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Abstract. We first give an example of a rigid structure of computable di-

mension 2 such that the unique isomorphism between two non-computably
isomorphic computable copies has Turing degree strictly below 0′′, and not

above 0′. This gives a first example of a computable structure with a degree

of categoricity that does not belong to an interval of the form [0(α),0(α+ 1)]
for any computable ordinal α. We then extend the technique to produce a rigid

structure of computable dimension 3 such that if d0, d1, and d2 are the de-

grees of isomorphisms between distinct representatives of the three computable
equivalence classes, then each di < d0 ⊕ d1 ⊕ d2. The resulting structure is

an example of a structure that has a degree of categoricity, but not strongly.

1. Introduction

In mathematics, we often identify structures up to isomorphism. We consider
isomorphic copies of the same object to be the same. In computable structure
theory, we need to be careful. Even if a structure has a computable presentation,
it could be that not all computable copies are computably isomorphic. That is,
computability theoretically, they are not the same. Indeed, in the case that they
are the same, we have the following definition.

Definition 1.1. A computable structure A is computably categorical if for all
computable B ∼= A there exists a computable isomorphism between A and B.

What if a computable structure is not computably categorical? There are a
couple of interesting questions we might ask. One is, how many equivalence classes
does the structure have up to computable isomorphism? This number, which is
at most ω, is known as the computable dimension of the structure. The other
is, does the structure have a natural Turing degree where it becomes computably
categorical?

Goncharov was first to construct a structure of finite computable dimension
[Gon80]. There has been much further work on constructing structures of finite
computable dimension with various properties [Har93], [CGKS99], [Hir02].

Towards the second question, we first extend the definition of computably cate-
gorical to other degrees.

Definition 1.2. A computable structure A is d-computably categorical if for all
computable B ∼= A there exists a d-computable isomorphism between A and B.

Goncharov related these notions by showing that if a structure is 0′-computably
categorical, then it must have computable dimension 1 or ω [Gon82]. That is, the
structures of finite computable dimension are necessarily unpleasant to build, in
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the sense that the fact that the various computable copies are indeed isomorphic
cannot be verified by a limit computable isomorphism.

The various constructions of structures of finite computable dimension all use an
infinite injury type construction, and so are all 0′′-categorical. No effort is made to
control the complexity of the isomorphism(s).

The following definition intends to pin down the level of complexity required
to compute isomorphisms of a given computable structure, and to say which Tur-
ing degrees can be realized as levels of complexity of isomorphisms of computable
structures.

Definition 1.3. A structure A has degree of categoricity d if A is d-computably
categorical, and for all c such that A is c-computably categorical, d ≤ c. We
say a degree d is a degree of categoricity if there is some structure with degree of
categoricity d.

Degrees of categoricity have been widely studied since they were first introduced
by Fokina, Kalimullin and Miller in [FKM10]. So far, all examples constructed have
been in intervals of the form [0(α),0(α+1)], and have had the following property,
which is stronger than merely being a degree of categoricity.

Definition 1.4. A degree of categoricity d is a strong degree of categoricity if
there is a structure A with computable copies A0 and A1 such that d is the degree
of categoricity for A, and every isomorphism f : A0 → A1 satisfies deg(f) ≥ d.

Fokina, Kalimullin and Miller [FKM10] showed that all strong degrees of cate-
goricity are hyperarithmetical. Later, Csima, Franklin and Shore [CFS13] showed
that in fact all degrees of categoricity are hyperarithmetical. Recently, Csima and
Harrison-Trainor [CHTar] have shown that the only “natural” degrees of categoric-
ity are those of the form 0(α) for some computable α, and moreover that any
computable structure has a strong degree of categoricity “on a cone”.

In the first half of the paper we construct a rigid computable structure with
computable dimension 2, and demonstrate a method for controlling the degree of
the isomorphism between the two copies. Indeed, we show the existence of a degree
of categoricity d which does not lie in an interval of the form [0(α),0(α+1)] for any
computable ordinal α, answering an open question as stated in [FKM10],[Fra17],
and [AC16].

Theorem 1.5. There is a rigid computable structure with computable dimension 2
such that the isomorphism f between two computable copies satisfies f 6≥T ∅′ and
f ≤T ∅′′, and therefore in particular f <T ∅′′.

We obtain as a corollary.

Corollary 1.6. There is a rigid computable structure which has a degree of cate-
goricity that does not belong to an interval of the form [0(α),0(α+1)] for any com-
putable ordinal α.

One of the original aims of this paper was to show that there exists a structure
that has a degree of categoricity but not strongly. We approached the problem by
showing that we could control the degree of the isomorphism in the construction of
a structure of finite computable dimension. In the mean time, we have received a
preprint from Bazhenov, Kalimullin, and Yamaleev [BKYar], that shows as its main
result the existence of a structure with a degree of categoricity but not strongly.
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Their approach uses a new notion of “spectral dimension”, and their structure is
0′-computably categorical, so in particular has computable dimension ω. We feel
that our approach is of independent interest since it relates the natural notions of
computable dimension and degrees of categoricity.

In the second half of the paper we apply the ideas of the first half to carry
out a more involved construction: that of a rigid computable structure with com-
putable dimension 3, and which has a degree of categoricity but no strong degree
of categoricity. That is, we prove the following.

Theorem 1.7. There exists a rigid structure of computable dimension 3 such that
if d0, d1, and d2 are the degrees of isomorphisms between distinct representatives
of the three computable equivalence classes, then each di < d0 ⊕ d1 ⊕ d2 ≤ 0′′.

We thus obtain the desired corollary.

Corollary 1.8. There is a rigid computable structure with computable dimension 3
which has a degree of categoricity d ≤ 0′′, but has no strong degree of categoricity.

Neither our example nor the paper of [BKYar] answers the question of whether
all degrees of categoricity are strong. That is, the degree of categoricity that our
structure constructed in section 4 has is indeed a strong degree of categoricity as
witnessed by a different structure.

2. Notation and Conventions

For general references, see Harizanov [Har98] for computable structure theory,
and Soare [Soa16] for computability theory.

Our constructions will make use of Friedberg enumerations.

Definition 2.1. Let S ⊆ P(ω).
A c.e. Friedberg enumeration of S is a c.e. binary relation ν such that for all

i 6= j, ν(i) 6= ν(j), where ν(i) = {x | (i, x) ∈ ν}, and S = {ν(i) | i ∈ ω}.

For each S ⊆ ω, we let G(S) be the rigid graph associated to S. That is, for
each A ∈ S, G(S) has a connected component with a root node with an (n + 3)-
cycle attached to the root for each n ∈ A, and no other components. It is easy
to see that a computable copy of G(S) gives a c.e. Friedberg enumeration of S,
and conversely. Under this association, isomorphisms between computable copies
of G(S) correspond to bijections f : ω → ω such that ν(i) = µ(f(i)), where ν and µ
are Friedberg enumerations of the same set. The effectiveness of the correspondence
guarantees that the Turing degree of the isomorphism between two computable
copies of G(S) is the same as that of the bijection f to which it corresponds. We opt
to work directly with c.e. Friedberg enumerations instead of with the corresponding
graphs. However, bearing in mind the strength of the correspondence, we will adopt
much of the terminology associated with graphs. We note that our correspondence
can be extended to associate arbitrary c.e. binary relations with (non-rigid) graphs.
Because of this, we will refer to c.e. binary relations as structures, and fix an effective
list (ρe)e∈ω of all such relations. If ν and µ are c.e. binary relations, we let ν(i) and
µ(i) be as in the definition of c.e. Friedberg enumerations. We refer to a bijection
f : ω → ω for which ν(i) = f(µ(i)) for every i as an isomorphism from ν to µ.
Note that if there is a unique isomorphism from ν to µ, then they are c.e. Friedberg
enumerations of the same set. Furthermore, given a c.e. binary relation ν, we often
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refer to i ∈ ω as a component of ν, since i can be viewed as a name for the connected
component associated to ν(i) in the corresponding graph.

3. Computable dimension 2

This section is devoted to the proof of our first theorem, which we repeat here.

Theorem 3.1. There is a rigid computable structure with computable dimension
2 such that the isomorphism f between the two computable copies ν and µ satisfies
f 6≥T ∅′ and f ≤T ∅′′, and therefore in particular f <T ∅′′.

Before we begin with the proof, we show that we easily have the following corol-
lary.

Corollary 3.2. There is a rigid computable structure which has a degree of cate-
goricity that does not belong to an interval of the form [0(α),0(α+1)] for any com-
putable ordinal α.

Proof. Let A be a structure as guaranteed by Theorem 3.1, and let d be its degree
of categoricity. Then as d 6≥ 0′, the only eligible interval is [0,0′]. However, A
has computable dimension 2, so by the previously mentioned result of Goncharov
[Gon82], d 6≤ 0′. �

We build two c.e. Friedberg enumerations ν and µ of some S ⊆ P(ω).
We meet the requirements:
Pe: If ϕe is total then ν(i) 6= µ(ϕe(i)) for some i ∈ ω.
Ne: If ρe is a Friedberg enumeration of S, then ρe is computably isomorphic to

ν or µ.
There is a 0′′-computable bijection f : ω → ω such that for all i, ν(i) = µ(f(i)),

and such that deg(f) 6≥ 0′′. To do this we build a c.e. set C and meet the require-
ments:
Se: Φfe 6= C.
We give a stage-by-stage construction of ν, µ, and C. At each stage s, fs

will be the unique map satisfying ν(i) = µ(f(i))[s] for all i ∈ ω. We begin with
ν(i)[0] = µ(i)[0] = {i}, so that f0 is the identity function.

We split the requirements Se into several subrequirements, each of which makes
some guesses about the structure we are building. Meeting the subrequirement for
which those guesses are correct will suffice to meet Se. The Se requirements will
be able to injure eachother, and can also be injured by Pe requirements.

The Pe requirements are met via a finitary action, and will not be injured by
any higher priority requirement. The Ne requirements will be met via an infinitary
procedure. The strategy for meeting these requirements is to build the structures
ν and µ in such a way that if ρe is is isomorphic to our two structures, it must be
constructed by following the construction of one of our structures so closely that
the two are computably isomorphic.

For η = ν or η = µ, and for a sequence n0, . . . , nk ∈ ω, to perform a right shuffle
on the sequence n0, . . . , nk in η at stage s+ 1 is to set ηs+1(ni) = ηs(ni)∪ ηs(ni+1)
for 0 ≤ i ≤ k, where nk+1 := n0, and to set ηs+1(j) = ηs(j) for j 6∈ {n0, . . . , nk}.
Similarly, to perform a left shuffle on the sequence n0, . . . , nk in η at stage s + 1
is to set ηs+1(ni) = ηs(ni) ∪ ηs(ni−1) for 0 ≤ i ≤ k, where nk+1 := n0, and to set
ηs+1(j) = ηs(j) for j 6∈ {n0, . . . , nk}.
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Remark 3.3. Note that if n0, . . . , nk,m0, . . . ,mk are such that ν(ni) = µ(mi),
then if we perform a right shuffle on n0, . . . , nk in ν and a left shuffle on m0, . . . ,mk

in µ, then after the shuffle we will have ν(ni) = µ(mi+1), where mk+1 := m0.

At each stage of the construction we will perform a right shuffle in ν and a left
shuffle in µ, and will always choose the components used in the shuffle to satisfy
the condition laid out in Remark 3.3. This will ensure that ν[s] and µ[s] remain
isomorphic at each stage s. By choosing which components we involve in the shuffle
carefully, we will also ensure that ν and µ are still isomorphic at the end of the
construction, and that we meet each requirement Ne.

We now introduce some ideas and notation which we will use in the construction.
Let ae, be, ce, de, xe, ye, and ze, for e ∈ ω, denote natural numbers distinct from

one another.
For σ ∈ 3<ω and η ∈ {ν, µ}, let pησ[0] = z〈σ,0〉. These will be the “precious”

components, used to meet the Ne requirements. N0 will need only one precious
component, but Ne will need one for each σ ∈ 3e.

