
V. Combinatorics and Lie Algebra.

REPRESENTATIONS OF THE LIE ALGEBRA sl2(C)

Theorem 5.1. Let V =
⊕

j∈Z Vj be a finite dimensional vector space over the complex

numbers C. Let dj := dimC Vj for each j ∈ Z (so dj = 0 except for finitely many indices).
Assume that X and Y are linear transformations from V to V such that:
(i) X : Vj → Vj+2 for each j ∈ Z;
(ii) Y : Vj → Vj−2 for each j ∈ Z;
(iii) if Vj is nonzero then it is an eigenspace for H := XY−YX with eigenvalue j, for each
j ∈ Z.
Then it follows that:
(a) X : Vj → Vj+2 is injective for all j ≤ −1;
(b) X : Vj → Vj+2 is surjective for all j ≥ −1;
(C) Xj : V−j → Vj is bijective for all j ∈ N.
(d) Consequently,

d−2k ≤ d−2k+2 ≤ · · · ≤ d−2 ≤ d0 ≥ d2 ≥ · · · ≥ d2k−2 ≥ d2k

and
d−2k+1 ≤ d−2k+3 ≤ · · · ≤ d−1 = d1 ≥ · · · ≥ d2k−3 ≥ d2k−1

and d−k = dk for all k ∈ N.

Proof. Let V and X, Y, H : V → V be as in the hypothesis. Since V is finite dimensional,
there is a largest integer k such that Vk is nonzero. Let v0 be a nonzero vector in Vk;
notice that Xv0 = 0 since Xv0 ∈ Vk+2 = 0. For each m ∈ N, let vm := Ymv0, and let U
be the subspace of V spanned by {v0,v1, . . .}. We claim that U is invariant under the
linear transformations X, Y, and H.

Since H := XY − YX, it suffices to prove that X : U → U and Y : U → U . By
construction of U , it is clear that Y maps U to U . To show that X(U) ⊆ U we show that
there exist integer constants c(k,m) such that Xvm = c(k,m)vm−1 for all m ≥ 1. We
prove this by induction on m ≥ 1; for the basis m = 1 we have

Xv1 = XYv0 = Hv0 + YXv0 = kv0,

since v0 ∈ Vk and Xv0 = 0, and so c(k, 1) = k is determined. Now assume that c(k,m)
exists, and apply induction and the fact that vm ∈ Vk−2m:

Xvm+1 = XYvm = Hvm + YXvm = (k− 2m)vm + c(k,m)Yvm−1 = (c(k,m) + k− 2m)vm,

from which we see that c(k,m + 1) = c(k,m) + k − 2m, and hence U is invariant under
the linear transformation X. Solving the recurrence for c(k,m) with the initial condition
c(k, 0) = 0 results in c(k,m) = km− 2

(
m
2

)
= (k −m + 1)m for all m ∈ N.
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Now, since V is finite dimensional, there is a smallest integer ` such that V` 6= 0.
Since vm ∈ Vk−2m for each m ∈ N, this implies that vm = 0 for all sufficiently large m.
Notice that if c(k,m) 6= 0 and vm−1 6= 0 then Xvm = c(k,m)vm−1 6= 0, so vm 6= 0; also,
c(k,m) = (k − m + 1)m = 0 if and only if m = 0 or m = k + 1. Since v0 6= 0 we see
that v0,v1,v2, . . . ,vk−1,vk are nonzero. Also, if vk+1 6= 0 then vm 6= 0 for all m ≥ k + 1;
since this is impossible, we must have vk+1 = 0, and hence vm = Ym−k+1vk+1 = 0 for all
m ≥ k +1. Since vm ∈ Vk−2m for each 0 ≤ m ≤ k, these vectors are linearly independent,
and hence form a basis for U . Also, since k ≥ −k we see that k ∈ N.

Now let w1, . . . ,wt be vectors in V such that (v0, . . . ,vk,w1, . . . ,wt) is an ordered basis
of V . We may choose such vectors wi to be homogeneous (that is, each is contained in
one of the subspaces Vj). With respect to this ordered basis, the linear transformations
X, Y : V → V are represented by matrices of the following forms:

X =

[
X ′ 0

∗ X̃

]
and Y =

[
Y ′ 0

∗ Ỹ

]
.

