) \approx \alpha u(R_j) + \beta$$
 (Case 3)

Note that we are using only **one** scaling coefficient α for all channels.

Note: If we used separate scaling coefficients for each channel k, i.e.,

$$u_k(R_i) \approx \alpha_k u(R_j) + \beta_k, \quad 1 \leq k \leq M,$$

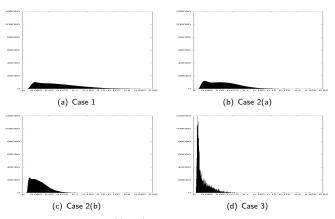
then we are essentally treating a hyperspectral image as M separate greyscale images (which defeats the purpose of hyperspectal image analysis).

Approximation errors:

$$0 \leq \Delta_{ij}^{(\textit{Case }3)} \leq \Delta_{ij}^{(\textit{Case }2(b))} \leq \Delta_{ij}^{(\textit{Case }2(a))} \leq \Delta_{ij}^{(\textit{Case }1)}$$

Results of some computations

33-channel hyperspectral image, "Scene 2," downloaded from webpage of D.H. Foster, University of Manchester



Per-pixel error distributions $\Delta_{ij}^{(Case\ q)}$ for 33-channel HS fern image. In all cases, 8×8 -pixel blocks R_i and D_j were used.

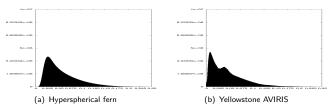
224-channel AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral image, "Yellowstone calibrated scene 0," a 224-channel image, available from JPL.



Per-pixel error distributions $\Delta_{ij}^{(Case\ m)}$ for the 224-channel AVIRIS image. In all cases, 8×8 -pixel blocks R_i and D_j were used.

Single-pixel self-similarity of spectral functions

Because of the additional degree of freedom along the spectral axis, we may consider $n \times n$ -pixel blocks as $n \to 1$, in particular, n = 1

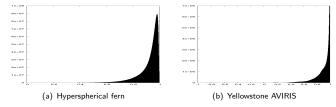


Case 1 error distributions $\Delta_{ij}^{(Case \ 1)}$ for spectral functions supported on **single-pixel** blocks R_i .

However, L^2 distance (RMSE) is not necessarily a good indicator of signal/image fidelity or correlation.

Correlation of single-pixel spectral functions

A number of alternative **quality indices** exist, e.g., "structural similarity." Here, however, we examine simple correlation $C(\mathbf{x}, \mathbf{y})$ between spectral functions $\mathbf{x}, \mathbf{y} \in \mathbb{R}^M$.



Pairwise correlations between single-pixel spectral functions.

The dramatic correlation demonstrated in these plots strongly suggests that single-pixel spectral functions are quite suitable for nonlocal methods of image processing.

Outline

- Introduction
- 2 A complete metric space (Y, d_Y) of function-valued images
- Self-similarity of greyscale images
- Self-similarity of hyperspectral images
- A class of block fractal transforms on hyperspectral images

In fractal image coding of greyscale images:

- **1** Affine greyscale transformations are employed, i.e.: $\phi(t) = \alpha t + \beta$.
- ② Domain blocks D_j are larger than range blocks R_j .

As before, consider the discrete case: X is an $n_1 \times n_2$ pixel array. Then:

- **①** Let \mathcal{R} be a set of $n \times n$ -pixel range subblocks R_i , $1 \leq i \leq N_R$, such that $\cup_i R_i = X$. (For convenience, assume that they are nonoverlapping.)
- ⓐ Let \mathcal{D} denote a set of $2n \times 2n$ -pixel **domain** subblocks D_j , $1 \leq j \leq N_D$, where $m \geq n$ and $\cup_i D_i = X$.
- **③** Let $w_{ij}: D_j \rightarrow R_i$ denote affine geometric **contraction mapping** in pixel domain this is accomplished by some kind of decimation/downsampling.