We will classify each stage of the construction according to what strategy we use
at that stage. We will do so by assigning to each stage s a string αs of length s, and
say that s is a β-stage for each β � αs. At each stage we will have a finite set of β-
marked components in our structures ν and µ. To determine whether a β-stage s is
a β 0̂-stage, a β 1̂-stage, or a β 2̂-stage, we will need to decide whether the structure
ρe has recovered to resemble our structures ν and µ sufficiently closely. We do so by
checking whether there is a well-behaved embedding from the β-marked components
of η into ρe, where η is equal to each of ν and µ. A β 2̂-stage will be a β-stage at
which there is no such embedding, whereas β 0̂- and β 1̂-stages will correspond to
different kinds of recovery. At β 1̂-stages, we believe that ρe may be isomorphic to
our structures, and work toward ensuring that if so, it is computably isomorphic to
one of them. At β 0̂-stages, we work toward ensuring ρe is not isomorphic to our
structures.

We let TP be the true path, defined by setting TP � n = lim infs αs � n.
If β î ≺ TP for some β of length e, the strategy corresponding to the string

of form β î indicated above succeeds. In the case that i = 0 or i = 2, ρe is not
isomorphic to either of our structures, whereas if i = 1, ρe may be isomorphic to
our structures. If so, it will be computably isomorphic to one of them.

We will now define αs+1, using a recursive procedure specifying its initial seg-
ments.

Every stage is a λ-stage.
Stage s = 0.
We let hηβ [0] be empty for η equal to both ν and µ and for every β.
Stage s+ 1.
Suppose that we know that s + 1 is a β-stage for some β with |β| < s. Let

e = |β|. Let Bη be the set of components of η which are β-marked by the end of
stage s, for η = µ and η = ν.

We say that stage s + 1 is a recovery stage for Ne if, for η = ν and η = µ,
there exists a unique map hηβ [s] : Bη → ρe such that ρe(h

η
β(x))[s] ⊇ η(x)[s] for each

x ∈ Bη, and furthermore that if t+ 1 < s+ 1 is the most recent β-stage which is a
recovery stage for Ne, then range(hηβ)[t] ⊆ range(hηβ)[s].
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If s+ 1 is a β-stage which is a recovery stage for Ne, and β was not active at the
end of stage s, say s+ 1 is an even ν-recovery stage, a β-initialization stage and a
β 0̂-stage. Declare β to be active.

If s+1 is a β-stage which is a recovery stage for Ne, and β was active at the end
of stage s, let t + 1 < s + 1 be the most recent β-stage that was a recovery stage
for Ne. If t was an even/odd η-recovery stage for Ne, and if hηβ [s] ⊇ hηβ [t], then we

say s+ 1 is an odd/even η-recovery stage and a β 1̂-stage, whereas if hηβ [s] 6⊇ hηβ [t],
we say that this is an even ι-recovery stage for Ne, where ι = µ if η = ν, and ι = µ
otherwise, and that stage s+ 1 is a β 0̂-stage.

If s+ 1 is not a recovery stage for Ne, then we say s+ 1 is a β 2̂-stage.
Let αs+1 be the unique string of length s + 1 such that s + 1 is an αs+1-stage.

Note that s+ 1 is a σ-stage iff σ � αs+1.
At each stage of the construction the structures ν[s] and µ[s] will be isomorphic

via a unique isomorphism fs. To meet the requirement Se, we define a modified map
fτ,s between µ and ν for each τ of length e. This map predicts which components
of ν and µ should be infinite based on the assumption that τ ≺ TP , and is created
by adjusting the current isomorphism fs to match that prediction. The maps fτ,s
approximate f , in the sense that limn lims fTP �n,s = f .

For each σ such that σ 1̂ � τ , at each τ -stage s, fτ,s will predict one component
q of ν to be infinite, and predict its image in µ by specifying fτ,s(q). If τ ≺ TP ,
then from some point onward, the components predicted to be infinite in this way
will not change, nor will their predicted images. At each τ -stage thereafter, each
component which is predicted to be infinite by τ will be involved in a shuffle, and
its membership will increase. The shuffles are arranged so that at the end of the
construction we have f(q) = fτ,s(q) for sufficiently large s.

We now specify fτ,s precisely for each τ , as follows.
If σ 1̂ � τ , let t+ 1 < s+ 1 be the most recent σ 0̂ stage.
Set fτ,s(p

ν
σ,t+1) = pµσ,t+1. Say that τ s-predicts the components pνσ,t+1 of ν and

pµσ,t+1 of µ to be precious. If fs(q) = pµσ,t+1 for some other q, then set fτ,s(q) to be
undefined.

For all other components q of ν, set fτ,s(q) = fs(q).
We will need to refer to the functions fτ,s when considering the requirements

Se. For this reason, we will now split Se into requirements Sτ , where τ ∈ 3<ω has
length e.

Towards meeting the Sτ requirements, let w〈τ,n〉 for τ ∈ 3<ω and n ∈ ω denote
natural numbers distinct from one another.

We will work to achieve the requirement Sτ by ensuring that there is some n
such that for all sufficiently large s,

Φfτe (w〈τ,n〉)[s] ↓6= C(w〈τ,n〉).

Provided that fτ and f agree on the use of the computation, we will have met the
requirement Sτ . We will build C by giving a computable enumeration (Cs)s∈ω.

To meet the overall requirement Se, it will suffice to meet the subrequirement
Sτ for τ = TP � e.

At each stage s we will define a restraint function r : 3<ω → ω which we will use
to protect computations that are being used to meet requirements of the form Sτ .
We let Rs(τ) = max{rs(σ) | σ ≤L τ}.
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For each τ , at each stage of the construction we will have an active witness w〈τ,n〉
for τ -diagonalization. Our strategy for meeting a requirement Sτ at stage s+1 will
be to find a function g : {0, . . . , k − 1} → ω such that

Φge,s(w〈τ,n〉) ↓= 0,

enumerate w〈τ,n〉 into C, and ensure that g = fτ,t � k for each t ≥ s + 1. At
stage s + 1 we search for g � fθ,s, where we require τ � θ � αs+1. Because
fτ,s � k 6= fθ,s � k, once we identify such a g, we will need to perform a shuffle
which is designed to ensure that g = fτ,s+1 � k.

At stage s + 1, we will say that a number q is fresh if ν(q)[s] = µ(q)[s] = {q},
and for each σ, q is not σ-reserved, and furthermore, for no t < s + 1 do we have
q = pνσ,t or q = pµσ,t.

The Construction
Stage 0:
Set r(σ)[0] = 0 for all σ ∈ 3<ω. For η ∈ {ν, µ}, λ-mark the precious components

pηλ. For the least components of form xl and yk, λ-mark them and say they are
λ-reserved.

Let C0 = ∅. Say that the active witness for τ -diagonalization is w〈τ,0〉 for each
τ .

Say that none of the requirements Sτ and Pe are currently satisfied.
Stage s+ 1:
We attempt to meet one requirement of the form Sτ or Pe.
We first check on the status of the requirements Pe for e ≤ s.

Condition 3.4. Suppose Pe is not currently satisfied. Suppose there exists some
〈e, j〉 such that ϕe,s(b〈e,j〉) ↓= b〈e,j〉, that each of a〈e,j〉, b〈e,j〉, c〈e,j〉 is larger than
R(α � e)[s + 1], is fresh, and if any of these three components is β-marked, then
β ≥L αs+1 or β ≺ αs+1.

Then say that Pe requires attention.

We next check on the status of the requirements Sτ for each τ � αs+1.

Condition 3.5. Suppose τ � αs+1 is of length e and that Sτ is not currently
satisfied.

If θ � τ , say that a component q of ν is θ-unpredictable if there is some σ such
that σ î � θ for i = 0 or 1 for which q is σ-reserved, or such that q = pνσ,s or

q = f−1s (pµσ,s), but θ does not s-predict q to be precious.
Let w〈τ,n〉 be the active witness for τ -diagonalization.
Check whether there is some θ such that τ � θ � αs+1, k < s, and g, which

meet the following conditions:

(1) g = fθ,s � k
(2) if x is a component which is θ-unpredictable, k ≤ x.
(3) Φgi (w〈τ,n〉)[s] ↓= 0.

If such g and θ exist, say that Sτ requires attention.

Let e be the least number such that at least one of Pe and Sτ requires attention,
where τ = αs+1 � e. If Pe requires attention, we will meet it at this stage. Otherwise
we will attempt to meet Sτ .

In any case, our action will consist of performing a right shuffle of some com-
ponents of ν, and a left shuffle of the identical components in µ. The components
shuffled in the two cases will be very similar.
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We will specify which components should be part of the sequence of components
used in the shuffle in each of ν and µ by considering each σ � αs+1 in turn, and
defining subsequences ν̂n and µ̂n of components corresponding to σ = αs+1 � n.

Case 1: Meeting Pe
Let 〈e, j〉 be as specified in Condition 3.4. Say that we attempt to meet Pe at

this stage.
For each n ≤ s, do as follows: Let σ = αs+1 � n.
If s+ 1 is an even ν-recovery stage for Nn, let ν̂n = xl, p

ν
σ,s, yk, where xl and yk

are σ-reserved components. Let µ̂n = xl, fs(p
ν
σ,s), yk.

If s + 1 is an odd ν-recovery stage for Nn, let t be the most recent σ-stage

which was a recovery stage for Nn. Let l̂ be such that xl̂ was one of the σ-reserved
components used in ν̂n[t]. Let ν̂n = xl, p

ν
σ,s, xl̂, where xl is σ-reserved. Let µ̂n =

xl, f(pνσ)[s], pµσ,t.

In both ν-recovery cases, let pνσ,s+1 = pνσ,s and pµσ,s+1 = f(pνσ)[s].
Similarly, if s+ 1 is an even µ-recovery stage, let µ̂n = xl, p

µ
σ,s, yl, where xl and

yk are σ-reserved. Let ν̂n = xl, f
−1(pµσ)[s], yk.

If s + 1 is an odd µ-recovery stage, let t be the most recent σ-stage which

was a recovery stage for Nn. Let k̂ be such that yk̂ was one of the σ-reserved
components used in µ̂n[t]. Let µ̂n = yk̂, p

µ
σ,s, yk, where yk is σ-reserved. Let ν̂n =

pνσ,t, f
−1(pµσ)[s], yk.

In both µ-recovery cases, let pµσ,s+1 = pµσ,s and pνσ,s+1 = f−1(pµσ)[s].
If s+ 1 is not an Nn recovery stage, let ν̂n and µ̂n be empty.
Perform a right shuffle on a〈e,j〉, b〈e,j〉, c〈e,j〉, ν̂0, . . . , ν̂s in ν and perform a left

shuffle on a〈e,j〉, b〈e,j〉, c〈e,j〉, µ̂0, . . . , µ̂s in µ.
Say that Pe is satisfied.
Proceed to clean-up phase.
Case 2: Attempting to meet Sτ .
Let g and θ be as specified in Condition 3.5. Suppose that |τ | = e and |θ| = m.

Say that we attempt to meet Sτ at this stage.
Enumerate w〈τ,n〉 into Cs+1.
For each i < e, let σ = αs+1 � i. Then let ν̂i and µ̂i be exactly as laid out above

in the case where we are attempting to meet Pe.
For e ≤ i < m, let σ = αs+1 � i.
Our choice of ν̂i and µ̂i will now be determined by the requirement that fτ,s+1

agrees with fθ,s on every component q < k. We will say that i requires adjustment
if fs(p

ν
σ,t0+1) 6= pµσ,t0+1, where t0 + 1 < s+ 1 is the most recent σ 0̂-stage. We will

later see that this occurs precisely when s+ 1 is an odd recovery stage for Ni.
If i requires adjustment, do as follows:
Suppose t < s + 1 is the most recent σ-stage which is a recovery stage for Ni,

and that t is an even ν-recovery stage. Let l̂ be such that xl̂ was one of the σ-
reserved components used in ν̂i[t]. Let ν̂i = xl, p

ν
σ,s, xl̂, where xl is σ-reserved. Let

µ̂i = xl, f(pνσ)[s], pµσ,t+1.
Otherwise if t < s + 1 is the most recent σ-stage which is a recovery stage for

Ni, then t is an even µ-recovery stage. Let k̂ be such that yk̂ was one of the σ-
reserved components used in µ̂i[t]. Let µ̂i = yk̂, p

µ
σ,s, yk, where yk is σ-reserved. Let

ν̂i = pνσ,t+1, f
−1(pµσ)[s], yk.

If e ≤ i < m and i does not require adjustment, let ν̂i and µ̂i be empty.
Choose some fresh unmarked dj > max(R(α)[s], k).
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Perform a right shuffle on dj , ν̂0, . . . , ν̂m−1 in ν and perform a left shuffle on
dj , µ̂0, . . . , µ̂m−1 in µ.

