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Introduction

Our first generation of real solar cookers will be constructed from 4”× 4” mirrors. As in our previous study, we

first consider cookers which are obtained by translating the graphs of convex functions such as y = f(x) = x2

along the z-axis to produce parabolic-like troughs.

In this case, however, the functions f(x) are approximated by piecewise linear functions in order to take

into consideration the flatness of the mirrors which comprise the cooker.

Case No. 1: f(x) = x2

We must first produce a piecewise linear approximation to f(x) = x2 with linear pieces of (mirror) length

b = 1

3
(feet). For simplicity, we choose the approximation to be the interpolation of f(x) = x2 so that the

endpoints (xn, yn) of the linear “pieces” satisfy the condition yn = f(xn) = x2
n
. The FORTRAN program

linterp.f was written to produce such an approximation. (Details on the method used to compute these

endpoints will be given in Appendix 1.) Numerically, we observe that five linear pieces are required to produce

an approximation to f(x) = x2 over the interval [0, 1]. The endpoints (xn, yn) of these five mirrors of length
1

3
are presented below.

n x(n) y(n)

0 0.0000000000 0.0000000000

1 0.3176872874 0.1009252126

2 0.5673059903 0.3218360866

3 0.7671940331 0.5885866845

4 0.9359675009 0.8760351628

5 1.0838643199 1.1747618640

Plots of f(x) = x2 and its linear interpolation to the end of the fifth linear piece are shown in Figure 0 below.
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Figure 0: Plot of f(x) = x2 and its linear approximation with the first five “pieces” of length b =
1

3
.
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The FORTRAN program raylinterp.f was written in order to compute the y-intercepts of rays parallel

to the y-axis travelling from y = ∞ and reflected by the linear “pieces”. (The program raylinterp.f was a

modification of the program raydist4.f from Study I which used the functional form of the linear “pieces”.

Details will be provided in an appendix.) The results obtained from the use of the endpoints tabulated above are

shown in Figure 1 below in the form of a histogram distribution. (Note that as in Study I, only rays that were

reflected directly onto the non-negative y-axis were employed in the histogram. Rays that would theoretically

be reflected into this region after more than one encounter with a mirror were not counted.) Note that the bulk

of the distribution appears to be concentrated over the range y ∈ [0.1, 0.4].
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Figure 1: Distribution of first-reflected rays from piecewise linear interpolation of y = f(x) = x2 with pieces of

length b = 1

3
.

We also mention that the program raydist4.f was checked by computing the reflections produced by in-

dividual mirrors. In each case, the parallel rays hitting an individual mirror were reflected onto an interval of

the y-axis. As the slope of the mirror increased (i.e., linear pieces that lay farther away from the y-axis, the

length of this interval decreased.

As another check, the piecewise linear approximation of y = f(x) = x2 using 15 linear pieces of length

b = 0.1 (to produce an approximation over [0, 1]) was computed using program linterp.f. The endpoints of

this approximation were then used used in program raylinterp.f to produce the distribution of reflected rays

shown in Figure 2 below. As expected, this distribution is more peaked, i.e., less diffuse, than the previous one

and therefore “closer” to the Dirac delta function situated at y = 1

4
which corresponds to the single focal point

of the parabola y = x2.

2



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

y

Figure 2: Distribution of first-reflected rays from piecewise linear interpolation of y = f(x) = x2 with 15 pieces

of length b = 0.1.

Case No. 2: y = f(x) = 1

2
x2

We now investigate briefly the shallower trough produced by the function f(x) = 1

2
x2. The endpoints of

the first five pieces of length b = 1

3
are presented below.