Here, X ′ and Y ′ represent X and Y acting on U , with respect to the ordered basis

(v0, . . . ,vk). Also, X̃ and Ỹ represent X and Y acting on the quotient space V/U =⊕
j Vj/Uj via the definitions

X̃(w + U) := X(w) + U and Ỹ(w + U) := Y(w) + U

for all w ∈ V . (Since X(U) ⊆ (U) and Y(U) ⊆ U , these linear transformations X̃ and Ỹ
are well-defined.) One easily checks that the hypotheses (i), (ii), and (iii) are satisfied by

X̃ and Ỹ acting on V/U , and so we can apply induction on the dimension of V to assume
that the theorem holds on V/U .

Now fix any j ∈ Z, and consider the submatrix Xj of X with rows indexed by basis
vectors of degree j + 2 and columns indexed by basis vectors of degree j. This has the
form

Xj =

[
X ′

j 0

∗ X̃j

]
in which X ′

j and X̃j are the corresponding submatrices of X ′ and of X̃, respectively. By
the structure of U determined above, X ′

j is the empty matrix if j 6∈ {−k,−k + 2, . . . , k−
2}, while if j ∈ {−k,−k + 2, . . . , k − 2} then it is the 1-by-1 matrix with sole entry
c(k, (k − j)/2), which is nonzero.

To prove (a), let j ≤ −1, so that j < k. By induction, we know that X̃ : (V/U)j →
(V/U)j+2 is injective. That is, the columns of X̃j are linearly independent. Since j < k,
if X ′

j is not empty then its entry c(k, (k − j)/2) is nonzero, while all other entries in the
first row of Xj are zero. Hence, the columns of Xj are linearly independent. Therefore,
X : Vj → Vj+2 is injective.

To prove (b), let j ≥ −1, so that j > −k−2. By induction, we know that X̃ : (V/U)j →
(V/U)j+2 is surjective. That is, the columns of X̃j span Vj+2/Uj+2. Since j > −k − 2, if
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X ′
j is not empty then c(k, (k− j)/2) 6= 0, while all other entries in the first row of Xj are

zero. Hence, the columns of Xj span Vj+2.
To prove (c), let j ∈ N and consider the matrix Xj representing Xj : V → V with

respect to the ordered basis given above. Then

Xj =

[
(X ′)j 0

∗ X̃j

]
By induction on the dimension of V , X̃j : (V/U)−j → (V/U)j is an isomorphism, for all
j ∈ N, and from the structure of U we see that (X′)j : U−j → Uj is an isomorphism for
all j ≡ k (mod 2) with 0 ≤ j ≤ k, and hence for all j ∈ N. Therefore X : V−j → Vj is an
isomorphism for all j ∈ N.

Part (d) follows immediately from parts (a), (b), and (c). �

There are a few remarks to be made about this theorem. First, for the induction step,
in part (a) if j = k then X : Uk → Uk+2 is not injective, since Uk = Cv0 while Uk+2 = 0;
similarly, in part (b) if j = −k−2 then X : U−k−2 → U−k is not surjective, since U−k−2 = 0
while U−k = Cvk. The conditions j ≤ −1 in part (a) and j ≥ −1 in part (b) exclude
these possibilities for all k ∈ N.

Second, the conclusions (a), (b), and (c) of Theorem 1 have a dual form.

Proposition 5.2. Under the hypotheses of Theorem 1:
(a’) Y : Vj → Vj−2 is injective for all j ≥ 1;
(b’) Y : Vj → Vj−2 is surjective for all j ≤ 1;
(c’) Yj : Vj → V−j is bijective for all j ∈ N.

Proof. In the proof of Theorem 1, just verify (a’), (b’), and (c’) inductively at the appro-
priate point. �

Third, it is possible to find an ordered basis (v0, . . . ,vk,w1, . . . ,wt) as in the proof of
Theorem 1 such that the matrices X and Y are block diagonal:

X =

[
X ′ 0

0 X̃

]
and Y =

[
Y ′ 0

0 Ỹ

]
.

Then W := spanC{w1, . . . ,wt} is an invariant subspace of V such that V = U
⊕

W ; that
is, an invariant subspace complementary to U . This leads to a more detailed structure
theorem than the one given above. However, the theorem above suffices for the applica-
tions I have in mind, and avoids the rather intricate proof of existence of complementary
invariant subspaces.