Define rs+1(τ) = max(k, rs(τ)), where the domain of g is {0, . . . , k − 1}. Say
that Sτ is satisfied.

Proceed to clean-up phase.
Clean-up phase. Declare that any component involved in the shuffle is no

longer σ-reserved for any σ.
For each σ >L τ , do as follows: Declare any σ-reserved components to no longer

be σ-reserved. Declare σ inactive. Declare that Sσ is no longer satisfied. Choose
the least number w〈σ,n〉 > s such that w〈σ,n〉 6∈ Cs as the active witness for σ-
diagonalization. Let rs+1(σ) = 0.

For σ ≤L τ , define rs+1(σ) = rs(σ) if not already defined.
For each σ ≥L τ , find the least fresh z〈σ,n〉 > R(α)[s+ 1] which is not β-marked

for any β, and set pνσ[s+ 1] = pµσ[s+ 1] = z〈σ,n〉.
We begin by describing the marking of components in ν.
For each σ � αs+1, σ-mark the component pνσ,s+1.
For each i < e, let αs+1 � i = σ. If s+ 1 is a recovery stage for Ni, do as follows:

σ-mark each component q of ν such that q is part of the right shuffle at this stage
or q < s, except those for which q = pνβ,s+1 or q = f−1(pµβ)[s+1], or q is β-reserved,
for some β ≺ σ. If any of aj , bj , and cj becomes σ-marked for some j, σ-mark all
three.

For all σ ∈ 3<ω with |σ| ≤ s + 1, if there are no σ-reserved components in ν,
choose fresh unmarked components xl and yk of ν which are larger than R(α)[s+1],
σ-mark those components and say that they are σ-reserved. For each component
σ-marked in this manner, if β 0̂ � σ or β 1̂ � σ, β-mark that component.

Finally, for each component q of ν which has been σ-marked at any point for
any σ, σ-mark the component fs+1(q) of µ.

This completes the construction. We now pause prior to verifying the con-
struction to give some intuition about the construction.

We focus in particular on how the components of ν and µ behave under the shuf-
fling processes we use, to give some intuition as to how the construction proceeds.
We will need to check that ν and µ are isomorphic and rigid, which we achieve
by making ν and µ rigid and isomorphic at each stage of the construction, and
arranging that the infinite components of ν and µ are isomorphic. This is achieved
by splitting the construction into odd/even recovery stages.

We first consider what happens if σ 1̂ ≺ TP for some σ of length n. In that case
we must focus on the last σ 0̂-stage of the construction, and what happens at the
σ 1̂-stages that follow it.

So suppose that that t0 + 1 is a σ 0̂-stage, and that t1 + 1 < t1 + 2 are the
next two σ-stages which are recovery stages for Nn, and that each is a σ 1̂-stage.
For simplicity, assume t0 + 1 is the final σ-initialization stage of the construction,
and hence an even ν-recovery stage for Nn. In addition, suppose pνσ,t0 = z so that
ν(z)[t0] = {z}. Note that t0 + 1 and t1 + 1 are odd and even ν-recovery stages for
Nn, respectively.

The following diagram indicates the shuffles which will be performed in ν at
stages t0 + 1, t1 + 1 and t2 + 1. We include only the members of ν̂n[s] for |σ| = ν
in the diagram.
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The symbols ?, ??, and ? ? ? are used to indicate the elements enumerated into a
member of ν̂n from a component which is part of the shuffle, but which is not part
of ν̂n.

Each arrow in the diagram is from the set ν(q)[t] to the set ν(q)[s] at a later
stage of the construction.

The solid arrows are from ν(q)[t] to ν(q)[t + 1], where t + 1 is a stage at which
q is part of a shuffle. In the first two rows, the components are listed in the order
in which they occur in ν̂n[t0 + 1]. In the first row, we indicate the members of the
components at the end of stage t0, and in the second, we indicate their members
at the end of stage t0 + 1. Likewise, the third and fourth rows indicate the same
information for the components x1, z, x0 which make up ν̂n[t1 + 1], and the fifth
and sixth row correspond to νn[t2 + 1].

The dashed arrows are between ν(q)[t+ 1] and ν(q)[s], where t+ 1 and s+ 1 are
consecutive stages at which q is part of a shuffle in ν.

stage t0 {x0}, {z}, {y0}

stage t0 + 1 {x0, z}, {z, y0}, {y0} ∪ ?

stage t1 {x1}, {z, y0}, {x0, z}

stage t1 + 1 {x1, z, y0}, {z, y0, x0}, {x0, z} ∪ ??

stage t2 {x2}, {z, y0, x0}, {y2}

stage t2 + 1 {x2, z, y0, x0}, {z, y0, x0, y2}, {y2} ∪ ? ? ?

The following diagram shows how the corresponding shuffles carried out on µ
proceed, with the same conventions as in the first diagram. Here we use †, ††, † † †
in the role occupied by ?, ??, ? ? ? in the previous diagram, since the sets they
represent are different. Note that each component used in the shuffle in µ have the
same members as the corresponding component used in ν, as in Remark 3.3.
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stage t0 {x0}, {z}, {y0}

stage t0 + 1 † ∪ {x0}, {x0, z}, {z, y0}

stage t1 {x1}, {z, y0}, {x0, z}

stage t1 + 1 † † ∪{x1}, {x1, z, y0}, {z, y0, x0},

stage t2 {x2}, {z, y0, x0}, {y2}

stage t2 + 1 † † † ∪ {x2}, {x2, z, y0, x0}, {z, y0, x0, y2}

If this shuffling pattern is repeated, it will lead to pνσ[t0] = z being a member
of ν̂n at infinitely many stages. Likewise f(pνσ)[t0] = z will be a member of µ̂n
infinitely often. These two components will have the same members at the end of
the construction, which is necessary to ensure ν and µ are isomorphic.

On the other hand, consider the case that σ 0̂ ≺ TP . Suppose t0 + 1 is a σ-
initialization stage and that pνσ,t0 = z as above, but that the next σ-stage t1 + 1
which is a recovery stage for Nn is a σ 0̂-stage and hence an even µ-recovery stage
for Nn. Then the components in ν̂n at stages t0 + 1 and t1 + 1 are indicated by the
following diagram with similar conventions to the previous diagram:

stage t0 {x0}, {z}, {y0}

stage t0 + 1 {x0, z}, {z, y0}, {y0} ∪ ?

stage t1 {x1}, {x0, z}, {y1}

stage t1 + 1 {x1, x0, z}, {x0, z, y1}, {y1} ∪ ??

Note that the component pνσ[t0] = z is not part of ν̂n[t1 + 1].
Indeed, if s + 1 is a σ 0̂-stage and η-recovery stage for Nn, we will see that no

component which is part of ν̂n[t] at a stage t ≤ s will ever again be used in a shuffle.
As before, we can give a similar diagram showing the components used in µ̂n at

stages t0 + 1 and t1 + 1.
In this case, since t1+1 is a σ 0̂-stage, hνβ [t0] 6⊆ hνβ [t1]. Because of the structure of

the shuffles used, there are in fact only two possible ways in which hνβ [t1] can extend

hnuβ [t0]. The consequence of this which we will use is that if pσ is the component of

ρe for which pσ = hνβ(pνσ)[t0], then pσ = hµβ(pµσ)[t1]. This argument can be repeated

at future σ 0̂-stages to see that ρe(pσ) is in fact an infinite component, but that no
component will be part of ν̂n or µ̂n infinitely often. This will suffice to show that
ρe is not isomorphic to ν and µ. We will now verify that the construction succeeds.
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stage t0 {x0}, {z}, {y0}

stage t0 + 1 † ∪ {x0}, {x0, z}, {z, y0}

stage t1 {x1}, {x0, z}, {y1}

stage t1 + 1 † † ∪{x1}, {x1, x0, z}, {x1, z, y1},

It is not immediately clear that there is a unique isomorphism fs : ν[s] → µ[s]
at each stage s of the construction. That will be verified by induction on s, and
we therefore impose the inductive hypothesis as an assumption for many of our
lemmas until we are ready to complete the proof.

Lemma 3.6. Fix some σ ∈ 3<ω of length n ≤ s. At the end of each stage t such
that n ≤ t ≤ s + 1 there are σ-reserved components xl and yk which have never
been part of a shuffle, and which are σ-marked.

Proof. At the beginning of the stage t clean-up phase, any component involved in
the shuffle is declared no longer σ-reserved. At the end of the clean-up phase, fresh
σ-reserved components are chosen.

�

Lemma 3.7. Suppose s + 1 is a σ-initialization stage, where |σ| = n, and that
ν̂n[s+ 1] and ν̂n[s+ 1] are nonempty.

If ν̂n[s + 1] = u1, u2, u3 and µ̂n[s + 1] = v1, v2, v3, then for each i ≤ 3 we have
ν(ui)[s] = µ(vi)[s].

Proof. Because s + 1 is a σ-initialization stage, none of the components which
are part of ν̂n[s + 1] and µ̂n[s + 1] have been part of a shuffle before, so we have
f(pνσ)[s] = pµσ[s]. Thus ν̂n[s+1] is of the form xl, p

ν
σ, yk, whereas µ̂n[s+1] is xl, p

ν
σ, yk,

and ν(xl)[s] = µ(xl)[s], ν(pνσ)[s] = µ(pµσ)[s], ν(yk)[s] = µ(yk)[s], as required. �

Lemma 3.8. Let s+1 be some stage of the construction such that for each t < s+1,
there is a unique isomorphism ft : ν[t]→ µ[t].

Let σ be of length n. Suppose that t < s+1 is a σ-stage which is a recovery stage
for Nn at which we attempt to meet a requirement of the form Pi for some i > n,
or of form Sτ for some τ � σ. Suppose that s + 1 is the next σ-stage which is a
recovery stage for Nn after stage t, and that s+ 1 is not a σ-initialization stage.

Then pνσ[t] = pνσ[s], and pµσ[t] = pµσ[s], and if q is a member of ν̂n[t] and ν̂n[s+1],
then f(q)[t] = f(q)[s].

Finally, if ν̂n[s + 1] = u1, u2, u3 and µ̂n[s + 1] = v1, v2, v3, then for each i ≤ 3
we have ν(ui)[s] = µ(vi)[s].

Proof. Let s + 1 be a σ-stage which is a recovery stage for Nn, but not a σ-
initialization stage.

We will work by induction on s. Consider the most recent σ-stage t < s+ 1. If
t is not a σ-initialization stage, then we may apply the lemma. Otherwise Lemma
3.7 applies. In either case, if ν̂n[t] = u1, u2, u3 and µ̂n[t] = v1, v2, v3, then for each
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i ≤ 3 we have ν(ui)[t − 1] = µ(vi)[t − 1]. So we have ft(ui) = vi+1 for i = 1 and
i = 2, by Remark 3.3.

We get one of the following cases depending on what kind of recovery stage t is.
If t is an even ν-recovery stage for Nn, suppose ν̂n[t] = xl, p

ν
σ[t − 1], yk. Then

pνσ[t− 1] = pνσ[t], and pµσ[t] = ft(xl).
If t is an even µ-recovery stage for Nn, suppose µ̂n[t] = xl, p

µ
σ[t − 1], yk. Then

pµσ[t− 1] = pµσ[t], and pνσ[t] = f−1t (yk).
If t is an odd ν-recovery stage for Nn, suppose ν̂n[t] = xl, p

ν
σ[t − 1], xl̂. Then

pνσ[t− 1] = pνσ[t], and pµσ[t] = ft(p
µ
σ,t−1) = xl.

If t is an odd µ-recovery stage for Nn, suppose µ̂n[t] = yk̂, p
µ
σ[t − 1], yk. Then

pµσ[t] = pµσ[t] and pνσ[t] = f−1t (pµσ,t−1) = yk.
Now we must consider what happens between stages t and s + 1. Let t < t0 <

s+ 1. Then t0 cannot be a θ-stage for θ = σ 1̂ or σ 0̂.
Furthermore, t0 cannot be a θ-stage if θ <L σ and |θ| = n, because s+ 1 is not

a σ-initialization stage.
If t0 is a θ-stage for some θ >L σ such that |θ| = n, or for θ = σ 2̂, then

pνσ,t0 = pνσ,t0−1 p
µ
σ,t0 = pµσ,t0−1, and no elements are enumerated into ν(pνσ,t0) at

stage t0, so ft0(pνσ,t0) = ft0−1(pνσ,t0).
It follows by induction on t0 that pνσ[t] = pνσ[s] and pµσ[t] = pµσ[s]. Furthermore,

νs(p
ν
σ,s) = νt(p

ν
σ,t) and µs(p

µ
σ,s) = µt(p

µ
σ,t).

