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Introduction

Our first generation of real solar cookers will be constructed from 4” x 4” mirrors. As in our previous study, we
first consider cookers which are obtained by translating the graphs of convex functions such as y = f(z) = 22
along the z-axis to produce parabolic-like troughs.

In this case, however, the functions f(z) are approximated by piecewise linear functions in order to take
into consideration the flatness of the mirrors which comprise the cooker.

Case No. 1: f(z) = 22

We must first produce a piecewise linear approximation to f(z) = 22 with linear pieces of (mirror) length
b= % (feet). For simplicity, we choose the approximation to be the interpolation of f(x) = 22 so that the
endpoints (z,,y,) of the linear “pieces” satisfy the condition y,, = f(x,) = 22. The FORTRAN program
linterp.f was written to produce such an approximation. (Details on the method used to compute these
endpoints will be given in Appendix 1.) Numerically, we observe that five linear pieces are required to produce
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an approximation to f(x) = a* over the interval [0,1]. The endpoints (2, y,) of these five mirrors of length 3

are presented below.

n x(n) y(n)

0 0.0000000000 0.0000000000
1 0.3176872874 0.1009252126
2 0.5673059903 0.3218360866
3 0.7671940331 0.5885866845
4 0.9359675009 0.8760351628
5 1.0838643199 1.1747618640

Plots of f(x) = 2% and its linear interpolation to the end of the fifth linear piece are shown in Figure 0 below.
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1
Figure 0: Plot of f(z) = 22 and its linear approximation with the first five “pieces” of length b = 3"



The FORTRAN program raylinterp.f was written in order to compute the y-intercepts of rays parallel
to the y-axis travelling from y = oo and reflected by the linear “pieces”. (The program raylinterp.f was a
modification of the program raydist4.f from Study I which used the functional form of the linear “pieces”.
Details will be provided in an appendix.) The results obtained from the use of the endpoints tabulated above are
shown in Figure 1 below in the form of a histogram distribution. (Note that as in Study I, only rays that were
reflected directly onto the non-negative y-axis were employed in the histogram. Rays that would theoretically
be reflected into this region after more than one encounter with a mirror were not counted.) Note that the bulk
of the distribution appears to be concentrated over the range y € [0.1,0.4].
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Figure 1: Distribution of first-reflected rays from piecewise linear interpolation of y = f(x) = x? with pieces of
length b = %

We also mention that the program raydist4.f was checked by computing the reflections produced by in-
dividual mirrors. In each case, the parallel rays hitting an individual mirror were reflected onto an interval of
the y-axis. As the slope of the mirror increased (i.e., linear pieces that lay farther away from the y-axis, the
length of this interval decreased.

2 using 15 linear pieces of length

As another check, the piecewise linear approximation of y = f(x) = «
b = 0.1 (to produce an approximation over [0, 1]) was computed using program linterp.f. The endpoints of
this approximation were then used used in program raylinterp.f to produce the distribution of reflected rays
shown in Figure 2 below. As expected, this distribution is more peaked, i.e., less diffuse, than the previous one
and therefore “closer” to the Dirac delta function situated at y = % which corresponds to the single focal point

of the parabola y = x2.
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Figure 2: Distribution of first-reflected rays from piecewise linear interpolation of y = f(x) = x? with 15 pieces
of length b = 0.1.
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Case No. 2: y= f(z) %x

We now investigate briefly the shallower trough produced by the function f(z) = 2. The endpoints of

the first five pieces of length b = % are presented below.

1
2

0 0.0000000000 0.0000000000
1 0.3289150449  0.0540925534
2 0.6295147384 0.1981444030
3 0.8946367885  0.4001874917
4 1.1289531226 0.6372675766
5 1.3388297995  0.8962326160

The distribution of reflected rays along the y-axis is shown in Figure 3 below. A comparison with Figure 1
shows that, as perhaps expected since the parabolic trough is now shallower, the distribution of reflected rays
is spread over a wider range. Moreover, the bulk of the distribution in Figure 3 is concentrated over the range
of values y € [0.3,0.7] as opposed to the range [0.15,0.4] in Figure 1.
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Figure 3: Distribution of reflected rays from piecewise linear interpolation of y = f(z)
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Solar Cooker No. 1: Parabolic trough with cross-sectional formula y = f(x) = 2

At this preliminary stage, as mentioned earlier, we are using 4”7 x 4” mirrors to construct our cookers. The first
2

such cooker, a parabolic trough employing the convex function y = f(x) = z
4 below.