A LITTLE LIE ALGEBRA

Fourth, what is a representation of the Lie algebra sl2(C) anyway? Abstractly, a complex
Lie algebra is a finite dimensional complex vectorspace L together with a bilinear operation
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[·, ·] : L × L → L which is skew-symmetric ([a, b] = −[b, a] for all a, b ∈ L) and satisfies
the Jacobi condition:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ L.

(Notice that [a, a] = 0 for all a ∈ L, as a consequence of skew-symmetry.) This bilinear
operation is the Lie bracket on L. Lecture 8 of [W. Fulton and J. Harris, “Representation
Theory: a First Course,” GTM 129, Springer-Verlag, New York, 1991] gives a good expla-
nation of the motivation for this definition. The Lie algebra sl2(C) has a three-element
basis {x, y, h} and the Lie bracket is determined by

[x, y] = h and [h, x] = 2x and [h, y] = −2y.

Exercise: Check that the Jacobi condition is satisfied in sl2(C).
A representation of the Lie algebra L is a finite dimensional nontrivial vectorspace

V 6= {0} and a linear transformation T : L → End(V ) such that T ([a, b]) = T (a)T (b) −
T (b)T (a) for all a, b ∈ L. Here, End(V ) denotes the algebra of all endomorphisms of
V ; that is, all linear transformations from V to V . The hypotheses of Theorem 1 imply
that T (x) := X and T (y) := Y and T (h) := H determines a representation T : sl2(C) →
End(V ) on the vectorspace V . (The usual, but imprecise, language is to refer to V itself
as a representation of the Lie algebra, the transformation T being understood.) For
our purposes, the phrase “representation of sl2(C)” can be taken as shorthand for “the
hypotheses of Theorem 1 are satisfied”.

Let V be a representation of a Lie algebra L. A subspace U of V is said to be L-invariant
(or just “invariant”) provided that T (a)(U) ⊆ U for all a ∈ L. The representation V is
irreducible if the only invariant subspaces of V are the trivial ones: {0} and V itself. For
each k ∈ N, let U(k) be the (k +1)-dimensional vectorspace with basis {v0, . . . ,vk}, with
linear transformations X, Y : U(k) → U(k) defined by Y(vm) := vm+1 for 0 ≤ m < k and
Y(vk) = 0, and X(vm) = (k −m + 1)mvm−1 for all 0 < m ≤ k and X(v0) = 0. These are
exactly the invariant subspaces U which appear in the proof of Theorem 1.
Exercise: Show that U(k) is an irreducible representation of sl2(C), for each k ∈ N.
Exercise: Show that U(k) for k ∈ N are all the irreducible representations of sl2(C).

The existence of a complementary invariant subspace, as in the third point above, im-
plies that any representation of sl2(C) can be decomposed into a direct sum of irreducible
representations V = U(k1) ⊕ · · · ⊕ U(kr). Moreover, in such a decomposition the multi-
set of indices k1, . . . , kr is determined by V , and thus does not depend on the particular
decomposition. The general statement is that every representation of a semisimple Lie
algebra can be decomposed as a direct sum of irreducible representations. This is known
as Weyl’s Theorem; a proof is given in Section 6.3 of [J.E. Humphreys, “Introduction
to Lie Algebras and Representation Theory,” GTM 9, Springer-Verlag, New York, 1972].
In particular, we have a nice structure theorem for representations of sl2(C); any such
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representation V can be decomposed, essentially uniquely, in the form

V =
∞⊕

k=0

U(k)⊕m(k)

for some sequence of multiplicities m : N → N such that m(0) + m(1) + · · · is finite.
A nice way to see the uniqueness of the multiplicities m(k) of the irreducible represen-

tations U(k) in the above decomposition is by means of the Poincaré polynomial of the
graded vector space V =

⊕
j∈Z Vj; this is defined to be the Laurent polynomial

P (V ; t) :=
∞∑

j=−∞

(dimC Vj)t
j.

For example, for each k ∈ N, the Poincaré polynomial of U(k) is

P (U(k); t) = t−k + t−k+2 + · · ·+ tk−2 + tk =
t−k−1 − tk+1

t−1 − t
.