If ν̂n[s + 1] and ν̂n[s + 1] are empty, there is nothing to show. So assume that
this is not the case.

If s+1 is an even ν-recovery stage for Nn, ν̂n[s+1] is of the form xl, p
ν
σ[s], yk, and

µ̂n[s+ 1] = xl, f(pνσ)[s], yk, and since xl and yk are fresh components it follows that
each component of ν̂n[s+1] has the same members as the corresponding component
of µ̂n[s+ 1]. The case for an even µ-recovery stage is essentially the same.

If s+1 is an odd ν-recovery stage for Nn, then ν̂n[t] is of the form xl̂, p
ν
σ[t−1], yk̂,

and µ̂n[t] is xl̂, f(pνσ)[t− 1], yk̂. Thus ν(xl̂)[t] = {xl̂} ∪ ν(pνσ)[t− 1] and µ(f(pνσ)[t−
1])[t] = µ(f(pνσ))[t − 1] ∪ {xl̂}. Since pµσ[t] = f(pνσ)[t − 1] and ν(pνσ)[t − 1] =
µ(f(pνσ))[t − 1], we have ν(xl̂)[t] = µ(pµσ)[t]. That is, f(xl̂)[t] = pµσ[t]. Thus from
our above work, we see that f(xl̂)[s] = pµσ[s]. Then ν̂n[s + 1] = xl, p

ν
σ, xl̂ and

µ̂n[s + 1] = xl, f(pνσ)[s], pµσ[s]. Since f(xl̂)[s] = pµσ[s] and xl is a fresh component,
it is clear that each of the components of ν̂n[s + 1] has the same members as the
corresponding component of µ̂n[s+ 1].

On the other hand, if s+ 1 is an odd µ-recovery stage for Nn, then ν̂n[t] is of the
form xl̂, f

−1(pµσ)[t − 1], yk̂, and µ̂n[t] is xl̂, p
µ
σ[t − 1], yk̂. But pµσ[t] = pµσ[t − 1], and

thus ν(xl̂)[t] = µ(pµσ)[t], that is, f−1(pµσ)[t] = xl̂. As in the ν-recovery case above,
ν(xl̂)[s] = µ(pµσ)[s], and pνσ[s] = xl̂. Once again, each of the components of ν̂n[s+1]
has the same members as the corresponding component of µ̂n[s+ 1]. �

Corollary 3.9. Let s+ 1 be some stage of the construction such that at each stage
t < s+ 1 there is a unique isomorphism ft : ν[t]→ µ[t].

Suppose s+ 1 is a σ-stage, where σ is of length n, and a recovery stage for Nn.
The only components which can be in ν̂n[s + 1] are the σ-reserved components,

pνσ,s, and f−1(pµσ)[s].
Likewise the only components which can be in µ̂n[s+ 1] are the σ-reserved com-

ponents, pµσ,s, and f(pνσ)[s].
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Lemma 3.10. Let s+ 1 be some stage of the construction such that at each stage
t < s+ 1 there is a unique isomorphism ft : ν[t]→ µ[t].

Then ν[s+ 1] and µ[s+ 1] are isomorphic.

Proof. For each n, ν̂n[s+1] is nonempty if and only if µ̂n[s+1] is, and if ν̂n[s+1] =
u1, u2, u3 and µ̂n[s+ 1] = v1, v2, v3 then ν(ui)[s] = µ(vi)[s] for i ≤ 3. Furthermore,
no component of the form a〈e,j〉, b〈e,j〉, c〈e,j〉, or dj which appears in the right and
left shuffles at this stage has previously been part of a shuffle, and therefore each
of these components contains the same members in ν as in µ.

Thus the elements shuffled meet the condition of 3.3, and therefore ν[s+ 1] and
µ[s+ 1] are isomorphic. �

Corollary 3.11. Suppose that for each t < s + 1 there is a unique isomorphism
ft : ν[t] → µ[t]. Fix n ≤ s, and let αs+1 � n = σ. Assume s + 1 is not a σ-
initialization stage.

If q is a component in η̂n[s + 1], where η is either ν or µ, then either q is a
σ-reserved component, or at the most recent σ-stage t0 < s+ 1 which is a recovery
stage for Nn, q was a component in η̂n[t0].

If, in addition, q is part of η̂m[t] at some stage t < s + 1, then m = n and
αt � m = σ.

Proof. The first claim follows from Corollary 3.9.
For the second claim, suppose that q is a component of η̂n[s+1], where η is either

µ or ν. The only way that q can be a part of η̂n[s+ 1] if it has previously been part
of a shuffle is if q is a member of η̂n[t0] at the most recent σ-stage t0 < s+ 1 which
is a recovery stage for Nn. Let t < s + 1 be the first stage at which q is part of a
shuffle. By reverse induction on t0, it follows that q is part of η̂n[t], and that t is a
σ-stage. Furthermore, either q is a σ-reserved component, or t is a σ-initialization
stage, in which case q is one of pνσ,t−1 or f−1(pµσ)[t− 1] if η = ν, and one of pµσ,t−1
or f(pνσ)[t− 1] if η = µ. In either case, q is not part of η̂m[t] for any m 6= n, which
suffices to prove the result. �

Remark 3.12. For each q, ν(q)[s + 1] = {q} if and only if µ(q)[s + 1] = {q}. If
this is the case, then q ∈ ν(x)[s+ 1] only for x = q.

Our next goal is to check that the shuffling action carried out during the con-
struction preserves rigidity of ν (and µ) at each stage of the construction. We begin
by establishing some limits on how elements are propagated between components
of ν by the shuffling process.

Lemma 3.13. Let s + 1 be some stage of the construction such that for each
t < s+ 1, there is a unique isomorphism ft : ν[t]→ µ[t].

Suppose that p is a component of ν which is part of ν̂n[t0] at some σ-stage
t0 ≤ s+ 1, where σ = αt0 � n.

Suppose that q is a component which is part of the right shuffle at stage s + 1,
and that p ∈ ν(q)[s+ 1].

Then s+ 1 is a σ-stage and either

(1) q is a member of ν̂n[s+ 1],
(2) or q is the rightmost member of ν̂m[s+ 1] for the greatest m < n such that

ν̂m[s+ 1] is nonempty, and furthermore p /∈ ν(q)[s],
(3) or q is the component of form c〈e,j〉 or dj involved in the right shuffle at

this stage.
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Proof. Work by induction on s.
Let p be a component in ν̂n[t0] as stated, and assume t0 is the first stage that p

is ever part of the right shuffle. Suppose that for t0 ≤ t < s+ 1, if q is a component
used in the right shuffle at stage t and p ∈ ν(q)[t], then t is a σ-stage, and q
satisfies one of the conditions listed above. Note that for each m such that ν̂m[t] is
nonempty, the rightmost member of ν̂m[t] can never again be part of a shuffle after
this stage, and nor can the component of form c〈e,j〉 or dj which is part of the right
shuffle at stage t.

Thus if p ∈ ν(q)[s] and q is part of the right shuffle at stage s+ 1, q is a member
of ν̂n[s+ 1], and furthermore αs+1 � n = σ.

Now, suppose that q is part of the right shuffle at stage s + 1 and that p ∈
ν(q)[s+ 1]. Let us suppose that q is not a member of ν̂n[s+ 1]. Then the position
of q in the right shuffle must be immediately to the left of a component v such that
p ∈ ν(v)[s]. Now applying our inductive hypothesis to v, we see that v is a member
of ν̂n[s+ 1]. It must be the leftmost, and q is the rightmost component of ν̂m[s+ 1]
for the greatest m < n such that ν̂m[s + 1] is nonempty, or, if all are empty, q is
whichever component of the form c〈e,j〉 or dj is part of the shuffle at this stage.

This concludes the induction. �

Lemma 3.14. Suppose |σ| = n, and that s + 1 is some stage of the construction
such that for each t < s+ 1, there is a unique isomorphism ft : ν[t]→ µ[t].

Suppose t0 < s + 1 is the most recent σ-initialization stage, p = pνσ,t0 , and that
τ 6= σ.

Then p /∈ ν(pντ )[s+ 1], and p /∈ µ(pµτ )[s+ 1].
However, if s + 1 is not a σ-initialization stage then p ∈ ν(pνσ)[s + 1] and p ∈

µ(pµσ)[s+ 1].

Proof. Suppose that t0 < t+ 1 ≤ s+ 1, and that τ 6= σ. Suppose v is one of pντ,s+1

and f−1(pµτ )[s+ 1]. We will check that p /∈ νs+1(v).
Suppose not, and indeed that p ∈ νt+1(v) but p /∈ νt(v) for some t ≤ s. Then,

by Lemma 3.13, v is part of the right shuffle at stage t + 1, τ ≺ σ, and v is
the rightmost member of ν̂|τ |[t + 1]. So v is never again part of the right shuffle.

However, if pντ,s+1 and f−1(pµτ )[s+ 1] have been part of the right shuffle before the
end of stage s+1, they are part of ν̂m[t0+1] at the most recent τ -stage t0+1 < s+1
which is a recovery stage for Nm, and furthermore neither is the rightmost element
of ν̂m[s+ 1]. So v cannot be either of these elements.

We now show that p ∈ ν(pνσ)[s+ 1] and p ∈ µ(pµσ)[s+ 1].
Clearly p ∈ ν(pνσ)[t0] and p ∈ µ(pµσ)[t0]. Since there are no σ-initialization stages

between t0 and s+ 1 it suffices to note that at each stage t such that t0 < t ≤ s+ 1,
either both of pνσ[t] and pµσ[t] are part of the shuffle, in which case ν(pνσ)[s] ⊆
ν(pνσ)[s + 1] and µ(pµσ)[s] ⊆ µ(pµσ)[s + 1], or neither of the precious components is
part of the shuffle, in which case we have pνσ[t] = pνσ[t+ 1] and pµσ[t] = pµσ[t+ 1].

�

We are now ready to prove that there is a unique isomorphism fs : ν[s]→ µ[s] at
each stage s of the construction. We will in fact prove a slightly stronger statements:
that if x and y are distinct components of ν then ν(x)[s] 6⊆ ν(y)[s].

Lemma 3.15. Suppose s+ 1 is some stage of the construction such that for each
t < s+ 1, there is a unique isomorphism ft : ν[t]→ µ[t].
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Suppose that ν(x)[s] 6⊆ ν(y)[s] for each x 6= y.
Then ν(x)[s+ 1] 6⊆ ν(y)[s+ 1] for each x 6= y.
Thus by induction on s, there is a unique isomorphism fs : ν[s]→ µ[s] at every

stage s of the construction.

Proof. Let x and y be components of ν.
If y is not a part of the right shuffle at stage s + 1, then ν(y)[s] = ν(y)[s + 1]

and by assumption ν(x)[s] 6⊆ ν(y)[s], so ν(x)[s+ 1] ⊇ ν(x)[s] 6⊆ ν(y)[s+ 1]. So we
may assume y is part of the right shuffle.

Suppose that the components used in the right shuffle are n0, n1, . . . , nd. Let
y = ni be a component in the right shuffle.

Firstly note that if ni is being shuffled for the first time at this stage, then
ni will be a member of ν(ni)[s + 1] and ν(ni−1)[s + 1], but not of ν(q)[s + 1]
for any other q. So we need only check that ν(ni)[s + 1] 6⊆ ν(ni−1)[s + 1] and
that ν(ni−1)[s + 1] 6⊆ ν(ni)[s + 1] to conclude that neither of ν(ni−1)[s + 1] and
ν(ni)[s + 1] can be a subset of ν(q)[s + 1] for any q. But ν(ni+1)[s] 6⊆ ν(ni−1)[s]
and ν(ni−1)[s] 6⊆ ν(ni+1)[s] by hypothesis, and neither contains ni. Thus it follows
that we have ν(ni)[s+ 1] 6⊆ ν(ni−1)[s+ 1] and ν(ni−1)[s+ 1] 6⊆ ν(ni)[s+ 1].

On the other hand, if q 6= ni is a component of ν, and ni has never been shuffled
before stage s+ 1, then it cannot be the case that ν(q)[s+ 1] ⊆ ν(ni)[s+ 1] or that
ν(q) ⊆ ν(ni−1)[s+1], because ni /∈ ν(q)[s]. In the former case we have ν(ni)[s+1] =
ν(ni+1)[s]∪{ni}, and in the latter case ν(ni−1)[s+1] = ν(ni−1)[s]∪{ni} and hence
ν(q)[s] ⊆ ν(ni+1)[s] or ν(q)[s] ⊆ ν(ni−1)[s], contrary to hypothesis.