(2,y in feet) is shown in Figure

Figure 4: “Solar Cooker No. 1: Parabolic trough with cross-sectional formula y = f(z) = 2? employing
4”7 x 47 mirrors.

One slight modification had to be made to the computations presented earlier since, as can be seen above,
the mirrors are spaced 0.25” apart in order to allow bending of the cardboard on which they are mounted. As
such, the parameter b representing the lengths of the components of the piecewise linear interpolation functions
must be adjusted to 4.25”. The coordinates of the first six endpoints (in feet) of the linear pieces are given
below:

0 0.0000000000 0.0000000000
1 0.3357479939 0.1127267154
2 0.5949977699  0.3540223462
3 0.8012215555 0.6419559810
4 0.9749732576  0.9505728531
5 1.1271178903  1.2703947387

Since the cooker was constructed using inches/feet, the above values were converted to inches,

0.0000000000  0.0000000000
4.0289759268  1.3527205849
7.1399732387  4.2482681541
9.6146586657  7.7034717715
4 11.6996790916 11.4068742373
5 13.5254146841 15.2447368646

w N = O

These are the positions at which the nails at side of the cooker, shown in Figure 5 below, are located. These
nails provide the connection between the side panel and the piecewise linear trough on which the mirrors are
attached.



Figure 5: Photo of one of the sides of Solar Cooker No. 1 showing the positions of the nails which attach the
side of the cooker to the trough. The nails are located at the endpoints of the mirrors, the linear “pieces”

which interpolate the cross-sectional formula y = f(z) = 22.

Solar Cooker No. 2: 2D cooker composed of four parabolic troughs with cross-

sectional formula y = f(z) = 22.

We then considered a very simple two-dimensional cooker which is composed of four semi-parabolic troughs.
Each of these troughs is composed of 9 4”7 x 4”-inch mirrors and the bottoms of the troughs are connected to a

square base as shown in Figure 6 below.

Figure 6: Configuration of two-dimensional Solar Cooker No. 2 composed of four parabolic troughs.



The square base ABC'D may also be filled with 9 mirrors which can reflect light upwards into the central
portion of the cooker.

Upon further reflection (no pun intended), however, we decided that this configuration might be too
“rectangular” or “square” and that each of the 3 x 3-mirror components was too wide. Moreover, we thought
that it might not be possible to install many mirrors in the triangular regions between these components. (The
overall shape of the cooker would be octagonal.) This led to the next cooker configuration.

Solar Cooker No. 3: 2D cooker composed of 8 parabolic troughs with cross-

sectional formula y = f(x) = 2%

As is seen in Figure 7 below, it was decided to take one of the three radial rows of mirrors of each component
and rotate it with respect to the center. This produced four semi-parabolic troughs which were two mirrors
wide along with four semi-parabolic troughs only one mirror wide. It was thought that the latter set of troughs
would focus more light into the middle of the cooker.

Figure 7: Configuration of two-dimensional Solar Cooker No. 3 composed of four major and four minor
semi-parabolic troughs.

There are some options for the regions between the radial troughs. We decided to cut wedge-like pieces
that would connect continuous troughs, keeping their parabolic form. (Note that these pieces are “wedge-like”,
as opposed to purely triangular.) These pieces were covered with aluminum foil. The result is shown in Figure
8 below.

It was then decided to attach one mirror at the upper portion of each of these pieces covered with aluminum
foil. Some mirrors were also attached in the central octagonal region, but this is still in an experimental stage.
(The mirrors are slanted toward the center, as opposed to lying on the flat octagonal base.) The result is shown
in Figure 9 below.



Figure 8: Solar Cooker No. 3, almost final version.

Figure 9: Solar Cooker No. 3, final version.



Appendix 1. A Newton-Raphson method to compute endpoints to piecewise linear
approximations of functions

We consider the piecewise linear approximation of a function f(x) with pieces of length b > 0. In our solar-
cooker applications, f(x) is usually even so we’ll consider, for simplicity and without loss of generality, only
non-negative values of . The situation is sketched in the figure below.

