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Abstract. In this paper, we provide evidence to support a posi-
tive answer to a question of Hassett and Tschinkel. In particular,
if an algebraic variety V has a dense set of rational points, they
ask whether or not the set of D-integral points is potentially dense,
where D is a set of codimension at least two. We give a positive
answer to this question in many cases, including varieties whose
generic linear section is a smooth rational curve, and certain K3
surfaces. We also discuss some stronger notions of integrality of
points, and give some positive answers to some cases of the analo-
gous question in the stronger context.

1. Introduction

In [HT], as Problem 2.13 (“The Arithmetic Puncturing Problem”),
Hassett and Tschinkel ask the following question:

Question 1.1. Let X be a projective variety with canonical singular-
ities and D a subvariety of codimension ≥ 2. Assume that rational
points on X are potentially dense. Are integral points on (X,D) po-
tentially dense?

In the paper, they provide positive answers to this question in various
cases, including toric varieties and products of elliptic curves. The
purpose of this paper is to provide a larger set of positive answers
to Question 1.1, to ask a stronger version of Question 1.1 (namely
Question 1.4), and to give a positive answer to the stronger question
in a large number of cases.

Of course, the hypothesis that D has codimension two cannot be
removed, as there are countless well known examples of varieties with
a dense set of rational points but a degenerate set of integral points if
D is a divisor.

In order to state the stronger question, we need to fix some notation
and definitions. Let X be a projective algebraic variety, D ⊂ X a
Zariski closed subset, both defined over a number field k. Let Mk be
the set of places of k. The following definition is a slight generalization
of Definition 1.4.3 in [Vo]:
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Definition 1.2. Let S be a finite set of places of k. A subset R ⊂
X(k)−D(k) is called (D,S)-integralizable if and only if there are global
Weil functions λD,v and non-negative real numbers nv such that nv = 0
for all but finitely many places v for each v, and such that

λD,v(P ) ≤ nv

for all v ∈Mk − S and P ∈ R.

This generalizes [Vo] only in that we do not demand that S contain
the set of infinite places of k. For definitions and discussion of Weil
functions (called “local height functions” by [Si]), see [La], [Si], and
[Vo].

The particular case of this new definition that most interests us in
this paper is the following:

Definition 1.3. A subset R ⊂ X(k) is everywhere D-integral if and
only if R is (D, ∅)-integralizable.

We can now state the stronger version of Question 1.1:

Question 1.4. Let X be a projective variety with canonical singular-
ities and D a subvariety of codimension ≥ 2. Assume that rational
points on X are potentially dense. Are everywhere D-integral points
on X potentially dense?

The classical notion of an integral point is simple one whose coordi-
nates don’t have denominators. In affine space over Q, an integral point
in this sense is one whose closure in a model over Spec(Z) does not in-
tersect the closure of the hyperplane at infinity. One can generalize this
notion to that of an S-integral point, by permitting intersections over
a finite set S of places. If S ′ is the union of S with the set of infinite
places of k, then this corresponds precisely to our notion of (D,S ′)-
integralizable, only with the additional requirement that nv = 0 for all
finite v 6∈ S.

The remainder of the paper is structured as follows. Section 2 estab-
lishes a few preliminaries, regarding various different notions of inte-
gral point and comparing them. Section 3 contains the main theorems
regarding everywhere integral points and Question 1.4, and Section 4
proves results about more classical notions of integral points and Ques-
tion 1.1. The central philosophy of the paper is to prove preliminary
results on curves, and then use those to prove results in higher dimen-
sion when the variety in question is covered by curves.
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3. Preliminaries

In this paper, we will consider four different notions of integrality:

(a) Total (D, ∅)-integrality, where nv = 0 for all finite places v but
there are still constraints at the infinite places.

(b) Sets of integral points in the truly classical sense, which corre-
spond to (D,∞)-integral points, where ∞ represents the set of
infinite places of k.

(c) Everywhere D-integral sets.
(d) (D,S)-integralizable sets.

Note that the last two notions of integrality apply only to sets – they
are not well defined for individual points. Applied to sets, each of these
four notions of integrality are related in the following ways:

Classical (D, ∅)-integrality is the strongest notion of integrality that
we will consider, but Zariski dense sets of classical (D, ∅)-integral points
do exist. For example, if D is empty, then every rational point is
classically (D, ∅)-integral. Any set of classically (D, ∅)-integral points is
also (D,∞)-integral, everywhere D-integral, and (D,S)-integralizable
for any S.