R_1			
		Ri	
			RNR

D_1		
Dj		D_{N_D}

Fractal transform of greyscale image

For $1 \le i \le N_R$, approximate $u(R_i)$ with greyscale modified and spatially contracted (decimated) copy of $u(D_{j(i)})$:

$$u(R_i) \approx \alpha_i u(D_{j(i)})' + \beta_i$$

$$= \alpha_i u(w_{ij}^{-1}(R_i)) + \beta_i$$

$$=: (Tu)(R_i), \quad 1 \le i \le N_R.$$
(Case 4)

T is fractal transform operator. (Prime denotes spatial contraction/pixel decimation.)

Fractal transform of hyperspectral image

For $1 \le i \le N_R$, approximate the "data cube" $u(R_i)$ with greyscale modified and spatially contracted (decimated) copy of "data cube" $u(D_{j(i)})$:

$$u(R_i) \approx \alpha_i u(D_{j(i)})' + \underline{\beta_i}$$

$$= \alpha_i u(w_{ij}^{-1}(R_i)) + \underline{\beta_i}$$

$$=: (Tu)(R_i), 1 \le i \le N_R.$$
(Case 4)

T is fractal transform operator. (Prime denotes spatial contraction/pixel decimation.)

Note: As in Case 3 approximations of hyperspectral images, we employ **one** scaling coefficient α and a vector of shift coefficients β_i

Contractivity of hyperspectral fractal transform operator

Under appropriate conditions on α_i , the hyperspectral fractal transform operator T is **contractive** on the metric space (Y, d_Y) of hyperspectral images.

From Banach's Fixed Point Theorem, there exists a unique $\bar{u} \in Y$ such that

$$\bar{u} = T\bar{u}$$
.

Furthermore.

For any "seed" image $u_0 \in Y$, if we define the iteration procedure,

$$u_{n+1} = Tu_n,$$

then

$$d_Y(u_n, \bar{u}) \to 0$$
 as $n \to \infty$.

Inverse problem for hyperspectral fractal transforms on (Y, d_Y)

Given a target element (hyperspectral image) $u \in Y$, find a contractive fractal transform $T: Y \to Y$ such that its fixed point \bar{u} approximates u to a desired accuracy, i.e.,

$$d_Y(\bar{u},u)<\epsilon.$$

Such a fractal transform T will defined by

- **1** The range block-domain block assignments (i, j(i)), $1 \le i \le N_R$,
- ② The scaling coefficients a_i and $\underline{\beta_i}$, $1 \le i \le N_R$.
- The hyperspectral image u has been approximated by the fixed point \bar{u} of the contractive fractal transform operator T.
- The fixed point \bar{u} may be generated by iteration of T.
- **Result:** The hyperspectral image *u* has been **fractally coded**.

Practical fractal image coding

Most, if not all, fractal image coding methods rely on a simple consequence of Banach's Fixed Point Theorem, known as the **Collage Theorem**.

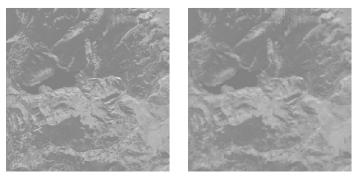
Given a contraction mapping $T: Y \to Y$ with contraction factor $c_T \in [0,1)$ and fixed point \bar{u} , then for any $u \in Y$,

$$\|u-\bar{u}\|\leq \frac{1}{1-c_T}\|u-Tu\|$$

In order to approximate the target u with a fixed point \bar{u} , we look for a transform T that maps the target u as close as possible to itself, i.e., we minimize the **collage distance** ||u - Tu||.

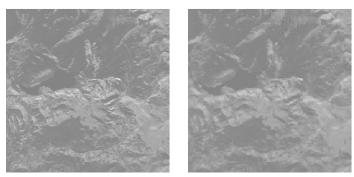
This is accomplished by finding, for each range block $u(R_i)$, the domain block $u(D_{j(i)})$ that **best approximates** $u(R_i)$, i.e., minimizes the approximation error Δ_{ii} .

Example: Fractal coding of 224-channel AVIRIS "Yellowstone" image



Channel 120. Left: Original. Right: Fractal-based approximation. $8\times 8\text{-pixel}$ range blocks and $16\times 16\text{-domain}$ blocks.

Example: Fractal coding of 224-channel AVIRIS "Yellowstone" image



Channel 220. Left: Original. Right: Fractal-based approximation. $8\times 8\text{-pixel}$ range blocks and $16\times 16\text{-domain}$ blocks.