The linear approximations, or simply “pieces”, are supported on intervals I,, = [x,—1,2,], n > 1, where
xo = 0, with the conditions,

(Tnt1 = 20)” + [f(@ni1) = f@n))? =0 n=0,1,2,---. (1)

Starting with zg, approximations to the interpolation points x,, n > 1, of desired accuracy can be computed
recursively, i.e., from zy we compute x1, from which we compute x5, etc..
Our Newton-Raphson-like method is as follows. Given z,, n > 0, we wish to find x such that

h(z) = (z = 20)* + [f(2) = f(za)]* = 0* = 0. (2)

(For simplicity of notation, we omit any reference to n in the notation for h.) For our Newton-Raphson function,
we need to compute h/(x),

K (@) = 2(x = 2q) + 2f (2) = f(2)]*f'(2) . 3)
Our Newton-Raphson (NR) function is then given by

(4)

In practice, if we know z,, we can let z = x,, + € be the starting point for the NR method where ¢ > 0 is
“reasonable”, not too large, not too small, e.g., b/2?

In the computation presented in Table 1, the approximations x, were determined to an accuracy well
beyond 1071'Y. Numerically, the lengths of the five “pieces” obtained from these z,,, i.e.,

ln = \/(xn - xn—1)2 + (f(xn) - f(_xn—l))2 1<n<5, (5)

1
approximate b = 3 to at least 10 decimal digits, i.e., 0.3333333333.



Appendix 2. Determining the y-intercepts of rays reflected from the piecewise
linear approximations to a mirror function f(z) as well as the density distributions
of these rays.

With reference to Appendix 1, we consider the piecewise linear interpolation of f(z) supported on the interval
I, = [zp—1,2,], n > 1, as sketched below. The endpoints of this “piece” are (z,,—1,yn—1) and (2, y, ), where

Yn—1 = f(xn—l) Yn = f(xn) . (6)

If we let y = gn(z) be the (affine) function defining this linear “piece”, then a point (x, g, (z)) on this line is
given by

In(T) = Yn—1 _ Yn = Yn-1

T—Tp_1 Ty — Tp1

=Mp, Tp—1 ST < Ty, (7)
where m,, is the slope of the “piece” with support I,,. A rearrangement of Eq. (7) yields
() = Yn—1 +mp(z —2p—1)  Tpo1 <z <2 (8)

We’ll now use the following result of our previous paper: Suppose that a ray travelling downward and parallel
to the y-axis along the line z = a > 0 is reflected from the mirror surface y = f(x) at the point (a, f(a)) toward
the y-axis. Then the y-intercept of the reflected ray is

a ., a
_2 S 9

(@) + 55 0
We now consider any ray which travels downward and is reflected by the linear “piece” supported on I,, =
[€n, 2n—1]. The equation of this “piece” is given by g, (z) in Eq. (8) so we replace f(z) with g,(x) to give

From Eq. (8),
golw) =my, = Il - <w<a,, (11)
Tp — Tp-1

and we obtain the following result for d(a),

(@) = ynr + 22" (4 g y) - (9) Yn ZYn-t (9) In =%l i <a<a,. (12)
Ty — Tp—1 2 Tp — Tn-—1 2 Yn — Yn—1

Note that d is an affine function of a which implies that interval I,, = [,_1,x,] (incoming rays) is transformed

to an interval .J,, = [d,, e,] on the y-axis (reflected rays) by means of a (linear) scaling followed by a translation.

Let us now determine d,, and e,,.

Some important remarks: Note that we have designated the interval J,, as [d,, e,] and not [d,,, d;,+1]. The
reason for this is that it is not guaranteed — in fact, it would be a rather special case — that the contiguous
intervals J,, and J, 41 on the y-axis share a common endpoint, as is the case for the I,, on the z-axis. Without
getting into any formulas right now (that will come later), we simply state that the right endpoint e, of J,
will depend upon the right endpoint (z,y,) of the linear “piece” supported on I,, as well as the slope m,, of
this “piece”. The left endpoint d,,+1 of interval J,+1 will depend upon the left endpoint (z,,,y,) of the linear
“piece” supported on I,41 — the same point used for the computation of e, — as well as, however, the slope
Mmy41 of this linear “piece”. As such, it is not guaranteed that e, = d,,+1. In other words, two different linear
“pieces” are being used to generate these two endpoints.