Now, if V is decomposed as above, then on the level of Poincaré polynomials

P (V ; t) =
∞∑

k=0

m(k)

(
t−k−1 − tk+1

t−1 − t

)
.

Thus, if k is the largest exponent of t appearing in P (V ; t) then the multiplicity of U(k)
in V is m(k) = dimC Vk; by induction, all of the remaining multiplicities m(k− 1), m(k−
2), . . . ,m(1), m(0) can then be determined.
Exercise: If V and W are representations of sl2(C) such that P (V ; t) = P (W ; t) then
there is an isomorphism of vectorspaces φ : V → W such that Xφ = φX and Yφ = φY.

EXAMPLE: THE BOOLEAN REPRESENTATIONS OF sl2(C)

Let A be a finite set, let P(A) be the set of all subsets of A, and let CP(A) denote the
complex vectorspace consisting of all formal linear combinations of subsets of A, so P(A)
is a basis for CP(A). Define two linear transformations X and Y on CP(A) as follows. For
any subset S ⊆ A,

X(S) :=
∑

a∈ArS

(S ∪ {a}) and Y(S) :=
∑
a∈S

(S r {a}),

and these actions are extended linearly to all of CP(A). Next, we verify that the hypothe-
ses of Theorem 1 are satisfied.

Let n := #A, let 0 ≤ j ≤ n, let Pj(A) denote the set of j-element subsets of A, and let
S ∈ Pj(A). Define a relation S ∼ T on P(A) to mean that #S = #T and #(S4T ) = 2,
in which 4 denotes the symmetric difference of sets. One checks that

XY(S) = j · S +
∑
T∼S

T
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and
YX(S) = (n− j) · S +

∑
T∼S

T,

from which it follows that S is an eigenvector of H := XY−YX with eigenvalue j−(n−j) =
2j − n. Thus, for each 0 ≤ j ≤ n, CPj(A) is an eigenspace for H with eigenvalue
2j − n, and from the definition of X and Y it is clear that X : CPj(A) → CPj+1(A) and
Y : CPj(A) → CPj−1(A). This verifies conditions (i), (ii), and (iii) of the hypothesis of
Theorem 1. Therefore, X : CPj(A) → CPj+1(A) is injective if j < n/2 and surjective if
j ≥ n/2, and Xn−2j : CPj(A) → CPn−j(A) is bijective if j < n/2. Part (d) of Theorem 1
implies some inequalities for binomial coefficients. There are much easier ways to prove
these inequalities; however, we will make genuine use of these Boolean representations of
sl2(C) in later sections.

By the binomial theorem, we see that the Poincaré polynomial of the Boolean repre-
sentation CP(A) is

P (CP(A); t) = (t−1 + t)#A.

We’ll see a structural interpretation of this formula in the next section.
Exercise: Determine the multiplicities of the irreducible representations in the decom-
positions of the Boolean representations.

ASIDE: TENSOR PRODUCTS OF REPRESENTATIONS

Let V and W be representations of sl2(C), and let {v1, . . . ,vd} and {w1, . . . ,wt} be
bases for V and W , respectively. The tensor product of V and W is the complex vec-
torspace V ⊗ W with basis {vi ⊗ wj : 1 ≤ i ≤ d and 1 ≤ j ≤ t}. Clearly, we have
dimC(V ⊗W ) = (dimC V )(dimC W ). The tensor product of vectors satisfies

c(v ⊗w) = (cv)⊗w = v ⊗ (cw)

and
(u + v)⊗w = u⊗w + v ⊗w

for any scalar c ∈ C and vectors u,v ∈ V and w ∈ W . (It is linear in the W factor,
as well.) Not every vector in V ⊗W can be written in the form v ⊗w with v ∈ V and
w ∈ W ; these vectors are called pure tensors. Since V ⊗W has a basis consisting of pure
tensors, each vector in V ⊗W is a linear combination of pure tensors. Now define linear
transformations X, Y : V ⊗W → V ⊗W as follows:

X(v ⊗w) := X(v)⊗w + v ⊗ X(w)

and
Y(v ⊗w) := Y(v)⊗w + v ⊗ Y(w)

for any pure tensor v ⊗w in V ⊗W , extended linearly to all of V ⊗W .
Exercise: Check that X and Y are well-defined linear transformations in End(V ⊗W ).
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Exercise: Check that X and Y defined above generate a representation of sl2(C) on V ⊗W .
Exercise: Check that the Poincaré polynomial of V ⊗W is

P (V ⊗W ; t) = P (V ; t) · P (W ; t).