0 0.0000000000 0.0000000000

1 0.3289150449 0.0540925534

2 0.6295147384 0.1981444030

3 0.8946367885 0.4001874917

4 1.1289531226 0.6372675766

5 1.3388297995 0.8962326160

The distribution of reflected rays along the y-axis is shown in Figure 3 below. A comparison with Figure 1

shows that, as perhaps expected since the parabolic trough is now shallower, the distribution of reflected rays

is spread over a wider range. Moreover, the bulk of the distribution in Figure 3 is concentrated over the range

of values y ∈ [0.3, 0.7] as opposed to the range [0.15, 0.4] in Figure 1.
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Figure 3: Distribution of reflected rays from piecewise linear interpolation of y = f(x) = 1

2
x2 with pieces of

length b = 1

3
.
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Solar Cooker No. 1: Parabolic trough with cross-sectional formula y = f(x) = x2

At this preliminary stage, as mentioned earlier, we are using 4”× 4” mirrors to construct our cookers. The first

such cooker, a parabolic trough employing the convex function y = f(x) = x2 (x, y in feet) is shown in Figure

4 below.

Figure 4: “Solar Cooker No. 1: Parabolic trough with cross-sectional formula y = f(x) = x2 employing

4”× 4” mirrors.

One slight modification had to be made to the computations presented earlier since, as can be seen above,

the mirrors are spaced 0.25” apart in order to allow bending of the cardboard on which they are mounted. As

such, the parameter b representing the lengths of the components of the piecewise linear interpolation functions

must be adjusted to 4.25”. The coordinates of the first six endpoints (in feet) of the linear pieces are given

below:

0 0.0000000000 0.0000000000

1 0.3357479939 0.1127267154

2 0.5949977699 0.3540223462

3 0.8012215555 0.6419559810

4 0.9749732576 0.9505728531

5 1.1271178903 1.2703947387

Since the cooker was constructed using inches/feet, the above values were converted to inches,

0 0.0000000000 0.0000000000

1 4.0289759268 1.3527205849

2 7.1399732387 4.2482681541

3 9.6146586657 7.7034717715

4 11.6996790916 11.4068742373

5 13.5254146841 15.2447368646

These are the positions at which the nails at side of the cooker, shown in Figure 5 below, are located. These

nails provide the connection between the side panel and the piecewise linear trough on which the mirrors are

attached.
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Figure 5: Photo of one of the sides of Solar Cooker No. 1 showing the positions of the nails which attach the

side of the cooker to the trough. The nails are located at the endpoints of the mirrors, the linear “pieces”

which interpolate the cross-sectional formula y = f(x) = x2.

Solar Cooker No. 2: 2D cooker composed of four parabolic troughs with cross-

sectional formula y = f(x) = x2.

We then considered a very simple two-dimensional cooker which is composed of four semi-parabolic troughs.

Each of these troughs is composed of 9 4”× 4”-inch mirrors and the bottoms of the troughs are connected to a

square base as shown in Figure 6 below.

B

CD

A

Figure 6: Configuration of two-dimensional Solar Cooker No. 2 composed of four parabolic troughs.
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The square base ABCD may also be filled with 9 mirrors which can reflect light upwards into the central

portion of the cooker.

Upon further reflection (no pun intended), however, we decided that this configuration might be too

“rectangular” or “square” and that each of the 3 × 3-mirror components was too wide. Moreover, we thought

that it might not be possible to install many mirrors in the triangular regions between these components. (The

overall shape of the cooker would be octagonal.) This led to the next cooker configuration.

Solar Cooker No. 3: 2D cooker composed of 8 parabolic troughs with cross-

sectional formula y = f(x) = x2.

As is seen in Figure 7 below, it was decided to take one of the three radial rows of mirrors of each component

and rotate it with respect to the center. This produced four semi-parabolic troughs which were two mirrors

wide along with four semi-parabolic troughs only one mirror wide. It was thought that the latter set of troughs

would focus more light into the middle of the cooker.

Figure 7: Configuration of two-dimensional Solar Cooker No. 3 composed of four major and four minor

semi-parabolic troughs.

There are some options for the regions between the radial troughs. We decided to cut wedge-like pieces

that would connect continuous troughs, keeping their parabolic form. (Note that these pieces are “wedge-like”,

as opposed to purely triangular.) These pieces were covered with aluminum foil. The result is shown in Figure

8 below.