Thus we need only check that ν(x)[s+ 1] 6⊆ ν(y)[s+ 1] in the case that x and y
are components of ν such that:

(1) x and y are both part of the right shuffle at stage s+ 1,
(2) x and y have each been part of the right shuffle at a previous stage of the

construction,
(3) and x and y each occupy a position in the shuffle immediately to the left

of a component which has been part of the right shuffle at a previous stage
of the construction.

So suppose that for some i and j, we have components ni and nj satisfying these
conditions, and that ν(nj)[s+ 1] ⊆ ν(ni)[s+ 1].

Note that Lemma 3.13 shows that if nj ∈ ν(ni)[s + 1], then nj is a member of
ν̂m[t] for some m at some stage t ≤ s + 1. Furthermore, either ni is either of the
form c〈e,j〉 or dj , and is not part of a shuffle before stage s + 1, or is a member of
ν̂n[s+ 1] for some n ≤ m. In this latter case let αs+1 � n = σ and αt � m = τ . We
have σ � τ .

The case σ = τ (i.e. m = n) cannot occur. This is because if ν̂n[s+ 1] contains
two nonfresh components, at least one must be immediately to the left of a fresh
component in the shuffle, because the leftmost component of ν̂n[s+1] is σ-reserved,
and the component immediately to the right of the rightmost component of ν̂n[s+1]
is either a θ-reserved component for some θ, or is of the form a〈e,j〉 or dj .

Likewise the case σ ≺ τ (i.e. n < m) cannot occur. If it were, then by Lemma
3.13, ni is the rightmost component in ν̂n[s+ 1], and nj /∈ ν(ni)[s]. Now, suppose
that w ∈ ν(nj)[s + 1], but that w 6= nj . Thus w entered ν(nj) during a shuffle
at some earlier stage. Applying Lemma 3.13 to w we see that w ∈ ν(u)[t0] for
some component u which is part of ν̂l[t0] for some l ≥ m > n and t0 ≤ s. Applying
Lemma 3.13 to ni in turn implies w /∈ ν(ni)[s]. Thus the only way that ν(nj)[s+1] ⊆
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ν(ni)[s+ 1] = ν(ni)[s] ∪ ν(ni+1)[s] can possibly be true is if ν(nj)[s] ⊆ ν(ni+1)[s],
contrary to hypothesis.

This is sufficient to complete the proof. �

Lemma 3.16. If the components involved in the right shuffle at stage s + 1 are
n0, . . . , nd, and we define n−1 = nd, then for 0 ≤ i ≤ k, ν(q)[s] ⊆ ν(ni)[s+ 1] only
for q = ni and q = ni−1.

Proof. Fix some component ni involved in the right shuffle.
If ni is part of the shuffle for the first time at stage s+ 1, then ni ∈ ν(ni)[s+ 1]

and ni ∈ ν(ni−1)[s+ 1], but this element belongs to no other components of ν. So
ν(ni)[s] ⊆ ν(nj)[s+ 1] only for j = i and j = i− 1.

If ni is part of ν̂n[s + 1] for some n, and nj is a component in the right shuffle
which is not part of ν̂n[s + 1], but for which ν(ni)[s] ⊆ ν(nj)[s + 1], then Lemma
3.13 shows that nj is either the rightmost member of ν̂m[s + 1] for the greatest
m < n such that ν̂m[s + 1] is nonempty, or in case there is no such m, nj is the
component of form c〈e,j〉 or de involved in the right shuffle at this stage. In either
case, ν(nj)[s]∩ ν(ni)[s] = ∅ whereas ν(ni)[s] ⊆ ν(nj)[s+ 1] = ν(nj)[s]∪ ν(nj+1)[s].
Thus ν(nj+1)[s] ⊆ ν(ni)[s], and by Lemma 3.15, j + 1 = i.

So it suffices to assume that ni has been used in the right shuffle at a stage prior
to s + 1, and to consider the case in which ni and nj both belong to ν̂n[s + 1] for
the same n.

If s+ 1 is an even ν- or µ-recovery stage for Nn, ν̂n[s+ 1] is of the form xl, p, yk,
where xl and yk are αs+1 � n-reserved. In this case, we must have ni = p. Let
v be the component immediately to the right of yk in the right shuffle. Then
v ∈ ν(yk)[s + 1], whereas v /∈ ν(p)[s + 1] by Lemma 3.13. This is all that is
necessary to check in this case.

Suppose s + 1 is an odd ν-recovery stage for Nn. Then let t + 1 < s + 1 be
the most recent αs+1 � n stage which is a recovery stage for Nn, and suppose that
ν̂n[t + 1] is xl̂, p

ν
σ[t], yk̂. Then ν̂n[s + 1] is of the form xk, p

ν
σ[s], xk̂, where xl is

αs+1 � n-reserved, and pνσ[t] = pνσ[s]. As noted in the proof of Lemma 3.15, we
have ν(pνσ)[s + 1] 6⊆ ν(xl̂)[s]. In addition, we may note that xl̂ ∈ ν(xl̂)[s], whereas
xl̂ /∈ ν(xl)[s] ∪ ν(pνσ)[s] = ν(xl)[s+ 1]. So ν(xl̂)[s] 6⊆ ν(xl)[s+ 1]. This is sufficient
to complete this case.

Suppose s+1 is an odd µ-recovery stage for Nn. Then let t+1 < s+1 be the most
recent αs+1 � n stage which is a recovery stage for Nn, and suppose that ν̂n[t+1] is
xl̂, p

ν
σ[t], yk̂. Then ν̂n[s+ 1] is of the form pνσ[s], f−1(pµσ)[s], yk, where yk is αs+1 � n

and f−1(pµσ)[s] = xl̂. Note that xl̂ ∈ ν(pνσ)[s] and xl̂ ∈ ν(f−1(pµσ))[s], whereas
xl̂ /∈ ν(yk)[s + 1], so that ν(pνσ)[s] 6⊆ ν(yk)[s + 1] and ν(f−1(pµσ))[s] 6⊆ ν(yk)[s +
1]. In addition, yk ∈ ν(pνσ)[s], but yk /∈ νs+1(f−1s (pµσ,s)) = ν(f−1(pµσ))[s] ∪ {yk},
establishing that ν(pνσ)[s] 6⊆ νs+1(f−1s (pµσ,s)), which completes the proof.

�

Lemma 3.17. Fix σ, and suppose that |σ| = n, and that q is a component in
ν̂n[s+ 1] or µ̂n[s+ 1] at infinitely many σ-stages s+ 1.

Then σ 1̂ ≺ TP .

Proof. Let q be as above and assume q is a component in η̂n[s + 1] at infinitely
many σ-stages s+ 1.

It cannot be the case that σ <L TP � n because then there are only finitely
many σ-stages.
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If σ >L TP � n and q is part of η̂n[s+ 1], then there is a stage t > s+ 1 which is
a τ -stage for some τ <L σ such that |τ | = n. After stage t, the next σ-stage which
is a recovery for Nn is a σ-initialization stage, and no component in η̂n[s + 1] will
be part of the shuffle at that stage or any later stage.

If σ 2̂ ≺ TP then for sufficiently large t, every σ-stage is a σ 2̂ stage, and so η̂n[t]
is empty.

If σ 0̂ ≺ TP , let t0 + 1 < t1 + 1 < t2 + 1 be three successive σ 0̂-stages such
that for t ≥ t0, αt � n ≥L σ, and such that we do not attempt to meet Sτ for any
τ ≤L σ at any stage t > t0.

If η is ν, suppose that t0 + 1 is an even µ-recovery stage for Nn, so that t1 + 1 is
the first ν-recovery stage for Nn after t0 + 1, and that t2 + 1 is the first µ-recovery
stage for Nn after t1 + 1. Suppose that q is in ν̂n[t0 + 1], but has been shuffled
at a stage prior to stage t0 + 1. Then q = f−1(pµσ)[t0], since this is the only such
component in ν̂n[t0 + 1]. Note that for q to also be in ν̂n[t1 + 1] it must be the
case that q = pνσ,t1 and hence q = pνσ,t2 . Note that f(pνσ)[t2] 6= pµσ,t2 . The only
component in ν̂n[t2 + 1] which has been part of a shuffle by the end of stage t2 is
f−1(pµσ)[t2]. Thus it follows that q cannot be a member of νn[t2 + 1].

If η is µ, the argument is similar. Suppose t0 + 1 is an even ν-recovery stage for
Nn, so that t1 + 1 is the first µ-recovery stage for Nn after t0 + 1, and that t2 + 1
is the first ν-recovery stage for Nn after t1 + 1. If q is in µ̂n[t0 + 1], but has been
part of a shuffle at an earlier stage, then q = f(pνσ)[t0]. In order for q ∈ µ̂n[t1 + 1]
to be true, it must be the case that q = pµσ,t1 = pµσ,t2 6= f(pνσ)[t2]. But the only
component of µ̂n[t2 + 1] which has been shuffled by the end of stage t2 is f(pνσ)[t2].

Thus a component can only be a member of η̂n[t] for infinitely many t if σ 1̂ ≺
TP . �

Lemma 3.18. Suppose that |σ| = n and that t + 1 is a σ 0̂-stage, and hence an
even η-recovery stage, where η is either ν or µ.

Suppose that s+ 1 > t+ 1 is a σ 1̂- or σ 2̂-stage, and that for t+ 1 < t0 < s+ 1,
αt0 ≥L σ 1̂.

If t+ 1 is a ν-recovery stage for Nn then pνσ,t = pνσ,s+1. If, in addition, s+ 1 is

an even ν-recovery stage for Nn, then pµσ,t+1 = f(pνσ)[t] = f(pνσ)[s] = pµσ,s+1.

If t+ 1 is a µ-recovery stage for Nn then pµσ,t = pµσ,s+1. If, in addition, s+ 1 is

an even µ-recovery stage for Nn, then pνσ,t+1 = f−1(pµσ)[t] = f−1(pµσ)[s] = pνσ,s+1.

Proof. Suppose that t + 1 is an η-recovery stage for Nn, where η is either µ or ν.
Then each σ-stage t0 such that t+1 < t0 ≤ s+1 which is a recovery stage for Nn is
also an η-recovery stage for Nn. There are no stages t0 such that t+ 1 < t0 ≤ s+ 1
at which we attempt to meet Sτ for any τ ≤L σ, because after such a stage the next
σ-stage which is a recovery stage for Nn is a σ 0̂-stage. Thus for t+ 1 < t0 ≤ s+ 1,
pησ,t0 = pησ,t0−1. So pησ,t = pησ,s+1.

If s+ 1 is an odd ν-recovery stage for Nn, let s1 + 1 < s2 + 1 < s3 + 1 ≤ s+ 1 be
consecutive among σ-stages which are ν-recovery stages for Nn after stage t+1, and
assume that s1+1 is an even ν-recovery stage. Suppose that ν̂n[s1+1] = xl̂, p

ν
σ,s1 , yl̂.

Then µ̂n[s1 + 1] = xl̂, f(pνσ)[s1], yl̂. We have fs1+1(xl̂) = f(pνσ)[s1] = pµσ,s1+1. In

addition, fs1+1(xl̂) = fs2(xl̂), and pµσ,s1+1 = pµσ,s2 . Note that ν̂n[s2 + 1] is of

the form xl, p
ν
σ,s2 , xl̂, and µ̂n[s2 + 1] = xl, f(pνσ)[s2], pµσ,s2 which is the same as

xl, f(pνσ)[s2], f(pνσ)[s1]. Then

pµσ,s3+1 = f(pνσ)[s3] = f(pνσ)[s2 + 1] = fs2+1(pνσ,s2) = f(pνσ)[s1]
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with the last equality following from the form of ν̂n[s2 + 1] and µ̂n[s2 + 1]. So
pµσ,s3+1 = pµσ,s1+1, and therefore it follows by induction that pµσ,t+1 = f(pνσ)[t] =

f(pνσ)[s] = pµσ,s+1.
The case for µ-recovery is very similar. If s + 1 is an odd µ-recovery stage for

Nn, let ≤ s1 + 1 < s2 + 1 < s3 + 1 ≤ s + 1 be consecutive among σ-stages which
are µ-recovery stages for Nn after stage t + 1, where s1 + 1 is an even µ-recovery
stage. Suppose that µ̂n[s1 + 1] = xl̂, p

µ
σ,s1 , yl̂. Then ν̂n[s1 + 1] = xl̂, f

−1
s1 (pνσ,s1), yl̂.