Since the Poincaré polynomial of U(1) is t−1 + t, this shows that the Boolean represen-
tations of the previous section are exactly the tensor powers U(1)⊗n of U(1).
Exercise: Determine the multiplicities of the irreducible representations in U(k)⊗ U(`)
for all k, ` ∈ N.
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GROUP ACTIONS AND EQUIVARIANT REPRESENTATIONS

Let V be a representation of sl2(C), and let G be a group of invertible linear transfor-
mations acting on V . We say that V is G-equivariant when Xg = gX and Yg = gY for all
g ∈ G. Let

V G := {v ∈ V : g(v) = v for all g ∈ G}
be the subspace of G-invariant vectors in V . (Notice that V G really is a subspace of V .)

Proposition 5.3. Let V be a representation of sl2(C) and let G be a group of invertible
linear transformations on V . Assume that V is G-equivariant, and that the G-invariant
subspace of V is not trivial: V G 6= {0}. Then V G is an sl2(C)-invariant subspace of V ,
and hence is itself a representation of sl2(C).

Proof. We must check that X(V G) ⊆ V G and Y(V G) ⊆ V G. So, let v ∈ V G and let g ∈ G;
then g(Xv) = Xg(v) = Xv and g(Yv) = Yg(v) = Yv. Since Xv ∈ V G and Yv ∈ V G we
have checked that X(V G) ⊆ V G and Y(V G) ⊆ V G, so V G is an invariant subspace of V .
Since V G 6= {0}, it is a representation of sl2(C) contained in V . �

For the combinatorial applications, we apply Proposition 3 to the Boolean represen-
tations. For a finite set A, each permutation σ ∈ SA of the elements of A induces a
permutation σ ∈ SP(A) of the subsets of A:

σ(S) := {σ(a) : a ∈ S}.
This permutation σ of the set P(A) of basis elements extends linearly to an invertible linear
transformation on CP(A), which we again denote by σ. In this way, any permutation
group G ≤ SA can be regarded as a group of invertible linear transformations on CP(A).

Corollary 5.4. Let A be a finite set, and let G ≤ SA be a group of permutations on A.
Then CP(A)G is a representation of sl2(C).

Proof. For each 0 ≤ j ≤ n := #A, let vj be the sum of all j-element subsets of A. Then
vj is G-invariant for each 0 ≤ j ≤ n, so CP(A)G 6= {0}. By Proposition 3, to complete
the proof it suffices to check that CP(A) is G-equivariant. We will show that Xσ = σX
for all σ ∈ G; the analogous verification for Y is similar. To show that Xσ = σX it suffices
to verify this equation when applied to every vector in the basis P(A). So, consider any
subset S ⊆ A, and calculate that

Xσ(S) =
∑

a∈Arσ(S)

(σ(S) ∪ {a}) =
∑

a∈ArS

σ(S ∪ {a}) = σX(S).

Similarly, Yσ = σY for every σ ∈ G; hence, CP(A) is G-equivariant, completing the
proof. �

Exercise: Let G ≤ SA be a group of permutations acting on the finite set A. Denote the
orbits of G acting on P(A) by O1, · · · , Od, and for 1 ≤ i ≤ d define vi :=

∑
S∈Oi

S. Show
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that {v1, · · · ,vd} is a basis for CP(A)G.

APPLICATION: UNLABELLED GRAPHS AND EDGE-RECONSTRUCTION

An unlabelled graph is more properly described as an isomorphism class of graphs. Let
g(n, k) be the number of unlabelled simple graphs with n vertices and k edges.
Exercise: Verify the entries of the following table:

k 0 1 2 3 4 5 6 7 8 9 10
g(5, k) 1 1 2 3 5 6 5 3 2 1 1

This sequence is palindromic (it is equal to its reverse sequence) and unimodal (it is weakly
increasing up to its maximum, and afterwards it is weakly decreasing). A palindromic
unimodal sequence of positive integers is a “smoking gun” indicating the presence of
a representation of sl2(C). By considering the Poincaré polynomials, we see that the
decomposition of this representation into irreducibles is

U(10)⊕ U(6)⊕ U(4)⊕ U(2)⊕ U(2)⊕ U(0).

