CO453: Network Design – Winter 2007

Instructor: Chaitanya Swamy

Assignment 4

Due: Monday, March 12, 2007 after class

You must give a proof of correctness of any algorithm you design, and argue briefly why it runs in polynomial time. You may use any proof or algorithm covered in class directly.

Q1: Recall the LP relaxation for the weighted set cover problem.

min
$$\sum_{S} w_S x_S$$
 subject to $\sum_{S:e \in S} x_S \ge 1 \quad \forall e; \quad x_S \ge 0 \quad \forall S.$

Consider the following algorithm for the set cover problem. Solve the above LP relaxation to get an optimal solution x^* . Now pick every set S such that $x_S^* > 0$, that is, return the collection of sets $\{S: x_S^* > 0\}$ as the solution. Prove that this is a B-approximation algorithm, where $B = \max_e |\{S: e \in S\}|$ is the maximum number of sets an element lies in. (Remember to also argue that the solution returned is feasible, that is, it is a set cover.) (10 marks)

(Hint: Use Complementary Slackness.)

Q2 [Vazirani]:

Given a directed graph G = (V, E) with costs c_v on the vertices, the feedback vertex set problem on directed graphs is to find a minimum-cost set of vertices whose removal makes the graph acyclic. That is, we want to find a set $V' \subseteq V$ of minimum cost such that the graph $G' = (V \setminus V', E[V \setminus V'])$ is acyclic, where $E[S] = \{(u, v) \in E : u, v \in S\}$. The set V' is called a feedback vertex set.

A tournament is a directed graph G = (V, E) where for every pair $u, v \in V$, exactly one of the edges (u, v) or (v, u) is in E. (Think of G representing a tournament between players represented by the vertices, where every pair of players play against each other and each match results in a win for one of the players.) We will design a 3-approximation algorithm for the feedback vertex set problem on tournament graphs. In the following, G = (V, E) will denote a tournament.

- (a) Show that V' is a feedback vertex set iff the graph $G' = (V \setminus V', E[V \setminus V'])$ contains no directed triangles (cycles of length 3). (4 marks)
- (b) Using part (a), formulate the feedback vertex set problem on tournaments as a set cover problem and argue that one of the approximation algorithms for set cover covered in class yields a 3-approximation for this set cover instance.

 (6 marks)
- Q3: Consider the following variant of the set cover problem. We are given a universe U of n elements, and a collection S of subsets over U. We are also given a collection of pairs $\mathcal{P} = \{(S,T) : S, T \in S\}$ that partition S (that is, each set $S \in S$ appears in exactly one pair (S,T) of \mathcal{P}) with the property that for every element $e \in U$ and every pair $(S,T) \in \mathcal{P}$ at most one of the sets S and T contains element e. Each element $e \in U$ has a weight w_e . The goal is to pick a collection S' of sets choosing exactly one set from every pair of \mathcal{P} , so as to maximize the weight of the covered elements, i.e., $\sum_{e \in \bigcup_{S \in S'}} w_e$. This problem is NP-hard, and we will design various approximation algorithms for

the problem. Notice that this is a maximization problem, so an α -approximation algorithm is an algorithm that returns a solution of value at least α times the optimum, where α lies in [0, 1]. Thus, in order to prove an approximation guarantee, we now need find a good upper bound on the optimum value against which one can compare the value of the solution returned by our algorithm.

(a) Consider the following simple algorithm. For every pair $(S,T) \in \mathcal{P}$, pick set S with probability 0.5 and set T with probability 0.5 (the two events are mutually exclusive, i.e., exactly one of S and T is picked). Prove that the expected weight of the covered elements is at least $0.5 \sum_{e \in U} w_e$, and hence the algorithm is a randomized 0.5-approximation algorithm. What is the upper bound that is being used here?