At this point, the reader may wonder, “So which “piece” actually reflects the light ray that impinges upon
a boundary point of the interval I,,?” The answer is, “It doesn’t matter. Boundary points are isolated
points and therefore negligible with respect to the continuum of the real numbers. (They are also negligible



with respect to the physical reality that is being modelled!) It is the interior points of the intervals I,, which
contribute to any “accumulation” of reflected rays. The set of all interior points of I,,, namely, the open interval
(p—1,xy) is reflected into the interior open interval of J,,, namely, (d,,,e,). A proper and rigorous treatment
of this problem would take care of these technicalities. Here, we shall work with closed intervals and assume
that the complications arising from boundary points can be addressed.

That being said, it is quite possible that the intervals J, of reflected rays can overlap with each other
at more than isolated boundary points. Some examples presented below will demonstrate this. In fact, the
behaviour is even more striking than may have been first imagined.

Returning to our main discussion, we now determine d,, and e,, the endpoints of J,. Setting a = x,_1 in
Eq. (12),

n— 1
dp = d(xp_1) = Yn_1 + (33 5 1) {_mn + —} : (13)
Setting a = x,, in Eq. (12),
Tp 1
en =d(Tn) = Yn + (7) {—mn + m—} . (14)

We now assume that the mirror function f(z) is increasing for = > 0, implying that m,, > 0, and use Eqs. (13)
and (14) to compute ||.J,||, the length of the interval .J,, as follows,

1 1
HJn” =en—dn =Ynt1 — Yn + §(xn+l - xn) |:_mn + _:| . (15)

In the special case, m,, = 1, the term in square brackets on the right side of Eq. (15) vanishes so that
en_dn =Yn—1 —Yn = Tp — Tn-1 - HJn” = ”InH . (16)

™
This is to be expected since the linear mirror “piece” lies at an angle of — with respect to the z-axis. As a

result, the incoming vertical rays are reflected to become horizontal rays which travel leftward. Let us now see
if we can determine the change in length in general. We'll rewrite Eq. (15) as follows,

il = en—dn
= (on o) (2 4 S ) [t o
= (xn —Tp_1) [mn — 5MMn + %mn]
S A a7

where ||I,,|| denotes the length of interval I,,. The remarkable result is that for any m, > 0 but m, # 1, the
term in square brackets is greater than two. It might be easy to see this graphically, but let’s provide a
“proof”.

1

h(z) =2+ = (18)

Clearly h(1) = 2. Moreover, for any x > 0,

1

hx)=h|—]. 19
@=n(3) (19)

Let’s now assume that 1
r+—>2 Va>0 except z=1. (20)

x

and see if we arrive at a contradiction. Multiply both sides by x > 0 and rearrange to give
P?H1>20 = 22-22+1>0 = (z—-1)?>0. (21)

Clearly, the above is true for all © > 0 except = 1. This leads to the remarkable conclusion based on Eq. (17):

10



Given a linear mirror “piece” with support I,, and with slope m,, > 0 but m,, # 1. Then the length
of the interval J,, (obtained from a reflection of interval I,,) is longer than the length of interval I,,.

Only in the case m, = 1 is the length of J,, equal to that of I,,.

An interesting side note: At this point, the reader may be asking: “Hey, wait a minute! If the angle of
incidence equals the angle of reflection, the widths of the incoming and reflected beams for a given linear mirror
“piece” should be the same! What goes on here?”

The reader is entirely correct that the widths of incoming and reflected beams are equal. The length of
the interval J,, of reflected rays on the y-axis, however, is not, in general, width of the beam since the beam is
generally striking the y-axis at an angle to the normal of the y-axis. Only in the special case of a 45° mirror,
where the reflected beam travels horizontally, does the length of .J,, coincide with the width of the beam.