The notions of “classically (D,∞)-integral sets of points” and “ev-
erywhere D-integral sets” are incomparable. The set of points in P1(Q)
of the form [n : 1] for n ∈ Z is classically D-integral for D =∞, but is
not everywhere D-integral, because if λ∞ is the Weil function for∞ at
the infinite place, then for any real number B, there are only finitely
many n for which λ∞(n : 1) ≤ n. Conversely, let X = P2, with D =
{[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [1 : 0 : 0], [1 : 0 : 1], [1 : 1 : 0], [1 : 1 : 1]}.
Then since every rational point in P1 is congruent to one of the seven
points in D modulo 2, there are no classically D-integral points ... but
by setting n2 = 2, one easily obtains an infinite set of everywhere D-
integral points, for example points of the form {[2k+ 1 : 2 : 2]} for any
odd integer k.

Finally, a set which satisfies any of the first three definitions of inte-
grality is automatically (D,S)-integral for any choice of S (if we require
S to contain all the infinite places).

We would like to be able to prove results for classical everywhere
D-integral sets of points, but have not yet been able to surmount the
additional technical obstacles created by the additional restriction.
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If D is a very ample divisor, then there are no infinite, everywhere
D-integral sets.

Theorem 3.1. Let X be a projective algebraic variety, D a very ample
divisor on X (all defined over a number field k), R an everywhere D-
integral subset of X(k). Then R is finite.

Proof: We start by proving the theorem forX = Pn
k andD = {x0 = 0}.

Any set of everywhere D-integral points is a set of k-rational points in
the affine piece x0 6= 0 whose coordinates have v-adic absolute value
absolutely bounded for each infinite place v. Moreover, there is an
integer N such that every point in R can be written as a fraction of
integers in Ok whose denominator divides N . Thus, every coordinate
of every point of the set R lies in a compact subset of Minkowski
space (that is, the product of the archimedean completions of k modulo
complex conjugation), and is a subset of the lattice 1

N
Ok, so by the

geometry of numbers R must be finite. It follows that the set R must
be finite.

More generally, let X be an arbitrary projective variety, D an arbi-
trary very ample divisor. Then there is an embedding φ : X → Pn such
that φ∗({x0 = 0}) = D. Furthermore, φ(R) must be an everywhere
{x0 = 0}-integral set, so it must be finite, implying the finiteness of R.
♣

By contrast, if D = ∅, then an everywhere D-integral set is simply
a set of rational points, and there are many examples of Zariski dense
sets of rational points. In this article we provide nontrivial examples
of such sets, in order to illuminate the spectrum of possibilities.

4. Everywhere Integral Points

We begin with a theorem about everywhere integral points on curves
with respect to an arithmetic zero-cycle.

Theorem 4.1. Let V be an algebraic variety defined over a number
field k, and let V be a model of V over Spec(Ok). Let C be an irreducible
curve on V , and let C be its closure in V. Let D be a Zariski closed
subset of V , and let D be its closure in V.

For every place v of k, let nv be a non-negative real number such that
nv = 0 for all but finitely many places v. Choose Weil functions λD,v

for each place v. Assume that there is a point P ∈ C(k) satisfying

λD,v(P ) ≤ nv

for every place v.
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If D ∩ C = ∅ and C(k) is infinite, then there are infinitely many
points Q ∈ C(k) satisfying

λD,v(Q) ≤ nv

Proof: Let S be the set of places v of k such that either v is archimedean,
or D ∩ C is supported on v. Note that S is finite.

For each v 6∈ S, λD,v(Q) = 0 for all Q ∈ C, so we may restrict our
attention to v ∈ S.

If v is finite with corresponding prime π of Ok, then the condition
λD,v(P ) < nv depends only on the residue class of P modulo a suitable
power of π. (See for example subsection 2.2.2 of [BG].) Thus, the
collection of all Q ∈ C(k) satisfying λD,v(Q) ≤ nv for all finite v con-
tains the set of points Q such that Q ≡ P (mod N) for some suitable
nonzero N ∈ Ok.

If v is infinite, then the restriction λD,v(Q) ≤ nv defines the comple-
ment of an open disk in the v-adic topology.

There are now two cases: either the geometric genus of C is zero, or
one.

If the geometric genus of C is zero, then the theorem now follows
immediately from the Weak Approximation Theorem for P1.

Weak Approximation does not hold for curves of genus one, however,
so we must work a bit harder. The set B of points Q such that Q ≡ P
(mod N) for some nonzero N ∈ Ok contains the image on C of a
coset of a finite index subgroup A of the Mordell-Weil group of the
normalization C̃ of C over k. It remains to show that B contains an
infinite subset satisfying λD,v(Q) ≤ nv for all the infinite places v.

The subgroup A is infinite by assumption, so it contains a point
R 6= P of infinite order. If we let C′ be the completion of C̃ with
respect to the product of all the infinite v-adic topologies, it becomes
a finite union of complex tori. By Kronecker’s Theorem in diophantine
approximation (see for example Theorem 443 of [HW]), the identity
element of C ′ is a limit point of the subgroup A. After translation by
some element in the inverse image of R, and pushing forward to C, we
see that B has infinite intersection with arbitrarily small neighbour-
hoods of R (in the product of infinite topologies). A small enough such
neighbourhood will consist entirely of points satisfying λD,v(Q) ≤ nv

for all the infinite places v, so the theorem is proven. ♣

The main theorems of this section crucially use Theorem 4.1 to es-
tablish the density of integral points in higher dimension.