To construct the desired representations of sl2(C), let Nn := {1, 2, . . . , n} and let A :=
B(n, 2) be the set of 2-element subsets of Nn. A (labelled) simple graph with vertex-set
Nn corresponds bijectively with a subset of B(n, 2), that is, with an element of P(A).
The symmetric group Sn has a natural action as a group of permutations on A = B(n, 2);
this induces a group of permutations on P(A). The orbits of Sn acting on P(A) are the
isomorphism classes of all graphs with vertex-set Nn; these correspond bijectively with
the isomorphism classes of all n-vertex graphs. By the exercise at the end of the previous
section, the Poincaré polynomial of CP(A)Sn is thus

P (CP(A)Sn ; t) =

n(n−1)/2∑
k=0

g(n, k)t2k−n(n−1)/2.

By Corollary 4, we know that CP(A)Sn is a representation of sl2(C), and Theorem 1(d)
implies that the sequence (g(n, k) : 0 ≤ k ≤ n(n − 1)/2) is palindromic and unimodal.
In summary, we have proved the following proposition.

Proposition 5.5. For each n ∈ N, the sequence (g(n, k) : 0 ≤ k ≤ n(n − 1)/2) is
palindromic and unimodal.

We can extract more information from Theorem 1 in this situation. To do this, define
the edge-deck of an unlabelled graph G to be the multiset D(G) of unlabelled graphs
obtained by deleting each edge of G one at a time. Let m(J, G) denote the multiplicity
with which J appears in the edge-deck of G. Here is an example: For another example,
consider the complete bipartite graph K1,3 and the graph K3∪K1 consisting of a triangle
and an isolated vertex. It is easy to check that D(K1,3) = D(K3 ∪ K1), consisting of
K1,2 ∪K1 with multiplicity three. The Edge-Reconstruction Conjecture is that this is the
only degeneracy in the transformation G 7→ D(G). More precisely, the conjecture is that
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Figure 1

if G and H are unlabelled simple graphs such that D(G) = D(H), then either G = H or
one of them is K1,3 and the other is K3 ∪K1.

From the fact that CP(B(n, 2))Sn is a representation of sl2(C), we obtain the following
result, due to Stanley, that the Edge-Reconstruction Conjecture holds for all “dense”
graphs.

Theorem 5.6 (Stanley). For each n ∈ N and n(n − 1)/4 < k ≤ n(n − 1)/2, the Edge-
Reconstruction Conjecture holds for graphs with n vertices and k edges.

Proof. The unlabelled simple graphs G with n vertices correspond bijectively with the
orbits of Sn acting on P(B(n, 2)). The size of the orbit O(G) corresponding to G is
n!/#aut(G), in which aut(G) is the automorphism group of G. We identify G with the
sum of all (labelled) graphs γ ⊆ B(n, 2) in the corresponding orbit O(G), so G is an Sn-
invariant vector in V := CP(B(n, 2)); these vectors form a basis for V Sn . It is convenient
to fix an arbitrary labelled graph γ0 ∈ O(G), and to observe that

G =
∑

γ∈O(G)

γ =
1

#aut(G)

∑
σ∈Sn

σ(γ0).

Next, we consider the image of G under the transformation Y:

Y(G) =
∑

γ∈O(G)

Y(γ) =
1

#aut(G)

∑
σ∈Sn

∑
e∈γ0

σ(γ0 r {e})

=
1

#aut(G)

∑
J∈D(G)

m(J, G)(#aut(J)) · J.

Accordingly, let ∆ : V Sn → V Sn be the endomorphism of V Sn represented by the diagonal
matrix with (G, G)-entry given by ∆G,G := #aut(G) for every unlabelled graph G with n
vertices. Let M be the endomorphism of V Sn represented by the matrix with (J, G)-entry
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given by MJ,G := m(J, G) for each pair of unlabelled n-vertex graphs. Notice that

M(G) =
∑

J

m(J, G) · J.