This suggests that the coefficient multiplying the term ||I,|| in Eq. (17) is, in some way, related to the
angle — perhaps its cosine? — between the beam and the normal to the y-axis, i.e., the x-axis. Let us examine
a sketch of the situation shown in Figure 10. Here we show a linear mirror “piece” supported over the interval

Y

20—

In slope mp,

In

0] In

Figure 10

I,,. A downward moving vertical beam of rays with width ||I,,||. The reflected beam of width ||| then strikes
the y-axis to produce interval J,. A number of relevant angles have been identified in the figure. Note that the
angle between the reflected beam and the y-axis is 26,, where 6,, is the angle of incidence of the incoming beam
with respect to the normal of the linear “piece”. This implies that

[l

Jnl sin 20,, = || I, Jnll = = .
[ Jallsin2, = 1l =l = 52

(22)

We’ve found our trigonometric relationship between ||.J,,|| and || I,,]|. The next step is to see if we can rewrite the
sin 26,, term in the denominator in terms of m,,, the slope of the linear “piece.” (The answer appears to have
been given in Eq. (17) but we should really derive it.) But just before proceeding, let’s perform a quick check
of the above result to see that we are on the right track. When 6,, = g, Eq. (22) implies that ||.J,|| = || L],
which we know to be true from our previous discussions. Things are looking good.

From Figure 10, it follows that the line on which the linear “piece” lies has orientation angle ,, with respect

to the z-axis. This implies that
sin 6,

(23)

m, = tanf,, = .
cos 0,

By using an appropriate right triangle with side lengths 1 and m,, and therefore a hypotenuse of length /1 + m2

11



(Exercise) we see that
My

sinf,, = ——
14+m2

1
, cosb, = ———. (24)
14 m?2

n

Let us now return to the coefficient on the right side of Eq. (17),

1 1 m2 +1
2 [m”—n] = om,
_ 1
~ 2sin#, cosb,
1
= . 25
sin 26, (25)
Therefore, Eq. (17) becomes
1 T
Joll = —— LI, 0<6<Z, 2%
all = g Il 0 <0< 3 (26)

in agreement with Eq. (22). where 6,, is the angle of orientation of the linear “piece” with respect to the z-axis.

Once again, note that only in the case 8,, = % are the lengths of the two intervals equal.

Obtaining estimates of the distribution of rays hitting a mirror composed of linear “pieces”

Returning to Eq. (17), we see that for all m,, > 0 except m,, = 1, there is an expansion of the width of the
incoming interval of rays I, 1 after reflection. At first glance, this might seem incorrect. We can certainly see
that in the case m,, = 1, i.e., a straight mirror inclined at il to the z-axis, the width of the interval remains the
same. In the case m,, # 1, one may be tempted to think that the reflected rays also travel horizontally. Using
such reasoning, simple geometry would show that in the case m,, < 1, the interval I, is compressed and in
the case m,, > 1, the interval I,,;; is expanded. Such reasoning is incorrect, however, since the reflected
rays are no longer travelling in parallel, nor are they travelling horizontally! In the case m, < 1,
the reflected rays are travelling leftward and upward. In the case m, > 1, the reflected rays are travelling
bf leftward and downward. From Eq. (17) there is a symmetry between m,, and 1/m,,, i.e., you get the same
result if m,, = A or m,, = 1/A for some A > 0. In both cases, you get a spreading of the originally parallel rays.

Now consider a mirrored surface composed of several piecewise linear components, e.g., piecewise linear

interpolation of f(z) = 2

as shown in Figure 0. Now imagine a “homogeneous” beam of light rays travelling
downward and parallel to the y-axis. (By “homogeneous”, we mean that the rays have equal intensity at all
2 = a > 0.) From our discussion above, the set of light rays which hits a given “piece” which is supported on
an interval I,, = [2,,-1, y], i.e., light rays situated at a € I,, will be reflected to the interval J,, = [d,—1,d,] on
the y-axis, where d,, is given in Eq. (13).

Let us now suppose that we model the beam of light rays which impinge on the mirror by means of a discrete
and uniformly distributed set of parallel, downward travelling rays situated at locations x,, = a,, = nAa where

Aa is very small. For simplicity of discussion, define Aa as follows,

Aa = N (27)
where NV a very large integer, e.g., 100 or 1000. This implies that there are roughly N rays in each unit interval
[n,n + 1] on the (positive) z-axis. The number of rays, r,, hitting the nth “piece” supported on interval I,
n > 1, is therefore directly proportional to the length of I,,. In fact, we may assume, with an error of only
about one or two, that

rp =int [N(z, —zp—1)], n>1, (28)

where “int” denotes “integer part of”. (We could also allow for non-integer values of rays in which case the
“int” would not be needed.)

