C&O 330 - ASSIGNMENT #1

DUE FRIDAY, 1 OCTOBER AT 10:31PM

- (1) (20 points) Give an expression for $[x^n]G$ as an explicit function of n of each of the following two functional equations.
 - (a) (10 points) G = F, where F satisfies the functional equation

$$F = \frac{x}{\left(1 - F\right)^m},$$

where m is a positive integer.

(b) (10 points) $G = e^T$ where T satisfies the functional equation

$$T = xe^T$$
.

- (2) **(20 points)** A regular n-gon (that is, a regular polygon with n sides) A in the plane has a distinguished edge. A *diagonal* of A is a line segment, in the interior of A, joining two vertices of A. Find the number, c_n , of dissections of A into triangles by diagonals that meet only at vertices of A.
- (3) (20 points) Find the number, a_n , of plane planted trees on n non-root vertices with no vertices of degree 2. Your answer should give a_n as an explicit function of n.
- (4) **(20 points)**
 - (a) (10 points) Solve the functional equation

$$P = x \left(\frac{1}{1 - P} + (u - 1) P \right),$$

for $P \equiv P\left(x,u\right)$, where x and u are indeterminates, by giving $\left[x^{n}u^{k}\right]P\left(x,u\right)$ as an explicit expression in n and k.

(b) (10 points) Construct a set \mathcal{P} of combinatorial structures and a weight function ω for \mathcal{P} such that

$$\left[\left(\mathcal{P},\omega\right) \right] _{o}=P\left(x,u\right) .$$

Note that the weight function ω must be of the form

$$\omega \colon \mathcal{P} \to \left\{0, 1, 2, \ldots\right\}^2 \colon \sigma \mapsto \left(\omega_1\left(\sigma\right), \omega_2\left(\sigma\right)\right)$$

where

$$\omega_1, \omega_2 \colon \mathcal{P} \to \{0, 1, 2, \ldots\}$$
.

and the form of the generating series P is

$$P\left(x,u\right) = \sum_{\sigma \in \mathcal{P}} x^{\omega_{1}(\sigma)} u^{\omega_{2}(\sigma)}.$$

1

(**Remark:** You have been introduced to bivariate generating series (generating series in two indeterminates) in Math 239.)