We have verified the equation Y = ∆M∆−1. Proposition 2(a’) implies that Y : V Sn
j →

V Sn
j−2 is injective for j ≥ 1. This is equivalent to the condition that M : V Sn

j → V Sn
j−2

injective for j ≥ 1. This implies that the transformation G 7→ D(G) from n-vertex
unlabelled graphs to their edge-decks is injective provided that n(n−1)/4 < k, completing
the proof. �
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APPLICATION: THE q-BINOMIAL COEFFICIENTS

First, we recall a few facts about the q-binomial coefficients; these are all proved in
Section 5 of the C&O 330 Course Notes (in the reserve folder at the Library).

For nonnegative integers a, b ∈ N, let L(a, b) be the set of all lattice paths in Z × Z
from (0, 0) to (a, b). It is easy to see that #L(a, b) =

(
a+b

b

)
by constructing a bijection

between L(a, b) and the set B(a + b, b) of b-element subsets of Na+b. For P a lattice path
in L(a, b), let area(P ) denote the area of the compact subset of R2 bounded by the path
P and the line segments from (0, 0) to (0, b), and from (0, b) to (a, b). For a finite set
S ⊆ N of nonnegative integers, let sum(S) :=

∑
s∈S s.

Exercise: Define a bijection between L(a, b) and B(a + b, b) such that if P ∈ L(a, b)
corresponds to S ∈ B(a + b, b) then

area(P ) +

(
b + 1

2

)
= sum(S).

For present purposes, we will define the q-binomial coefficients to be the generating
functions of these sets of lattice paths with respect to area:[

a + b
b

]
q

:=
∑

P∈L(a,b)

qarea(P ).

From another point of view, this is the generating function for all partitions λ such that
λ1 ≤ a and `(λ) ≤ b, with each such partition λ contributing q|λ|. It is easy to see that
the generating function for all subsets S ⊆ Nn with S contributing x#Sqsum(S) is

(1 + qx)(1 + q2x) · · · (1 + qnx).

By using the above bijection we derive the q-Binomial Theorem: for any n ∈ N,

(1 + qx)(1 + q2x) · · · (1 + qnx) =
n∑

k=0

qk(k−1)/2

[
n
k

]
q

xk.

A slightly more intricate argument results in an explicit formula for the q-binomial
coefficients. For each m ∈ N, let

[m] := 1 + q + q2 + · · ·+ qm−1 =
1− qm

1− q

and let [m]! := [m][m− 1] · · · [3][2][1]. Then[
n
k

]
q

=
[n]!

[k]![n− k]!
,
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a lovely result. (For a proof of this we refer back to Section 5 of the C&O 330 Course
Notes.) For example, since [6] = [3](1 + q3) = [3][2](1− q + q2), we calculate that[

7
3

]
q

=
[7][6][5]

[3][2][1]
= [7][5](1− q + q2)

= 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 5q6 + 4q7 + 4q8 + 3q9 + 2q10 + q11 + q12

From the combinatorial definition, it is clear that the q-binomial coefficients are poly-
nomials in q with nonnegative integer coefficients. We observe in this example that the
sequence of coefficients is palindromic and unimodal, and we suspect the existence of a
representaation of sl2(C) which decomposes as

U(12)⊕ U(8)⊕ U(6)⊕ U(4)⊕ U(0).

To construct the desired representations of sl2(C), fix a, b ∈ N and let A := Nb × Na.
Think of this as the Ferrers diagram of the partition consisting of b parts of size a. From
the above remarks, we want the generating function for all partitions λ with Fλ ⊆ A, with
respect to the number of boxes of Fλ. To apply Corollary 4, we consider the set P(A) of
all subsets of A, and look for a group G ≤ SA of permutations on A such that each orbit
of G acting on P(A) contains the Ferrers diagram of exactly one partition. Having found
such a group, it follows that the dimension of CPj(A)G is the number of partitions λ with
Fλ ⊆ A and |λ| = j. That is, in terms of the Poincaré polynomial of CP(A)G,[

a + b
b

]
q

= qab/2P (CP(A)G; q1/2).

Since CP(A)G is a representation of sl2(C) by Corollary 4, it follows from Theorem 1(d)
that the sequence of coefficients of the q-binomial coefficient is palindromic and unimodal.