It was then decided to attach one mirror at the upper portion of each of these pieces covered with aluminum

foil. Some mirrors were also attached in the central octagonal region, but this is still in an experimental stage.

(The mirrors are slanted toward the center, as opposed to lying on the flat octagonal base.) The result is shown

in Figure 9 below.
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Figure 8: Solar Cooker No. 3, almost final version.

Figure 9: Solar Cooker No. 3, final version.
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Appendix 1. A Newton-Raphson method to compute endpoints to piecewise linear

approximations of functions

We consider the piecewise linear approximation of a function f(x) with pieces of length b > 0. In our solar-

cooker applications, f(x) is usually even so we’ll consider, for simplicity and without loss of generality, only

non-negative values of x. The situation is sketched in the figure below.

The linear approximations, or simply “pieces”, are supported on intervals In = [xn−1, xn], n ≥ 1, where

x0 = 0, with the conditions,

(xn+1 − xn)
2 + [f(xn+1)− f(xn)]

2 = b2 n = 0, 1, 2, · · · . (1)

Starting with x0, approximations to the interpolation points xn, n ≥ 1, of desired accuracy can be computed

recursively, i.e., from x0 we compute x1, from which we compute x2, etc..

Our Newton-Raphson-like method is as follows. Given xn, n ≥ 0, we wish to find x such that

h(x) = (x− xn)
2 + [f(x)− f(xn)]

2 − b2 = 0 . (2)

(For simplicity of notation, we omit any reference to n in the notation for h.) For our Newton-Raphson function,

we need to compute h′(x),

h′(x) = 2(x− xn) + 2[f(x)− f(xn)]
2f ′(x) . (3)

Our Newton-Raphson (NR) function is then given by

N(x) = x−
h′(x)

h(x)
. (4)

In practice, if we know xn, we can let x = xn + ǫ be the starting point for the NR method where ǫ > 0 is

“reasonable”, not too large, not too small, e.g., b/2?

In the computation presented in Table 1, the approximations xn were determined to an accuracy well

beyond 10−10. Numerically, the lengths of the five “pieces” obtained from these xn, i.e.,

ln =
√

(xn − xn−1)2 + (f(xn)− f(−xn−1))2 1 ≤ n ≤ 5 , (5)

approximate b =
1

3
to at least 10 decimal digits, i.e., 0.3333333333.
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Appendix 2. Determining the y-intercepts of rays reflected from the piecewise

linear approximations to a mirror function f(x) as well as the density distributions

of these rays.

With reference to Appendix 1, we consider the piecewise linear interpolation of f(x) supported on the interval

In = [xn−1, xn], n ≥ 1, as sketched below. The endpoints of this “piece” are (xn−1, yn−1) and (xn, yn), where

yn−1 = f(xn−1) yn = f(xn) . (6)

If we let y = gn(x) be the (affine) function defining this linear “piece”, then a point (x, gn(x)) on this line is

given by
gn(x)− yn−1

x− xn−1

=
yn − yn−1

xn − xn−1

= mn , xn−1 ≤ x ≤ xn , (7)

where mn is the slope of the “piece” with support In. A rearrangement of Eq. (7) yields

gn(x) = yn−1 +mn(x− xn−1) xn−1 ≤ x ≤ xn . (8)

We’ll now use the following result of our previous paper: Suppose that a ray travelling downward and parallel

to the y-axis along the line x = a > 0 is reflected from the mirror surface y = f(x) at the point (a, f(a)) toward

the y-axis. Then the y-intercept of the reflected ray is

d(a) = f(a)−
a

2
f ′(a) +

a

2f ′(a)
. (9)

We now consider any ray which travels downward and is reflected by the linear “piece” supported on In =

[xn, xn−1]. The equation of this “piece” is given by gn(x) in Eq. (8) so we replace f(x) with gn(x) to give

d(a) = gn(a)−
a

2
g′
n
(a) +

a

2g′
n
(a)