12



This implies that 7, rays will be reflected onto the interval J,, = [d,,—1,d,] with length d,, — d,,—1. Since
the transformation mapping interval I,, to J, is affine, the distribution of the r,, rays over J,, will be uniform.
Recall that only in the case that the slope of the linear mirror “piece” m,, = 1 is the length of J,, equal to that
of I,,. In all other cases where m,, > 0, the length of J,, is greater than that of I,,. In these latter cases, the r,
rays will be farther apart from each other on J, than they were on I,,. The spacing between these rays over J,
will be (with near zero error)

[ nl
(12l

Ab, = Aa:[ ]Aa, n>1, (29)

sin 26,
where we have used Eq. (26), with 6,, being the angle of orientation of the linear mirror “piece” with respect to
the z-axis.

A greater spacing Ab,, between rays over an interval .J,, compared to their spacing Aa,, over the interval
I, can be interpreted as a lessening of the density of rays — which measures the intensity of the beam — on
Jn, as compared to that of I,,. The distribution of rays on J,,, however, is still uniform, as it was over I,,.

On this note, the (one-dimensional or “lineal”) density of rays, often denoted as “p(z)”, can be defined
in this discrete case as the number of rays per unit length. From our definition of the spacing of rays A in
Eq. (27), the lineal density of our incoming rays is given by

1

- = (30)

p(x) = po=N

Note that we have added a subscript “0” to the Greek letter “p”. This is a quite standard manner to denote
the constancy of a parameter such as density in a problem being studied.
A couple of comments regarding Eq. (30) are in order:

1. The (constant) density po is proportional — in this case equal — to N, the number of rays per unit length.
This makes sense: If you increase N, you increase the number of rays per unit length, hence the density
po- If you decrease N, you decrease the density pg.

2. The (constant) density pg is inversely proportional to Aa, the spacing between consecutive rays. This also
makes sense. If you decrease Aa, you are increasing the number N of rays per unit length, i.e. the density
po- If you increase Aa, you are decreasing the number N of rays per unit length, i.e., the density pg.

These ideas will be important in the discussion that follows.
In a manner analogous to Eq. (30), we now define the (constant) lineal density, o,,, of reflected rays the

interval J,, as the number of rays per unit length which, in turn, is the reciprocal of the (constant) spacing,
Ab,,, of the rays on J,,. From Eq. (29),

1 1
= —— = 1 _— = i > .
on = 3 sin 26,, [Aa} po sin 20, , n>1 (31)

n

Quick check: When 6,, = E, the above equation implies that o, = pg. As 0,, varies away from g, the density

oy, decreases. This looks good.

In fact, let us state this “quick check” result once again for emphasis:

For all 0 € (O, g) except 0 = g, on < po. This is a consequence of the fact that the length of

interval J, is greater than that of I,, except in the case § = g Another way to see this is to use
Eq. (22) to rewrite Eq. (31) as follows,

T
A

(32)
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We can use Eq. (25) to express the relationship between o, and pg in terms of the slope m,, of the linear
mirror piece supported on interval I,,:

on = {nf%mjl] po, n>1. (33)

Graphical representations of densities are often helpful to understand the distributions of “things”, in this
case the intensities of incoming and reflected light rays. Firstly, the density function p(z) of incoming rays
over each interval, I,,, n > 1, on the x-axis is simply the constant function p(z) = pg. Since the intervals I,, can
overlap each other only at the endpoints, we can “paste” these individual graphs together to produce the graph
of the net density function — the constant function p(z) = pg over the union of all intervals, I,,, as sketched
in Figure 11 below. (The horizontal dotted lines have been added to emphasize the ends/endpoints of each
individual component.)

In an effort — but a rather tiny one — to address the complications due to boundary points once again, we
simply state that one can first construct the union of the graphs of individual constant functions p = py over the
open intervals, I, = (x,_1,x,) to produce the constant function p(x) = pg which is defined over all x except
the boundary points x,,. One can then “fill up” this “graph with holes” by defining p(z,) = po to produce the
constant function p(x) defined over all z (or at least all x considered in this problem).

Y

Yy =po

po

| | | | |

I I, I3 In

Figure 11: Plot of constant density function, y = po, for incoming rays over intervals I,,, n > 1.