We can give an improved $(1-\frac{1}{e})$ -approximation algorithm using LP-rounding. Consider the following IP formulation of the problem:

$$\max \sum_{e \in U} w_e z_e \tag{IP}$$

s.t.
$$\sum_{S \in \mathcal{S}: e \in S} x_S \ge z_e \qquad \forall e \in U,$$

$$x_S + x_T = 1 \qquad \forall (S, T) \in \mathcal{P},$$
(1)

$$x_S + x_T = 1 \qquad \forall (S, T) \in \mathcal{P},$$
 (2)

$$x_S, z_e \in \{0, 1\}$$
 $\forall S \in \mathcal{S}, e \in U.$ (3)

Here z_e is a variable that indicates if element e is covered, and x_S indicates if set S is picked. Constraint (1) says that if element e is covered, we must pick a set S that contains e; constraint (2) says that exactly one set S of every pair must be selected. Relaxing the integrality constraints (3) to $0 \le x_S, z_e \le 1$ yields an LP relaxation (LP) (note that we need to impose that $z_e \le 1$).

(b) Let (x^*, z^*) be an optimal LP solution, and let $OPT = \sum_e w_e z_e^*$. We round this to an integer solution (\hat{x}, \hat{z}) as follows. For a pair $(S, T) \in \mathcal{P}$, we set exactly one of \hat{x}_S and \hat{x}_T to 1, setting $\hat{x}_S = 1$ with probability x_S^* and $\hat{x}_T = 1$ with probability x_T^* . We do this independently for every pair in \mathcal{P} . Set $\hat{z}_e = \min(1, \sum_{S \in \mathcal{S}: e \in \mathcal{S}} \hat{x}_S)$. It is clear that (\hat{x}, \hat{z}) is a feasible solution to (IP). Prove for every element e, if e lies in k sets, then $\Pr[\hat{z}_e = 1] = \Pr[\hat{x}_S = 1 \text{ for some } S \in \mathcal{S} \text{ s.t. } e \in S] \geq (1 - (1 - \frac{1}{k})^k) z_e$.

You may use the following inequality: given numbers $y_1, \ldots, y_k \in [0, 1]$, we have

$$1 - (1 - y_1)(1 - y_2)\dots(1 - y_k) \ge 1 - \left(1 - \frac{\sum_{i=1}^k y_i}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right)\left(\sum_{i=1}^k y_i\right),$$

where the second inequality holds when $\sum_{i=1}^{k} y_i \leq 1$.

- (c) Using part (b) and the fact that $\left(1 \left(1 \frac{1}{k}\right)^k\right) \ge \left(1 \frac{1}{e}\right)$, prove that the expected weight of the covered elements is at least $\left(1 \frac{1}{e}\right) \cdot OPT$. (3 marks)
- (d) (Bonus part) One can improve the approximation ratio further to 0.75 by combining the algorithms in parts (a) and (b). First, prove that if an element e is contained in k sets of S, then the probability that e is covered by the algorithm in part (a) is $1-2^{-k}$. Now consider the following hybrid algorithm: pick exactly one of the above two algorithms, choosing each exclusively

with probability 0.5, and run the chosen algorithm. Prove that in the solution returned by the hybrid-algorithm, the probability that an element e is covered is at least $0.75z_e^*$, and hence, that the hybrid-algorithm is a 0.75-approximation algorithm. (7 marks)

(e) (Bonus part) One can also give a "pure" LP-rounding algorithm that attains an approximation ratio of 0.75. Consider a generalization of the rounding procedure in part (b), where we set \hat{x}_S to 1 with probability $g(x_S^*)$, and $\hat{x}_T = 1$ with probability $g(x_T^*)$ for a pair (S,T), where g is a function such that g(y) + g(1-y) = 1 for all $y \in [0,1]$. (Thus, the earlier rounding procedure corresponds to the function g(y) = y.) Give a function g for which this algorithm returns a solution of expected value at least $0.75 \cdot OPT$. (8 marks)

(Hint: Consider linear functions g first, and think about the probability that set S is picked in the hybrid algorithm. The following facts may be useful in the analysis. Given a twice differentiable function $f: \mathbb{R} \to \mathbb{R}$, (i) f is called *convex* if $f''(x) \geq 0$ for all x. (ii) f is convex iff for all $x, y, \lambda \in [0, 1]$, $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$, (iii) if h is a linear function and $f(a) \leq h(a)$, $f(b) \leq h(b)$, then $f(x) \leq h(x)$ for all $x \in [a, b]$. f is called *concave* if -f is convex.)