. (10)

From Eq. (8),

g′n(x) = mn =
yn − yn−1

xn − xn−1

, xn−1 ≤ x ≤ xn , (11)

and we obtain the following result for d(a),

d(a) = yn−1 +
yn − yn−1

xn − xn−1

(a− xn−1)−
(a

2

) yn − yn−1

xn − xn−1

+
(a

2

) xn − xn−1

yn − yn−1

, xn−1 ≤ a ≤ xn . (12)

Note that d is an affine function of a which implies that interval In = [xn−1, xn] (incoming rays) is transformed

to an interval Jn = [dn, en] on the y-axis (reflected rays) by means of a (linear) scaling followed by a translation.

Let us now determine dn and en.

Some important remarks: Note that we have designated the interval Jn as [dn, en] and not [dn, dn+1]. The

reason for this is that it is not guaranteed – in fact, it would be a rather special case – that the contiguous

intervals Jn and Jn+1 on the y-axis share a common endpoint, as is the case for the In on the x-axis. Without

getting into any formulas right now (that will come later), we simply state that the right endpoint en of Jn
will depend upon the right endpoint (xn, yn) of the linear “piece” supported on In as well as the slope mn of

this “piece”. The left endpoint dn+1 of interval Jn+1 will depend upon the left endpoint (xn, yn) of the linear

“piece” supported on In+1 – the same point used for the computation of en – as well as, however, the slope

mn+1 of this linear “piece”. As such, it is not guaranteed that en = dn+1. In other words, two different linear

“pieces” are being used to generate these two endpoints.

At this point, the reader may wonder, “So which “piece” actually reflects the light ray that impinges upon

a boundary point of the interval In?” The answer is, “It doesn’t matter. Boundary points are isolated

points and therefore negligible with respect to the continuum of the real numbers. (They are also negligible
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with respect to the physical reality that is being modelled!) It is the interior points of the intervals In which

contribute to any “accumulation” of reflected rays. The set of all interior points of In, namely, the open interval

(xn−1, xn) is reflected into the interior open interval of Jn, namely, (dn, en). A proper and rigorous treatment

of this problem would take care of these technicalities. Here, we shall work with closed intervals and assume

that the complications arising from boundary points can be addressed.

That being said, it is quite possible that the intervals Jn of reflected rays can overlap with each other

at more than isolated boundary points. Some examples presented below will demonstrate this. In fact, the

behaviour is even more striking than may have been first imagined.

Returning to our main discussion, we now determine dn and en, the endpoints of Jn. Setting a = xn−1 in

Eq. (12),

dn = d(xn−1) = yn−1 +
(xn−1

2

)

[

−mn +
1

mn

]

. (13)

Setting a = xn in Eq. (12),

en = d(xn) = yn +
(xn

2

)

[

−mn +
1

mn

]

. (14)

We now assume that the mirror function f(x) is increasing for x > 0, implying that mn > 0, and use Eqs. (13)

and (14) to compute ‖Jn‖, the length of the interval Jn as follows,

‖Jn‖ = en − dn = yn+1 − yn +
1

2
(xn+1 − xn)

[

−mn +
1

mn

]

. (15)

In the special case, mn = 1, the term in square brackets on the right side of Eq. (15) vanishes so that

en − dn = yn−1 − yn = xn − xn−1 =⇒ ‖Jn‖ = ‖In‖ . (16)

This is to be expected since the linear mirror “piece” lies at an angle of
π

4
with respect to the x-axis. As a

result, the incoming vertical rays are reflected to become horizontal rays which travel leftward. Let us now see

if we can determine the change in length in general. We’ll rewrite Eq. (15) as follows,

‖Jn‖ = en − dn

= (xn − xn−1)

(

yn − yn−1

xn − xn−1

)

+
1

2
(xn − xn−1)

[

−mn +
1

mn

]

= (xn − xn−1)

[

mn −
1

2
mn +

1

2
mn

]

