CO 220 Winter 2009 Homework #1

Four questions due Friday, January 16th.

- 1. There are 6^4 possible outcomes when rolling four ordinary 6-sided dice. Count how many of these outcomes are of each of the following types:
- (a) no pairs;
- (b) exactly one pair;
- (c) exactly two pairs;
- (d) three of a kind (but not four);
- (e) four of a kind.

(As a check, notice that every outcome is of exactly one of these types, so the answers must sum up to 6^4 .)

2. Continuing Exercise 1, say that when rolling four dice an outcome is a run if it shows four different but consectutive numbers. That is, the dice show $\{1,2,3,4\}$ or $\{2,3,4,5\}$ or $\{3,4,5,6\}$ in some order. Is rolling a run more or less likely than rolling three (but not four) of a kind? Explain.

(over...)

- **3.** Assume that people's birthdays are independently and uniformly distributed over the seven days of the week from Sunday to Saturday. (This is a reasonable approximation since twins are relatively rare.) Let p(n) denote the probability that in a randomly chosen group of n people, at least two of them are born on the same day of the week.
- (a) Give a formula for p(n) as a function of n. (Check that your answer gives p(2) = 1/7.)
- (b) Complete the following table, expressing your answers both as exact fractions and as approximations to six decimal places.

n	p(n)	p(n)
1	0/1	0.000000
2	1/7	0.142857
3	·	
4		
5		
6		
7		
$n \ge 8$	1/1	1.000000

- **4(a)** Show that for $n, t, k \ge 1$, the number of n-element multisets with elements of t types in which **exactly** k different types of element occur (at least once each) is $\binom{t}{k}\binom{n-1}{k-1}$.
- **4(b)** Show that for $n, t \geq 1$,

$$\binom{n+t-1}{t-1} = \sum_{k=1}^{t} \binom{t}{k} \binom{n-1}{k-1}.$$