Then f−1s1+1(yk̂) = f−1(pµσ)[s1] = pνσ,s1+1. In addition, f−1s1+1(yk̂) = f−1s2 (yk̂),
and pνσ,s1+1 = pνσ,s2 . So µ̂n[s2 + 1] is of the form yk̂, p

ν
σ,s2 , yk, and ν̂n[s2 + 1] =

pνσ,s2 , f
−1(pµσ)[s2], yk = f−1(pµσ)[s1], f−1(pµσ)[s2], yk. Then

pνσ,s3+1 = f−1(pµσ)[s3] = f−1(pµσ)[s2 + 1] = f−1s2+1(pµσ,s2) = f−1(pµσ)[s1]

and it follows by induction that pνσ,t+1 = f−1(pµσ)[t] = f−1(pµσ)[s] = pνσ,s+1.
�

Lemma 3.19. Suppose that |σ| = n and that σ 1̂ ≺ TP . Let t + 1 be the final
σ 0̂-stage of the construction.

If t + 1 is a ν-recovery stage for Nn then pνσ[t] is the only component which is
in ν̂n[s + 1] at infinitely many stages s + 1, and f(pνσ)[t] is the only component in
µ̂n[s+ 1] at infinitely many stages. In addition ν(pνσ,t) = µ(ft(p

ν
σ,t)).

If t+ 1 is a µ-recovery stage for Nn then pµσ[t] is the only component in µ̂n[s+ 1]
at infinitely many stages s + 1 and f−1(pµσ)[t] is the only component which is in
ν̂n[s+ 1] at infinitely many stages. In addition µ(pµσ,t) = ν(f−1t (pµσ,t)).

Proof. Suppose that t + 1 is an η-recovery stage for Nn where η is either µ or ν.
Then each σ-stage after t which is a recovery stage for Nn is also an η-recovery
stage for Nn. There are no stages s > t+1 at which we attempt to meet Sτ for any
τ ≤L σ, nor at which αs <L σ, because after such a stage the next σ-stage which
is a recovery stage for Nn is a σ 0̂-stage.

If t+ 1 < s+ 1 are both even η-recovery stages for Ne, the only component that
η̂n[t+ 1] and η̂n[s+ 1] both contain is pησ[t] = pησ[s]. So this is the only component
which is included in η̂n at infinitely many stages of the construction.

If η = ν and s + 1 > t + 1 is a σ 1̂-stage which is an even ν-recovery stage for
Nn, then pµσ,s+1 = f(pνσ)[s] = f(pνσ)[t] which is therefore part of µ̂n[s + 1] at each

such stage. Therefore we have ν(pνσ,t)[s] = µ(pµσ,s+1)[s] at such stages and hence

ν(pνσ,t) = µ(ft(p
ν
σ,t)).

On the other hand, at even ν-recovery stages s+ 1, fs(p
ν
σ,s) is the only non-fresh

component in µ̂n[s+ 1], and therefore that it is the only component which is part
of µ̂n infinitely often.

Likewise, if η = µ, then at even µ-recovery stages s+ 1 > t+ 1 for Nn, we have
pνσ,s+1 = f−1(pµσ)[s] = f−1(pµσ)[t], which is the only component that is part of ν̂n
often, and that µ(pµσ,t) = ν(f−1t (pµσ,t)). �

Note that because a component of ν or of µ can only grow by participating in a
shuffle, the above lemma characterizes the infinite components.

Lemma 3.20. The structures ν and µ are Friedberg enumerations of the same set,
and furthermore for components x 6= y we have ν(x) 6⊆ ν(y), and hence there is a
unique homomorphic embedding f : ν → µ, which is an isomorphism.
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Proof. At each stage s of the construction, ν[s] and µ[s] are isomorphic, and if x
and y are distinct components of ν, then ν(x)[s] 6⊆ ν(y)[s].

This suffices to show that if x is a finite component of ν, then ν(x) 6⊆ ν(y) for
every other component y, and furthermore that there is exactly one component z
of µ for which µ(z) = ν(x).

So we need only consider the infinite components. Let η and ι each be one of ν
and µ (allow that they might be equal), and let x be an infinite component of η.
Then x is part of a shuffle at infinitely many stages, so there is a σ 1̂ ≺ TP such
that if |σ| = n, then x is part of ν̂n[s] at infinitely many σ-stages s. Let t be the
last σ-initialization stage of the construction. Let p = pησ[t]. By Lemma 3.13 and
Lemma 3.17, p ∈ η(x), and x is the only infinite component of η for which this is
true. If ι 6= η, then by Lemma 3.19 there is exactly one infinite component y of ι
such that y is in ι̂n[s] at infinitely many σ-stages s, and furthermore η(x) = ι(y).
In addition, Lemma 3.13 shows that y is the only infinite component of ι for which
p ∈ ι(y). �

Lemma 3.21. For each e there is at most one stage at which we attempt to meet
Pe, which thereafter remains satisfied, and ϕe is not an isomorphism from ν to µ.

Proof. Suppose that at some σ-stage t + 1 we attempt to meet Pe. At the end of
stage t+ 1 we declare that Pe is satisfied and will never attempt to meet Pe again.
At stage t + 1 we have some j such that ϕe(b〈e,j〉) = b〈e,j〉, where ν(b〈e,j〉)[t] =
µ(b〈e,j〉)[t] = {b〈e,j〉}, and include a〈e,j〉, b〈e,j〉, and c〈e,j〉 in the shuffle at this stage
to ensure that ν(b〈e,j〉)[t+ 1] 6= µ(b〈e,j〉)[t+ 1]. The component b〈e,j〉 will never be
used in a right shuffle again, so ft(b〈e,j〉) = f(b〈e,j〉) 6= ϕe(b〈e,j〉). Thus ϕe is not an
isomorphism from ν to µ. �

Lemma 3.22. For σ <L TP , R(σ) <∞, and we only attempt to meet Sσ finitely
often.

Proof. If σ <L TP but σ 6≺ TP , then there are finitely many σ-stages, and hence
only finitely many stages at which we can attempt to meet Sσ.

Now suppose that σ ≺ TP , and that |σ| = e. Assume that for each τ ≺ σ we
attempt to meet Sτ at most finitely often.

Let t0 be a stage of the construction such that no Pi for i ≤ e or Sτ for for
τ <L σ requires attention after stage t0, and such that for s ≥ t0, αs ≥L σ.

Suppose that at some stage t1 > t0 we attempt to meet Sσ. Then we never
declare Sσ to no longer be satisfied, since that happens only at τ -stages where τ <L
σ and we are acting to meet Sτ or P|τ |. It is also immediate from the construction
that if t1 exists, then limsRs(σ) = Rt1(σ), and that otherwise limsRs(σ) = Rt0(σ),
so that in either case limsRs(σ) = R(σ) exists and is finite.

�

Lemma 3.23. Each requirement Pe is satisfied.

Proof. We have seen in Lemma 3.21 that if we ever act to meet Pe then it remains
satisfied throughout the construction. Suppose we never act to meet Pe.

Let σ = TP � e, and assume s to be a stage such that after stage s we never
attempt to meet a requirement Pi with i < e or Sτ with |τ | ≤ e, and such that
αt ≥L σ for all t ≥ s. Let 〈e, n〉 be such that a〈e,n〉, b〈e,n〉, and c〈e,n〉 are all fresh
numbers greater than R(σ), and are not β-marked for any β <L σ at stage s. Since
Pe never acts, ν(b〈e,n〉) = {b〈e,n〉} = µ(b〈e,n〉). It suffices to show that ϕe(b〈e,n〉) 6=
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b〈e,n〉 to show that Pe is met. Assume for a contradiction that ϕe(b〈e,n〉) = b〈e,n〉.
Let t > s be a σ-stage such that ϕe,t(b〈e,n〉) = b〈e,n〉. Then Pe is the highest
priority requirement which requires attention at stage t and so according to our
construction, we attempt to meet Pe at stage t, contrary to our assumption. �

Lemma 3.24. Let σ = TP � e. Suppose that s + 1 is a stage of the construction
after which we never attempt to meet a requirement of the form Pj for any j ≤ e,
nor any requirement of the form Sτ for τ <L σ. Assume that for t ≥ s we have
αt ≥L σ. Suppose that s+ 1 is a stage at which Sσ requires attention. Let g be the
function as given in Condition 3.5 which we use when attempting to meet Sσ.

Then g � f , where f is the isomorphism between µ and ν.

Proof. Note that at stage s+1, Sσ is the highest priority requirement which requires
attention, and so we we attempt to meet it at this stage.

Let g be the function of Condition 3.5, let w〈σ,n〉 be the active witness for σ-

diagonalization, and let σ � θ � αs+1 be such that g = fθ,s � k. So Φ
fθ,s�k
e (w〈σ,n〉) =

0.
We will show that fσ,s+1 � k = fθ,s � k = g.
By our choice of k, the only components q < k of ν which are involved in the

shuffle at stage s+ 1 are those which are s-predicted to be precious by θ.
Suppose that q < k is involved in the shuffle.
If q is s-predicted to be precious by σ we have fσ,s+1(q) = fσ,s(q), since if

θ0̂ 1 � σ, then s is not a θ0̂ 0-stage.
If q < k is s-predicted to be precious by θ but not σ, let q = pνθ0 [t], where

σ ≺ θ0̂ 1 � θ and t + 1 is the most recent θ0̂ 0-stage, or t = s if pνθ0 [s] and pµθ0 [s]

have never been shuffled. Note that |θ0| requires adjustment at this stage precisely if
fs(p

ν
θ0,t

) 6= pµθ0 [t]. By the reasoning used in Lemma 3.18, we see that after applying

the shuffle at this stage we will have fs+1(pνθ0,t) = pµθ0,s+1 = pµθ0 [t]. Indeed, we have

fθ,s � k = fσ,s+1 � k, and thus we get Φ
fσ,s+1�rs+1(σ)
e (w〈σ,n〉) = 0 6= Cs+1(w〈σ,n〉) =

1, as desired.
Note that components q < Rs(σ) cannot be unpredictable (Condition 3.5 forbids

this), and that components q < Rs+1(σ) will not be reserved or chosen to be fresh
precious components at any future stage. Therefore at any stage s0 > s + 1, the
only components q < Rs+1(σ) of ν/µ which can be part of the right/left shuffle are
those which are s0-predicted to be precious by σ. Those are the same components
which are s-predicted to be precious, since for τ 1̂ ≺ σ there are no θ̂ 0-stages
after s. Furthermore, for τ <L σ we do not τ -mark or τ -reserve any component
q < Rs+1(σ) at any stage after stage s. So at every stage s0 > s we have fσ,s0 �
Rs+1(σ) = fσ,s+1 � Rs+1(σ).

Finally, note that by Lemma 3.19, we see that any component q which is s0-
predicted to be precious by σ at each stage s0 > s satisfies fσ,s+1(q) = f(q). Since
these are the only components smaller than Rs+1(σ) which are ever shuffled after
stage s+ 1, we have g � f , as desired. �

Lemma 3.25. We have f <T ∅′′, that is, every requirement Se is met.

Proof. Firstly, note that f ≤T ∅′′, since f(x) = y is true precisely when fs(x) = y
for infinitely many s, i.e. when (∀t)(∃s > t)[fs(x) = y], which is a Π2

0 condition.
Let C = {e | (∃t)(∀s > t)e ∈ Cs(x)}. Note that C is Σ0

1 and hence C ≤T ∅′ < ∅′′.
We will show f 6≥T C.
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If σ = TP � e, suppose as in Lemma 3.24 that t0 is a stage after which we never
attempt to meet Pj for any j < i or Sτ for any τ <L σ, and that for s > t0 we have
αs ≥ σ. Then after stage t0 the active witness w〈σ,n〉 for σ-diagonalization does not
change.

If Sσ ever requires attention at a σ-stage s + 1 > t0, we attempt to meet it.
Then by Lemma 3.24, g ≺ f , where as usual g is the function of Condition 3.5, and
Φfe (w〈σ,n〉) 6= C(w〈σ,n〉).