=
1

2

[

mn +
1

mn

]

‖In‖ , (17)

where ‖In‖ denotes the length of interval In. The remarkable result is that for any mn > 0 but mn 6= 1, the

term in square brackets is greater than two. It might be easy to see this graphically, but let’s provide a

“proof”.

h(x) = x+
1

x
. (18)

Clearly h(1) = 2. Moreover, for any x > 0,

h(x) = h

(

1

x

)

. (19)

Let’s now assume that

x+
1

x
> 2 ∀ x > 0 except x = 1 . (20)

and see if we arrive at a contradiction. Multiply both sides by x > 0 and rearrange to give

x2 + 1 > 2x =⇒ x2 − 2x+ 1 > 0 =⇒ (x − 1)2 > 0 . (21)

Clearly, the above is true for all x > 0 except x = 1. This leads to the remarkable conclusion based on Eq. (17):
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Given a linear mirror “piece” with support In and with slope mn > 0 but mn 6= 1. Then the length

of the interval Jn (obtained from a reflection of interval In) is longer than the length of interval In.

Only in the case mn = 1 is the length of Jn equal to that of In.

An interesting side note: At this point, the reader may be asking: “Hey, wait a minute! If the angle of

incidence equals the angle of reflection, the widths of the incoming and reflected beams for a given linear mirror

“piece” should be the same! What goes on here?”

The reader is entirely correct that the widths of incoming and reflected beams are equal. The length of

the interval Jn of reflected rays on the y-axis, however, is not, in general, width of the beam since the beam is

generally striking the y-axis at an angle to the normal of the y-axis. Only in the special case of a 45o mirror,

where the reflected beam travels horizontally, does the length of Jn coincide with the width of the beam.

This suggests that the coefficient multiplying the term ‖In‖ in Eq. (17) is, in some way, related to the

angle – perhaps its cosine? – between the beam and the normal to the y-axis, i.e., the x-axis. Let us examine

a sketch of the situation shown in Figure 10. Here we show a linear mirror “piece” supported over the interval

θ

O

x

In

Jn

π

2
− θ

y

slope mn

2θ

In

θ

θ

θ
π

2
− θ

Figure 10

In. A downward moving vertical beam of rays with width ‖In‖. The reflected beam of width ‖In‖ then strikes

the y-axis to produce interval Jn. A number of relevant angles have been identified in the figure. Note that the

angle between the reflected beam and the y-axis is 2θn where θn is the angle of incidence of the incoming beam

with respect to the normal of the linear “piece”. This implies that

‖Jn‖ sin 2θn = ‖In‖ =⇒ ‖Jn‖ =
‖In‖

sin 2θn
. (22)

We’ve found our trigonometric relationship between ‖Jn‖ and ‖In‖. The next step is to see if we can rewrite the

sin 2θn term in the denominator in terms of mn, the slope of the linear “piece.” (The answer appears to have

been given in Eq. (17) but we should really derive it.) But just before proceeding, let’s perform a quick check

of the above result to see that we are on the right track. When θn =
π

2
, Eq. (22) implies that ‖Jn‖ = ‖In‖,

which we know to be true from our previous discussions. Things are looking good.

From Figure 10, it follows that the line on which the linear “piece” lies has orientation angle θn with respect

to the x-axis. This implies that

mn = tan θn =
sin θn
cos θn

. (23)

By using an appropriate right triangle with side lengths 1 and mn and therefore a hypotenuse of length
√

1 +m2
n
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(Exercise) we see that

sin θn =
mn

√

1 +m2
n

, cos θn =
1

√

1 +m2
n

. (24)

Let us now return to the coefficient on the right side of Eq. (17),

1

2

[

mn +
1

mn

]

=
m2

n + 1

2mn

=
1

2 sin θn cos θn

=
1

sin 2θn
. (25)

Therefore, Eq. (17) becomes

‖Jn‖ =
1

sin 2θn
‖In‖ , 0 < θ <

π

2
, (26)

in agreement with Eq. (22). where θn is the angle of orientation of the linear “piece” with respect to the x-axis.