We now turn our attention to the densities of the reflected rays on the y-axis. As discussed above, there is
a (constant) density o, of reflected rays hitting each interval J,,, n > 1, on the y-axis as per Eq. (31) or (33).
The graph of the portion of the density function o(y) of reflected rays over J,, will then be the constant function
o(y) = o,. The resulting graph of the net density function o(y) of reflected rays will have to involve a union of
these constant functions over the interval. As discussed earlier, however, there is the additional complication
that the intervals J,, could overlap with each other at more than simply boundary points. Such a situation is
sketched in Figure 12 below. The natural question is, “How do we combine the graphs of (possibly different)
constant densities which are supported on overlapping intervals?”

The answer to this question is easy for a point y = y; which lies in only one interval, say J;. At that y, the
density o(y1) will simply be o1 since the only rays coming to it (or near it) are being reflected from the mirror
which is located over the interval I1, i.e., incoming rays which are located over the interval I;.

But what about a point y = yo which lies in two intervals, say J; and J>? This means that y2 (more
properly, a neighbourhood of y, is receiving reflected rays from two sources: (1) incoming rays located at
interval I; and (2) incoming rays located at Iy. From our earlier discussion, source (1) produces reflected rays
with density o1 which implies (from the definition of density) that there are o7 rays per unit length coming from
source (1) and arriving in the vicinity of y2. And source (2) produces reflected rays with density oo, meaning
that there are o rays per unit length coming from source (2) and arriving in the vicinity of y2. Of course,
the result is that there is a net flux of o7 + o2 rays per unit length coming from both sources. In other words,
density functions are additive: At any such yo which belongs to both J; and Ja, o(y2) = 01 + 02.
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Figure 12: Plot of constant density functions, z = oy (y), of reflected rays over overlapping intervals J,
k=1,2,3.

The generalization of this example should be clear: At each y, we add up the densities o) corresponding
to all intervals Ji in which y lies. The net result is a kind of “sum” of the graphs as sketched in Figure 12.
(Possible y; and yo values discussed in the previous paragraph have been identified in the figure.) The resulting
density function o(y) will be a piecewise constant function — it is shown with thicker lines.
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Figure 13: Plot of net density function, z = o(y), composed as a union of graphs of the constant density
functions z = oy defined over the overlapping intervals J, k = 1,2, 3.

15



A return to the piecewise linear approximation of f(x) = 22

In order to illustrate this fact, we show below once again the results presented in Table 1 of this report but
slightly rearranged in order to present them as the endpoints [x,,_1,z,] of intervals I,,, 1 < n < 5, (incoming
rays) which are accompanied by the endpoints [d,,, e,] of the intervals J,, 1 < n < 5, (reflected rays) which

were computed from the endpoints x,, of the J,, using Eqgs. (13) and (14).

g W NN =B

x(n-1)
0.0000000000
0.3176872874
0.5673059903
0.7671940331
0.9359675009

x(n)
0.3176872874
0.5673059903
0.7671940331
0.9359675009
1.0838643199

d(n)
0.0000000000
0.1398353622
0.1558549160
0.1604854457
0.1624811061

e(n)
0.5504626063
0.3913193862
0.3641226988
0.3537567960
0.3484556284

Perhaps the most remarkable observation to be made is that the intervals J, not only overlap with each
other but that they form a nested sequence, i.e.,

113]23133]4315. (34)

This can be explained, at least in part, by the concave upward nature of the function f(z) = 22 which has been
linearly interpolated to produce the above data. Recall that the individual linear “pieces” have the same length
b= =. As n increases from 1, the “pieces” supported on the intervals I,, rotate counterclockwise. This implies
that (1) the intervals I, are getting shorter and (2) the intervals J,, are moving leftward.

The contents of the above table have been used to construct the piecewise constant density function o(y)
for the mirror composed of the five “pieces” that comprise the piecewise linear interpolation of the function
f(x) = 2% shown in Figure 1. A plot of o(y) is shown in Figure 13. It can be compared with the “bin histogram”
approximation for the same distribution shown in Figure 1.

sona))
N
]

Figure 13: Plot of reflected ray density function o(y) produced by mirror surface defined by piecewise linear

interpolation of f(x) = 2? with five “pieces” of length b = 3
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