We must now show that Φfe 6= C, even if we never succeed at permanently
satisfying Sσ. So suppose that Φfe is total. Choose k and s0 to be large enough
that Φf�ke,s0(w〈σ,n〉) ↓. Choose θ ≺ TP such that σ ≺ θ and each infinite component
q < k of ν is pντ [t] at infinitely many stages t, where τ 1̂ � θ.

Let s > s0 be a stage so large that for each t > s, αt ≥L θ, that no finite
component q < k of ν is part of a shuffle after stage s, and that after stage s, we
never again attempt to meet a requirement Pi for i ≤ e, nor Sτ for any τ <L σ.

At every θ-stage t > s, we have fθ,t � k = f � k, by choice of k, s, and θ.
At the first such stage, Φfθ�ke (w〈σ,n〉)[t] ↓, by our choice of s. By assumption,
we do not attempt to meet Sσ at this stage. Since we can only only enumerate
w〈σ,n〉 into C when attempting to meet Sσ, and change to a new active witness
for σ-diagonalization whenever Sσ ceases to be satisfied, we have never enumerated
w〈σ,n〉 into C. Since Sσ does not require attention, Φfe (w〈σ,n〉) = Φfθ�ke (w〈σ,n〉)[t] ↓6=
Ct(w〈σ,n〉). We never change the active witness for σ-diagonalization, nor enumerate

it into C. So Φfe (w〈σ,n〉) 6= C(w〈σ,n〉), as desired. Thus if Φfe is total, Φfe 6= C. �

This concludes our discussion of the Pe and Sσ requirements. All that remains
is to check the Ne requirements: that either ν and µ are not isomorphic to ρe, or
that one of them is computably isomorphic to ρe. Which of these situations occurs
depends on TP (e). We first address the case in which σ 2̂ ≺ TP for some σ of
length e, and eventually some finitary obstruction prevents ρe being isomorphic to
our structures.

Lemma 3.26. Suppose that σ is of length e and that σ 2̂ ≺ TP . Then ρe is not
isomorphic to ν (or to µ).

Proof. Let s be such that for t > s, αt >L σ 2̂ and such that after stage s we do
not attempt to meet Sτ for any τ ≤L σ. Let t0 + 1 < s be the final σ-stage which is
a recovery stage for Ne. Note that if q is a component of ν which is involved in the
right shuffle at a stage after t0 + 1, then q cannot be σ-marked. Thus, after stage
s, no elements are ever enumerated into any σ-marked component of ν. Let M be
the set of components of ν which are ever σ-marked.

Suppose there is some σ-stage t+1 > s at which there are at least two embeddings
of the components in M into ρe[t]. Then there is some q ∈ M such that ν(q)[t] ⊆
ρe(x)[t] for two different components x of ρe. But ν(q) 6⊆ ν(y) for each component
y 6= q of ν, so ρe and ν cannot be isomorphic.

If at each σ-stage t+1 > s there is no homomorphic injection of the components
in M into ρe[t], then there is no homomorphic injection of ν into ρe, either, and
two structures are not isomorphic.

Otherwise, at some first σ-stage t+1 > s there is a unique homomorphic injection
hηβ [t] mapping the components in M to components of ρe such that ρe(h

η
β(q))[t] ⊆

η(q)[t] for each q ∈ M . Since t is a σ 2̂-stage, range(hνσ)[t0] 6⊆ range(hνσ)[t]. Let
x ∈ range(hνσ)[t0]− range(hνσ)[t]. Say x = hνσ(q)[t0]. Note that each component u of
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ν such that q ∈ ν(u)[t0+1] is σ-marked by the end of stage t0+1, and therefore is in
the domain of hησ[t]. Thus q cannot become a member of any additional component
of ν after stage t0 + 1, since that would require a σ-marked component to be part
of a shuffle. So there are finitely many components y of ν which have q ∈ ν(y). But
q ∈ ρe(x)[t], so there are more components y in ρe such that q ∈ ρe(y) than there
are components y in ν such that q ∈ ν(y), so ρe and ν are not isomorphic. �

In the case that TP (e) = 0 we will see that ρe and ν are not isomorphic, because
there is an infinite component in ρe which is not present in ν. The following lemma
will be used to demonstrate that.

Lemma 3.27. Let σ be of length e, and suppose σ ≺ TP . Assume that for t ≥ t0,
αt ≥L σ, that t0 is a σ-stage which is a recovery stage for Ne, and that after stage
t0 we never attempt to meet Sθ for any θ ≤L σ.

Suppose η is either ν or µ, and that s + 1 > t0 is a σ-stage of the construction
which is an η-recovery stage for Ne.

Suppose that pσ is the component of ρe for which hησ(pησ)[s] = pσ.
Suppose t + 1 > s + 1 is the next σ-stage which is a recovery stage for Ne, and

that t+ 1 is a σ 0̂ stage.
Let ι be µ if η is ν and ν if η is ν. Then ι(pισ)[t] = ρe(pσ)[t].

Proof. If t + 1 is a σ 0̂ stage, then hησ[s] 6⊆ hησ[t]. The disagreement between hηβ [t]

and hηβ [s] occurs among the components which are part of the shuffle at stage s.
Suppose that at stage s+1 we perform a right shuffle at stage on the components

n0, . . . , nd of ν, a left shuffle on the components m0, . . . ,md of µ. Interpret the
indices 0, . . . d modulo d + 1. By Lemma 3.16, for 0 ≤ i ≤ d we have ν(ni)[s] ⊆
ν(ni)[s + 1] and ν(ni)[s] ⊆ ν(ni−1)[s + 1], but ν(ni)[s] ⊆ ν(q)[s + 1] for no other
component q of ν. Likewise, for each i, ν(ni)[s] ⊆ µ(mi)[s + 1] and ν(ni)[s] ⊆
µ(mi+1)[s+ 1], but ν(ni)[s] ⊆ µ(q) for no other component q of µ.

For i ≥ n the components of ν̂i[s + 1] are all σ-marked by the end of stage s,
whereas for i < n, none of the components of ν̂i[s + 1] are σ-marked by the end
of stage s. The components of the form a〈e,j〉, b〈e,j〉, and c〈e,j〉 used in the right
shuffle at this stage (if any), are either all σ-marked by the end of stage s, or none
are. Thus the σ-marked components used in the right shuffle occur as a contiguous
“block”: they are of the form na, na+1, . . . , nb−1, nb for some a and b (numbering
modulo d+ 1).

There are components qa, qa+1, . . . , qb of ρe such that for a ≤ j ≤ b, ρe(qj)[s] ⊇
ν(nj)[s], i.e. hνσ(nj)[s] = qj . Because t + 1 is a σ-stage and recovery stage for
Ne, each such qj is in the range of hησ[t]. Each qj must satisfy either ρe(qj)[t] ⊇
ν(nj)[t] = µ(mj+1)[t], or ρe(qj)[t] ⊇ ν(nj−1)[t] = µ(mj)[t]. Furthermore, either the
former is true for every j or the latter is true for every j, since hησ includes every
qj in its range, and is one-to-one. But hησ[t] 6⊃ hησ[s].

Suppose that η = ν. Let nj = pνσ[s]. Then hνσ(nj) = nj+1. Then pµσ[t] =
pµσ[s+ 1] = fs(nj) = mj , whence ρe(qj)[t] = µ(pµσ)[t].

Likewise if η = µ, and mj = pµσ[s], then pνσ[t] = pνσ[s + 1] = f−1s (pµσ,s) = nj−1.
So ρe(qj)[t] = ν(pνσ)[t]. �

Lemma 3.28. If σ is of length e and σ 0̂ ≺ TP then ρe is not isomorphic to ν.

Proof. Suppose that σ 0̂ ≺ TP . Choose t to be large enough that at stages s ≥ t,
αs ≥L σ 0̂, and that at stages s ≥ t we do not attempt to meet Sτ for any τ ≤L σ.
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Let t0 + 1 > t be a σ 0̂ stage. Then t0 + 1 is an η-recovery stage for Ne, where
η is either µ or ν.

Let pσ be the component of ρe for which we have hησ(pησ)[t0] = pσ[t0]. Let
t1 + 1 > t0 + 1 be the next σ 0̂ stage. Note that t1 + 1 is an ι-recovery stage, where
ι is µ if η is ν and ι is ν if η is µ. We have hησ(pµσ)[t1] = pισ[t1], where ι is ν if η is
µ and is µ if η is ν. Thus we have ρe(p

σ)[t1] ⊇ ι(pισ)[t1], and η(pησ[t0] is a proper
subset of ι(pισ)[t1]. Let ti be the ith σ 0̂ stage at which we perform a right shuffle
after t0. Then η(pησ)[t0] ⊂ ι(pισ)[t1] ⊂ η(pησ)[t2] ⊂ ι(pισ)[t3] · · · ⊆ ρe(p

σ), and ρe(p
σ)

is infinite.
There is no infinite component q of ν such that ν(pνσ)[ti] ⊆ η(q) for any i, because

such a component would by Lemma 3.13 need to be part of ν̂e[s] at infinitely
many σ-stages s, but by Lemma 3.17 that implies σ 1̂ ≺ TP , contrary to our
assumption. �

Finally, we deal with the case in which TP (e) = 1.

Lemma 3.29. If σ is of length e and σ 1̂ ≺ TP , then if ρe is isomorphic to ν and
µ, it is computably isomorphic to one of them.

Proof. Let t0 be a stage such that for t > t0, αt ≥L σ 1̂, and after which we never
attempt to meet Sτ for any τ ≤L σ.

Suppose that ν, µ, and ρe are all isomorphic (or else there is nothing to show).
We will be able to computably determine an isomorphism hη : η → ρe, for η

equal to one of ν and µ.
We will specify a finite set Dη of components of η, for both choices of η, and

show that each component of η which is not in Dη is eventually σ-marked.
If τ <L σ but τ 6≺ σ, then after stage t0 we do not τ -mark any additional

components of ν or µ. We also have pητ [t] = pητ [t0]. Put each component of η which
is ever τ -marked into D. Put pητ [t0] into Dη.

If τ 2̂ � σ, then only finitely many components of η are ever τ -marked. Put
them into Dη.

If τ 1̂ � σ, say |τ | = i. There is a single component which is part of ηi[t] at
infinitely many stages t. Put that component into Dη.

Note that a component is in Dµ precisely if it is of the form f(q) for some q ∈ Dν .
If t0 < t+ 1 < s+ 1, and t+ 1 and s+ 1 are σ-stages which are recovery stages

for Ne, both must be η-recovery stages for the same η, so we have hησ[t] ⊆ hησ[s].
In addition, each component q < s of ν will be σ-marked by stage s + 1 unless it
is in Dν , or if there is some τ ≺ σ such that τ 0̂ � σ or τ 1̂ � σ and q is either
τ -reserved, is pντ,s+1, or is f−1(pν)[s+1]. Note that each q can only be a τ -reserved
component at one σ-stage, and that if τ 0̂ � σ, then each component q can only be
pντ,s+1 or f−1(pµσ)[s+ 1] at finitely many σ-stages s+ 1 of the construction.

So any component of ν other than those in Dν will eventually be σ-marked at
some stage.

We now check that every component of µ other than those in Dµ is σ-marked
at some stage. It suffices to check that if q is a component of ν then if q is ever
σ-marked, f(q) is also σ-marked. In the case that ν(q) is finite, this is obvious.
Otherwise q is infinite. In that case, since q is σ-marked at some stage, there is
some τ such that σ � τ 1̂ ≺ TP and q is part of ν̂i[s+ 1] at infinitely many stages
s + 1, where |τ | = i. But then f(q) is part of µ̂i[s + 1] at infinitely many stages,
and is σ-marked at the first such stage.
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Now, let η be such that eventually every σ-stage which is a recovery stage for
Ne is an η-recovery stage. Each component of η is either a member of Dη or is
σ-marked at some stage.

Let hησ =
⋃

σ̂1-stages s>t0 h
η
σ[s]. Then hησ has domain ω \Dη, and furthermore is a

computable homomorphic embedding of those components of η into ρe. In addition,
if η and ρe are isomorphic, it is the only such homomorphic embedding, for if there
were another, say h, then there must be some component x ∈ ω \ Dη such that
h(x) 6= hησ(x), whence η(x) ⊂ ρe(h

η
σ(x)) and η(x) ⊂ ρe(h(x)), contrary to Lemma

3.20.
Now suppose that η and ρe are isomorphic. Rigidity of η implies there is only one

isomorphism h : η → ρe, but as the reasoning above shows, we must have h ⊇ hησ.
Since Dη is finite, and hησ is computable, it follows that h is computable too. �

This concludes the verification that our construction succeeds in meeting the re-
quirements of form Nn, Se, and Pe. It follows that ν is a c.e. Friedberg enumeration
of a set S for which G(S) has computable dimension 2, and that the isomorphism
between the computable copies of G(S) corresponding to ν and µ has degree d ≤ 0′′

and d 6≥ 0′, as required by Theorem 3.1.