Once again, note that only in the case θn =
π

4
are the lengths of the two intervals equal.

Obtaining estimates of the distribution of rays hitting a mirror composed of linear “pieces”

Returning to Eq. (17), we see that for all mn > 0 except mn = 1, there is an expansion of the width of the

incoming interval of rays In+1 after reflection. At first glance, this might seem incorrect. We can certainly see

that in the case mn = 1, i.e., a straight mirror inclined at
π

4
to the x-axis, the width of the interval remains the

same. In the case mn 6= 1, one may be tempted to think that the reflected rays also travel horizontally. Using

such reasoning, simple geometry would show that in the case mn < 1, the interval In+1 is compressed and in

the case mn > 1, the interval In+1 is expanded. Such reasoning is incorrect, however, since the reflected

rays are no longer travelling in parallel, nor are they travelling horizontally! In the case mn < 1,

the reflected rays are travelling leftward and upward. In the case mn > 1, the reflected rays are travelling

bf leftward and downward. From Eq. (17) there is a symmetry between mn and 1/mn, i.e., you get the same

result if mn = A or mn = 1/A for some A > 0. In both cases, you get a spreading of the originally parallel rays.

Now consider a mirrored surface composed of several piecewise linear components, e.g., piecewise linear

interpolation of f(x) = x2 as shown in Figure 0. Now imagine a “homogeneous” beam of light rays travelling

downward and parallel to the y-axis. (By “homogeneous”, we mean that the rays have equal intensity at all

x = a ≥ 0.) From our discussion above, the set of light rays which hits a given “piece” which is supported on

an interval In = [xn−1, xn], i.e., light rays situated at a ∈ In will be reflected to the interval Jn = [dn−1, dn] on

the y-axis, where dn is given in Eq. (13).

Let us now suppose that we model the beam of light rays which impinge on the mirror by means of a discrete

and uniformly distributed set of parallel, downward travelling rays situated at locations xn = an = n∆a where

∆a is very small. For simplicity of discussion, define ∆a as follows,

∆a =
1

N
, (27)

where N a very large integer, e.g., 100 or 1000. This implies that there are roughly N rays in each unit interval

[n, n + 1] on the (positive) x-axis. The number of rays, rn, hitting the nth “piece” supported on interval In,

n ≥ 1, is therefore directly proportional to the length of In. In fact, we may assume, with an error of only

about one or two, that

rn = int [N(xn − xn−1)] , n ≥ 1 , (28)

where “int” denotes “integer part of”. (We could also allow for non-integer values of rays in which case the

“int” would not be needed.)
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This implies that rn rays will be reflected onto the interval Jn = [dn−1, dn] with length dn − dn−1. Since

the transformation mapping interval In to Jn is affine, the distribution of the rn rays over Jn will be uniform.

Recall that only in the case that the slope of the linear mirror “piece” mn = 1 is the length of Jn equal to that

of In. In all other cases where mn > 0, the length of Jn is greater than that of In. In these latter cases, the rn
rays will be farther apart from each other on Jn than they were on In. The spacing between these rays over Jn
will be (with near zero error)

∆bn =
‖Jn‖

‖In‖
∆a =

[

1

sin 2θn

]

∆a , n ≥ 1 , (29)

where we have used Eq. (26), with θn being the angle of orientation of the linear mirror “piece” with respect to

the x-axis.

A greater spacing ∆bn between rays over an interval Jn compared to their spacing ∆an over the interval

In can be interpreted as a lessening of the density of rays – which measures the intensity of the beam – on

Jn as compared to that of In. The distribution of rays on Jn, however, is still uniform, as it was over In.