Theorem 4.2. Let X be a projective variety defined over a number
field k, embedded in Pn so that the intersection of X with a generic
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linear space of codimension dimX − 1 is a curve of genus zero. Let
D be an algebraic subset of X of codimension at least two. Then,
possibly after some finite extension of k, there is a Zariski dense set of
everywhere D-integral points on X. In particular, Question 1.4 has a
positive answer for (X,D).

Proof: We first choose a model X for X over SpecOk, and let D be
the closure of D in X . Choose a global Weil function λD for D, with
corresponding local Weil functions λD,v.

Choose an algebraic point P not contained in the support of D or
the singular set of X, and define non-negative real numbers nv by
nv = λD,v(P ). After a finite extension of k, we may assume that P is
k-rational. Since this is the only time when a finite extension of k is
necessary, we will fix that finite extension now and assume hereafter
that k is large enough.

A generic linear space of codimension dimX−1 through P intersects
X in a curve of genus zero, which must be birational to P1

k by Bertini’s
Theorem because it contains the smooth point P . Let A be the set of
linear spaces L that satisfy the following conditions:

• L is defined over k.
• L contains P .
• L ∩X is a curve of genus zero that is smooth at P .
• L∩D is empty, so that L∩D is an arithmetic zero-cycle, where
L is the closure of L in X .

By Theorem 4.1, for any L ∈ A, there are infinitely many rational
points Q on L ∩X such that

λD,v(Q) ≤ nv

for all v. The union of such curves is dense in X. To see this, note that
the union of all linear spaces L that pass through P and are defined
over k is Zariski dense in X. The conditions of being smooth at P and
intersecting D trivially are both nonempty open conditions (because
D has codimension at least two in X), so the union of the curves in A
must be dense in X. We conclude that there is a Zariski dense set of
everywhere D-integral points, as desired. ♣

Remark 4.3. Theorem 4.2 applies in a great many cases. For example,
if X is a cone over a rational normal curve in projective space and D
is a finite set of points on X, then Theorem 4.2 implies that the set of
everywhere D-integral points on X is potentially Zariski dense.

We can prove a variation on Theorem 4.2 using the group structure
on an elliptic surface.
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Theorem 4.4. Let π : X → P1 be an elliptic surface, defined over a
number field k, and let E be the corresponding elliptic curve over k(t).
Let S be the identity section of π (that is, the section corresponding to
the identity element of E). Assume that there is a curve C on X with
an infinite set of k-rational points, and such that C is not a component
of a fibre of π, such that C does not correspond to a torsion point of
E. Let D be a finite set of points on X such that D ∩ S = ∅. Then
there is an everywhere D-integral set of points on X. In particular,
Question 1.4 has a positive answer for (X,D).

Proof: By replacing C with a suitable multiple of itself (in the group
law on E), we may assume that C ∩ D = ∅. (For each fibre F of
π that intersects D, either C ∩ F has infinite order on F – in which
case any large enough multiple of C will be disjoint from D on F –
or else multiply C by a positive integer n divisible enough so that
nC ∩ F = S ∩ F 6∈ D.) Let X be a regular model of X over Spec(Ok),
and let C and D be the closures of C and D, respectively, in X .

By Theorem 4.1, C contains an infinite, everywhere D-integralizable
set of points.

Moreover, by Silverman’s Specialization Theorem (Theorem 11.4 of
Chapter III of [Si2]), we may assume that all but finitely many of
those everywhere D-integral points lies on a smooth fibre of π, and has
infinite order as an element of that fibre.

We conclude that there is an infinite set G of k-rational points on P1

such that for all P ∈ G, π−1(P ) is a smooth elliptic curve containing an
everywhere D-integral point of infinite order, and such that π(D)∩G =
∅.

Any fibre F of π with π(F ) ∈ G is therefore a smooth elliptic curve
with F ∩D = ∅, and with an everywhere D-integral point P of infinite
order. Again by Theorem 4.1, all such fibres contain an infinite set of
everywhere D-integral points. ♣

5. S-integral Points

We begin by proving the following variation on Theorem 4.1. It will
play a similarly central role in this section.