To complete the proof, we must find an appropriate group G ≤ SA of permutations
acting on A. Consider an arbitrary subset B of the boxes of A. If we allow ourselves to
arbitrarily permute the boxes within each column, then there is a unique subset B′ in the
orbit of B such that if a box (i, j) is in B′ then every box above (i, j) is also in B′. Now,
if we allow ourselves to permute the columns of A – but keeping the order of the boxes
fixed within each column – then there is a unique subset B′′ in the orbit of B′ such that
if a box (i, j) is in B′′ then every box either above or to the left of (i, j) is also in B′′.
This means that B′′ is the Ferrers diagram of a partition. Let G be the group generated
by the permutations of these two types; this is the wreath product Sa[Sb] of the symmetric
groups Sa and Sb. More explicitly, let H := Sb × · · · × Sb with a factors, in which the
j-th factor is acting as permutations on column j of A. For each σ ∈ Sa, define σ̃ ∈ SA

by σ̃(i, j) := (i, σ(j)) for all (i, j) ∈ A. Then K := {σ̃ : σ ∈ Sa} is a subgroup of SA

isomorphic to Sa. The wreath product Sa[Sb] is generated by all permutations in H ∪K.
(In fact, any permutation in Sa[Sb] can be written as a composition k ◦ h with k ∈ K and
h ∈ H.) The following exercise completes the proof of Proposition 7.
Exercise: Show that for each subset B ⊆ A, there is a unique subset B′′ ⊆ A in the orbit
of Sa[Sb] acting on P(A) such that B′′ is the Ferrers diagram of a partition.
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In summary, we have proved the following proposition.

Proposition 5.7. For any a, b ∈ N, the coefficients of of

[
a + b

b

]
q

form a palindromic

unimodal sequence of positive integers.

LOGARITHMIC CONCAVITY

Turning back to a question from the first homework assignment, let q(n, k) be the
number of connected (labelled) graphs with vertex-set {1, 2, . . . , n} and with k edges. We

were able to compute the polynomials Qn(t) :=
∑n(n−1)/2

k=0 q(n, k)tk quite efficiently. For
example, Q6(t) is

1296t5 +3660t6 +5700t7 +6165t8 +4945t9 +2997t10 +1365t11 +455t12 +105t13 +15t14 +t15.

The sequence of coefficients of Q6(t) is evidently unimodal, but certainly not palindromic.
Less obviously, it is an example of a logarithmically concave sequence. A sequence
a0, a1, . . . , ad of real numbers is logarithmically concave provided that a2

j ≥ aj−1aj+1 for
all 1 ≤ j ≤ n− 1.
Exercise: Show that if (aj) is a logarithmically concave sequence of positive real num-
bers, then it is a unimodal sequence.
Let A(t) =

∑m
i=0 ait

i and B(t) =
∑n

j=0 bjt
j be polynomials with nonnegative real coeffi-

cients.
Exercise: Show that if (ai) and (bj) are logarithmically concave sequences then the se-
quence of coefficients (ck) of C(t) := A(t)B(t) is also logarithmically concave.
Exercise: Show that if (ai) and (bj) are palindromic unimodal sequences then (ck) is too.
Exercise: Give an example to show that it is possible for the sequences (ai) and (bj) to
be unimodal, but for (ck) to fail to be unimodal.

Logarithmically concave sequences seem to crop up all over the place in certain kinds of
enumeration problems. Often, the evidence is empirical and no proofs are available. One
instance of this is a famous conjecture of Mason from the late 1960s. (The conjecture is
made more generally for matroids – the statement below is for the special case of graphs.)

Conjecture 5.8 (Mason). Let G = (V, E) be a finite connected graph (possibly with loops
or multiple edges) with m edges, and for 0 ≤ j ≤ m let qj(G) be the number of connected
spanning subgraphs of G with exactly j edges. Then the sequence (qj(G)) is logarithmically
concave.

Verification of this conjecture for any reasonably interesting classes of graphs would be a
very interesting development in enumerative graph theory.

By now you might be thinking: “Okay, fine, logarithmic concavity is interesting, but
what does it have to do with representations of sl2(C)?” I am so glad you asked. . . .;-)