On this note, the (one-dimensional or “lineal”) density of rays, often denoted as “ρ(x)”, can be defined

in this discrete case as the number of rays per unit length. From our definition of the spacing of rays ∆ in

Eq. (27), the lineal density of our incoming rays is given by

ρ(x) = ρ0 = N =
1

∆a
. (30)

Note that we have added a subscript “0” to the Greek letter “ρ”. This is a quite standard manner to denote

the constancy of a parameter such as density in a problem being studied.

A couple of comments regarding Eq. (30) are in order:

1. The (constant) density ρ0 is proportional – in this case equal – to N , the number of rays per unit length.

This makes sense: If you increase N , you increase the number of rays per unit length, hence the density

ρ0. If you decrease N , you decrease the density ρ0.

2. The (constant) density ρ0 is inversely proportional to ∆a, the spacing between consecutive rays. This also

makes sense. If you decrease ∆a, you are increasing the number N of rays per unit length, i.e. the density

ρ0. If you increase ∆a, you are decreasing the number N of rays per unit length, i.e., the density ρ0.

These ideas will be important in the discussion that follows.

In a manner analogous to Eq. (30), we now define the (constant) lineal density, σn, of reflected rays the

interval Jn as the number of rays per unit length which, in turn, is the reciprocal of the (constant) spacing,

∆bn, of the rays on Jn. From Eq. (29),

σn =
1

∆bn
= sin 2θn

[

1

∆a

]

= ρ0 sin 2θn , n ≥ 1 . (31)

Quick check: When θn =
π

4
, the above equation implies that σn = ρ0. As θn varies away from

π

4
, the density

σn decreases. This looks good.

In fact, let us state this “quick check” result once again for emphasis:

For all θ ∈
(

0,
π

2

)

except θ =
π

2
, σn < ρ0. This is a consequence of the fact that the length of

interval Jn is greater than that of In except in the case θ =
π

2
. Another way to see this is to use

Eq. (22) to rewrite Eq. (31) as follows,

σn =
‖Jn‖

‖In‖
ρ0 . (32)
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We can use Eq. (25) to express the relationship between σn and ρ0 in terms of the slope mn of the linear

mirror piece supported on interval In:

σn =

[

2mn

m2
n
+ 1

]

ρ0 , n ≥ 1 . (33)

Graphical representations of densities are often helpful to understand the distributions of “things”, in this

case the intensities of incoming and reflected light rays. Firstly, the density function ρ(x) of incoming rays

over each interval, In, n ≥ 1, on the x-axis is simply the constant function ρ(x) = ρ0. Since the intervals In can

overlap each other only at the endpoints, we can “paste” these individual graphs together to produce the graph

of the net density function – the constant function ρ(x) = ρ0 over the union of all intervals, In, as sketched

in Figure 11 below. (The horizontal dotted lines have been added to emphasize the ends/endpoints of each

individual component.)

In an effort – but a rather tiny one – to address the complications due to boundary points once again, we

simply state that one can first construct the union of the graphs of individual constant functions ρ = ρ0 over the

open intervals, In = (xn−1, xn) to produce the constant function ρ(x) = ρ0 which is defined over all x except

the boundary points xn. One can then “fill up” this “graph with holes” by defining ρ(xn) = ρ0 to produce the

constant function ρ(x) defined over all x (or at least all x considered in this problem).

y

0 x

ρ0

y = ρ0

I1 I2 I3 In· · ·

Figure 11: Plot of constant density function, y = ρ0, for incoming rays over intervals In, n ≥ 1.

We now turn our attention to the densities of the reflected rays on the y-axis. As discussed above, there is

a (constant) density σn of reflected rays hitting each interval Jn, n ≥ 1, on the y-axis as per Eq. (31) or (33).

The graph of the portion of the density function σ(y) of reflected rays over Jn will then be the constant function

σ(y) = σn. The resulting graph of the net density function σ(y) of reflected rays will have to involve a union of

these constant functions over the interval. As discussed earlier, however, there is the additional complication

that the intervals Jn could overlap with each other at more than simply boundary points. Such a situation is

sketched in Figure 12 below. The natural question is, “How do we combine the graphs of (possibly different)

constant densities which are supported on overlapping intervals?”