Theorem 5.1. Let V be an algebraic variety defined over a number
field k, and let V be a model of V over Spec(Ok). Let C be an irreducible
curve on V , and let C be its closure in V. Let D and N be Zariski closed
subsets of V , and let D and N be their closures in V, respectively. Let
L = D ∪ N , and let S be a set of places of k that contains all the
archimedean places of k.
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For every place v of k with v 6∈ S, let nv be a non-negative real
number such that nv = 0 for all but finitely many places v. Choose
Weil functions λL,v for each place v. Assume that there is a point
P ∈ C(k) satisfying

λL,v(P ) ≤ nv

for every place v 6∈ S.
If N ∩C = ∅ and C contains an infinite set of (D,S)-integral points,

then there are infinitely many points Q ∈ C(k) satisfying

λL,v(Q) ≤ nv

for every place v 6∈ S.

Proof: Since C(k) is infinite, it follows that C must have geometric
genus zero or one. The condition that C contain a dense set of D-
integral points implies that C must intersect D in at most two places
of C (places in the sense of points of the normalization of C), and that
C ∩D = ∅ if C has genus one.

The case in which C ∩D = ∅ follows a fortiori from Theorem 4.1, so
we assume that C is a genus zero curve with either one or two places
supported on D. Let π : C̃ → C be the normalization map over k. The
set of points R of C̃ with π(R) 6∈ D are a principal homogeneous space
for an arithmetic group (Ga if there is one place of C on D, and Gm

if there are two places), so by choosing a point R0 on C̃, we can give
the (π∗D,S)-integral points of C̃ the structure of an arithmetic group
G. The set B of points Q of C such that Q ≡ P (mod N) for some
nonzero N ∈ Ok – which, as before, is contained in the set of points Q
satisfying λL,v(Q) ≤ nv for all v not in S – contains the image on C of
a coset of a finite index subgroup A of G, and is therefore infinite, as
desired. ♣

Remark 5.2. Note that the naive analogue of Theorem 5.1 in the setting
of Theorem 4.1 is false. That is, if C is isomorphic to Ga or Gm, then
even if C ∩D is empty (over k), it’s possible that the set of everywhere
D-integral points of C are finite and nonempty. In both cases, the
integral points of C are a finitely generated abelian group. If we choose
k = Q, and consider the archimedean place of Q, then the only limit
points of the integral points of C are the place(s) at infinity. Thus, if
the set {Q | λD,∞(Q) ≤ n∞} does not include a place at infinity, then
it will be finite and discrete.

Theorem 5.1 enables us to prove the following result, in the same
spirit as Theorem 4.2.
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Theorem 5.3. Let X be a projective variety defined over a number
field k, embedded in Pn so that the intersection of X with a generic
linear space of codimension dimX − 1 is a curve of genus zero. Let D
be a proper Zariski closed subset of X whose codimension one (in X)
component has degree at most two. Let S be a finite set of places of k,
containing all the archimedean places. Then, possibly after some finite
extension of k, there is a Zariski dense set of everywhere (D,S)-integral
points on X.

Proof: The proof is eerily similar to the proof of Theorem 4.2. We
first choose a model X for X over SpecOk, and let D be the closure of
D in X . Choose a global Weil function λD for D, with corresponding
local Weil functions λD,v. Also, write D = D′+N , where D′ is a (Weil)
divisor and N is a cycle of codimension at least two. (The components
of N need not all have the same dimension.)

Choose an algebraic point P not contained in the support of D or
the singular set of X, and define non-negative real numbers nv by
nv = λD,v(P ). After a finite extension of k, we may assume that P is
k-rational, and that the unit group of the ring of integers Ok is infinite.
Since this is the only time when a finite extension of k is necessary, we
will fix that finite extension now and assume hereafter that k is large
enough.

A generic linear space of codimension dimX−1 through P intersects
X in a curve of genus zero, which must be birational to P1

k by Bertini’s
Theorem because it contains the smooth point P . Let A be the set of
linear spaces L that satisfy the following conditions:

• L is defined over k.
• L contains P .
• L ∩X is a curve of genus zero that is smooth at P .
• L∩N is empty, so that L∩N is an arithmetic zero-cycle, where
L is the closure of L in X .

By Theorem 5.1 applied to D′ and N , for any L ∈ A, there are infinitely
many rational points Q on L ∩X such that

λD,v(Q) ≤ nv

for all v 6∈ S. (Since D′ has degree at most two, the curve L ∩ X
is a curve of genus zero whose normalization is either P1, Ga, or Gm.
The first two kinds of curves cannot have a finite but nonempty set
of integral points for any k, and the infinitude of the unit group of
Ok ensures the same for Gm.) The union of such curves is dense in
X. To see this, note that the union of all linear spaces L that pass
through P and are defined over k is Zariski dense in X. The conditions



10 DAVID MCKINNON AND YI ZHU

of being smooth at P and intersecting N trivially are both nonempty
open conditions (because N has codimension at least two in X), so the
union of the curves in A must be dense in X. We conclude that there
is a Zariski dense set of (D,S)-integral points, as desired. ♣
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