The answer to this question is easy for a point y = y1 which lies in only one interval, say J1. At that y, the

density σ(y1) will simply be σ1 since the only rays coming to it (or near it) are being reflected from the mirror

which is located over the interval I1, i.e., incoming rays which are located over the interval I1.

But what about a point y = y2 which lies in two intervals, say J1 and J2? This means that y2 (more

properly, a neighbourhood of y2 is receiving reflected rays from two sources: (1) incoming rays located at

interval I1 and (2) incoming rays located at I2. From our earlier discussion, source (1) produces reflected rays

with density σ1 which implies (from the definition of density) that there are σ1 rays per unit length coming from

source (1) and arriving in the vicinity of y2. And source (2) produces reflected rays with density σ2, meaning

that there are σ2 rays per unit length coming from source (2) and arriving in the vicinity of y2. Of course,

the result is that there is a net flux of σ1 + σ2 rays per unit length coming from both sources. In other words,

density functions are additive: At any such y2 which belongs to both J1 and J2, σ(y2) = σ1 + σ2.
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z

0 y
J1

J2

J3

σ1

σ2

σ3

Figure 12: Plot of constant density functions, z = σk(y), of reflected rays over overlapping intervals Jk,

k = 1, 2, 3.

The generalization of this example should be clear: At each y, we add up the densities σk corresponding

to all intervals Jk in which y lies. The net result is a kind of “sum” of the graphs as sketched in Figure 12.

(Possible y1 and y2 values discussed in the previous paragraph have been identified in the figure.) The resulting

density function σ(y) will be a piecewise constant function – it is shown with thicker lines.

z = σ(y)

0 y
J1

J2

J3

σ1

σ2

σ3

z

y1 y2

Figure 13: Plot of net density function, z = σ(y), composed as a union of graphs of the constant density

functions z = σk defined over the overlapping intervals Jk, k = 1, 2, 3.

15



A return to the piecewise linear approximation of f(x) = x2

In order to illustrate this fact, we show below once again the results presented in Table 1 of this report but

slightly rearranged in order to present them as the endpoints [xn−1, xn] of intervals In, 1 ≤ n ≤ 5, (incoming

rays) which are accompanied by the endpoints [dn, en] of the intervals Jn, 1 ≤ n ≤ 5, (reflected rays) which

were computed from the endpoints xn of the Jn using Eqs. (13) and (14).

n x(n-1) x(n) d(n) e(n)

1 0.0000000000 0.3176872874 0.0000000000 0.5504626063

2 0.3176872874 0.5673059903 0.1398353622 0.3913193862

3 0.5673059903 0.7671940331 0.1558549160 0.3641226988

4 0.7671940331 0.9359675009 0.1604854457 0.3537567960

5 0.9359675009 1.0838643199 0.1624811061 0.3484556284

Perhaps the most remarkable observation to be made is that the intervals Jn not only overlap with each

other but that they form a nested sequence, i.e.,

I1 ⊃ I2 ⊃ I3 ⊃ I4 ⊃ I5 . (34)

This can be explained, at least in part, by the concave upward nature of the function f(x) = x2 which has been

linearly interpolated to produce the above data. Recall that the individual linear “pieces” have the same length

b =
1

3
. As n increases from 1, the “pieces” supported on the intervals In rotate counterclockwise. This implies

that (1) the intervals In are getting shorter and (2) the intervals Jn are moving leftward.

The contents of the above table have been used to construct the piecewise constant density function σ(y)

for the mirror composed of the five “pieces” that comprise the piecewise linear interpolation of the function

f(x) = x2 shown in Figure 1. A plot of σ(y) is shown in Figure 13. It can be compared with the “bin histogram”

approximation for the same distribution shown in Figure 1.
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Figure 13: Plot of reflected ray density function σ(y) produced by mirror surface defined by piecewise linear

interpolation of f(x) = x2 with five “pieces” of length b =
1

3
.
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