4. Computable dimension 3

We now devote our attention to the following theorem.

Theorem 4.1. There exists a rigid structure of computable dimension 3 such that
if d0, d1, and d2 are the degrees of isomorphisms between distinct representatives
of the three computable equivalence classes, then each di < d0 ⊕ d1 ⊕ d2 ≤ 0′′.

We first note that Theorem 4.1 immediately yields the following corollary.

Corollary 4.2. There is a rigid computable structure with computable dimension 3
which has a degree of categoricity d ≤ 0′′, but has no strong degree of categoricity.

Proof. Firstly, we note that d = d0 ⊕ d1 ⊕ d2 is clearly able to compute an iso-
morphism between any two computable copies of our structure, since the degrees of
isomorphisms between inequivalent copies are all of the form di for some i, whereas
if c 6≥ d then c 6≥ di for some i. So d is clearly the degree of categoricity of our
structure. On the other hand di < d for each i, and therefore between any two
computable copies there is an isomorphism with Turing degree strictly below d,
which is therefore not a strong degree of categoricity. �

We now proceed with the proof of Theorem 4.1.
Our strategy is based on that of the two-structure construction in the previous

section, but we must make some significant changes to adapt the ideas to the new
context.

The major change is that because we are building three structures, we will no
longer be able to perform shuffles which are simultaneously in opposite directions
in all three structures. We will, however, continue to use shuffles when building our
structures, since they are an ideal tool for ensuring that our structures have finite
computable dimension.

Our three isomorphic structures will be called νi, where 0 ≤ i ≤ 2. As before,
we will work with c.e. binary relations, and build Friedberg enumerations of a set
S, but note that one could equally well work with graphs and build computable



26 BARBARA F. CSIMA AND JONATHAN STEPHENSON

copies of G(S) instead. Once again, we will ensure that no pair of our structures
is computably isomorphic, and that the structure we are building has computable
dimension 3. The isomorphism between the the structures νi and νj will be de-
noted by f i,j . We will interpret our structures as having indices given modulo 3
under addition, so that for any i, νi, νi+1, and νi+2 will refer to our three distinct
structures.

We will have two kinds of requirement, as follows:
Ne: If ρe is a Friedberg enumeration of S, then ρe is computably isomorphic to

νi for some i.
In addition to these requirements, we also wish to ensure that if i and j are

distinct, then f i,j <T f
0,1 ⊕ f1,2 ⊕ f2,0.

To achieve this, we will meet the requirements:

Qe,i: Φf
i+1,i+2

e 6= f i,i+1, for 0 ≤ i ≤ 2 and e ∈ ω.
Note that meeting each of the requirements Qe,i guarantees that f i+1,i+2 6≥T

f i,i+1 for each i. We will let di denote the Turing degree of f i,i+1 for 0 ≤ i ≤ 2.
Since our structure is rigid it has degree of categoricity d = d0 ⊕ d1 ⊕ d2.

Furthermore, d > di+1 for each i, because the requirements Qe,i collectively
ensure that di 6≤ di+1. Thus the requirements are sufficient to guarantee that the
three degrees d0, d1, d2 of the isomorphisms between distinct representatives of
the three computable equivalence classes satisfy di < d0 ⊕ d1 ⊕ d2, as required.
Our method of construction will allow us to easily see that di ≤ 0′′ for each i.

The requirements (Qe,i)e∈ω together guarantee that di 6= 0. Thus we no longer
need to use requirements similar to the Pe from Section 3 to guarantee that none
of the copies we build are computably isomorphic—that is already guaranteed by
the other requirements.

We will build the structures νi stage-by-stage, as before, and at each stage s will
let f i,js be the unique isomorphism from νi[s] to νj [s]. Note that f i,is is always the
identity function. We will let xe, ye, ze, we for e ∈ ω be natural numbers, all chosen
distinctly.

As before, each string σ of length e will correspond to a guess about the recovery
patterns for the structures ρj for j ≤ e. Each stage s + 1 will be a associated to
a string αs+1 of length s + 1. We will interpret αs+1 as giving information about
stage s+ 1 in much the same way as we did in the two-structure construction.

For each σ and i, we will specify a precious component piσ[s] of νi at each stage
s of the construction. We begin by setting piσ[0] = z〈σ,0〉 for each σ.

The strings αs+1 are defined as follows:
Every stage of the construction is a λ-stage.
Stage s = 0.
We say that hiβ [0] is the empty function for 0 ≤ i ≤ 2 and for every β.
Stage s+ 1.
Suppose that we know that s + 1 is a β-stage for some β with |β| < s. Let

e = |β|. For 0 ≤ i ≤ 2 let Bi be the set of components of νi which are β-marked
by the end of stage s.

We say that stage s+ 1 is a recovery stage for Ne if, for 0 ≤ i ≤ 2, there exists
a unique map hiβ [s] : Bi → ρe such that ρe(h

i
β(x))[s] ⊇ νi(x)[s] for each x ∈ Bi,

and furthermore that if t+ 1 < s+ 1 is the most recent β-stage which is a recovery
stage for Ne, then range(hηβ)[t] ⊆ range(hηβ)[s].
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If s + 1 is a β-stage which is a recovery stage for Ne, and β was not active at
the end of stage s, say s + 1 is a 0-recovery stage, a β-initialization stage, and a
β 0̂-stage. Declare β active.

If s + 1 is a β-stage which is a recovery stage for Ne, and β was active at the
end of stage s, let t + 1 < s + 1 be the most recent β-stage which was a recovery
stage for Ne. Suppose t + 1 was an i-recovery stage for Ne. If hiβ [s] ⊇ hiβ [t], then

say s + 1 is a β 1̂-stage, and an i-recovery stage for Ne. If hiβ [s] 6⊇ hiβ [t], for each

k such that the shuffles in νi and νk were in opposite directions at stage t+ 1, let
tk be the largest β-stage prior to t+ 1 which is a k-recovery stage for Ne (choosing
tk = 0 if there is none). Choose k to minimize tk. Say s + 1 is a k-recovery stage
for Ne, and a β 0̂-stage.

If s+ 1 is not a recovery stage for Ne, then we say stage s+ 1 is a β 2̂-stage.
Let αs+1 be the unique string of length s + 1 such that s + 1 is an αs+1-stage.

Note that s+ 1 is a σ-stage iff σ � αs+1.
We define TP to be the true path, given by TP = lim infs αs.
At each stage s + 1 we define f i,jσ,s as follows: for τ 1̂ � σ, let t + 1 ≤ s be

the most recent τ 0̂-stage at which we performed a shuffle. Then for each i and j
set f i,jσ,s(p

i
τ,t+1) = pjτ,t+1, and say that σ s-predicts piτ,t+1 to be precious. If q is a

component of νi such that f i,js (q) = pjτ,t+1 for some j, let f i,jσ,s(q) be undefined. For

each other component q of νi, set f i,jσ,s(q) = f i,js (q).
At each stage we define restraint rs(σ) and set Rs(σ) = max{rs(τ) | τ ≤L σ}.
Each requirement Qe,i will be split into different versions Qτ,i, where τ ∈ 3<ω

is of length e. An attempt to meet a requirement Qτ,i will be spread across two
different τ -stages of the construction. When meeting the requirement Qτ,i we will
have a specified active witness w〈τ,n〉 for τ -i-diagonalization. Our goal in meeting
the requirement Qτ,i will be to ensure that

Φf
i+1,i+2

e (w〈τ,n〉) ↓= w〈τ,n〉 6= f i,i+1(w〈τ,n〉).

At the first stage of each attempt to meet Qτ,i we will prepare the requirement by
attempting to find some partial function g such that that

Φge(w〈τ,n〉) = w〈τ,n〉

and such that we are able to ensure that g ≺ f i+1,i+2. At the second stage
we will complete the requirement by performing a second shuffle to ensure that
f i,i+1(w〈τ,i〉) 6= w〈τ,i〉 and thus that the computation given by g disagrees with

f i,i+1.
The procedure used at a stage s+ 1 at which we are preparing the requirement

Qτ,i will strongly resemble that used to meet the requirements Sτ of the previous
sections. We will perform a right shuffle in νi and νi+1, and a left shuffle in νi+2. As
in the two-structure construction, we will want to ensure f i+1,i+2

θ,s � k = f i+1,i+2
τ,s+1 � k,

for some appropriately chosen k and θ � τ . We will then attempt to protect this
initial segment.

At the second stage t + 1 of our attempt to meet Qτ,i, we will complete the
requirement, by diagonalizing against the previously-prepared computation. To do
so we will perform a right shuffle in νi, and left shuffles in νi+1 and νi+2. At this
stage we will include the witness w〈τ,n〉 in our shuffle, so that that f i,i+1

t (w〈τ,n〉) 6=
f i,i+1
t+1 (w〈τ,n〉) and in particular that f i,i+1

t+1 (w〈τ,n〉) 6= w〈τ,n〉. We will never include

w〈τ,n〉 in a shuffle for any other reason, so we will have f i,i+1(w〈τ,n〉) 6= w〈τ,n〉.
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The shuffles carried out in νi+1 and νi+2 while completing the requirement Qτ,i
will be in the same direction, to preserve the initial segment g = f i+1,i+2

τ,s+1 � k which
is providing us a computation to diagonalize against.

If τ ≺ TP and the requirement Qτ,i is never injured after this stage we will have
g = f i+1,i+2 � k, so that we meet the overall requirement Qe,i.

If a requirement Qτ,i is injured for any reason, we will abandon all progress which
we have made towards meeting it, and choose a new active witness. If τ ≺ TP then
the requirements of the form Qτ,i will only be injured finitely often.

The following schematics illustrate the shuffling strategy for preparing and then
completing Qτ,i.

νi νi+1 νi+2

right shuffle right shuffle left shuffle

f i,i+1
τ preserved f i+1,i+2

τ changes

Figure 1. At stage s + 1 we prepare Qτ,i. The shuffles in νi+1

and νi+2 are in opposite directions, which causes the isomor-
phism between them to change, and our shuffle is chosen so that
f i+1,i+2
τ [s+ 1] � k = g.

νi νi+1 νi+2

right shuffle left shuffle left shuffle

f i,i+1
τ changes f i+1,i+2

τ preserved

Figure 2. At a later stage t + 1 we complete Qτ,i. Be-
cause the shuffles in νi+1 and νi+2 are in the same direction,
f i+1,i+2[t] = f i+1,i+2[t+ 1]. Thus we preserve the steps taken to
prepare Qτ,i and f i+1,i+2

τ [t+ 1] � k = g. By involving w〈τ,n〉 in the

shuffle, we get f i,i+1[t+ 1](w〈τ,n〉) 6= f i,i+1[t](w〈τ,n〉).

As before, we will meet the requirements Ne passively by building our structures
using shuffles and keeping track of recovery stages. If τ is of length e and s + 1 is
a τ 1̂-stage and an i-recovery stage for Ne, then we believe piτ,s will be an infinite

component of νi. In that case we try to build an identical infinite component q in
νj for each j 6= i. We do so using a method akin to the odd/even recovery stages
in the two-structure construction, but which is complicated by the fact that we
must now keep track of three structures. If s + 1 is a τ 1̂-stage, and an i-recovery
stage for Ne, and q = f i,j(piτ )[s], then if we involve piτ,s in the shuffle in νi at stage

s + 1, we must also involve q in the shuffle in νj at this stage. If these shuffles
are in opposite directions, then q 6= f i,j(piτ )[s + 1]. If we want f i,j(piτ ) = q to
be true, we wait for a later τ 1̂-stage t + 1 at which νi and νj once again involve
shuffles in opposite directions, at which point we can include both f i,jt piτ,t and q in

the shuffle in νj . This allows us to reverse the unwanted change to f i,j , and get
q = f i,j(piτ )[t+ 1]. Determining whether we are allowed to include q in the shuffle
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at stage t+1 requires checking the status of the third structure at stage t+1. As an
organizational tool, we will maintain a τ -j-queue for each j, which will be used to
record which component q of νj (if any) we wish to involve in a shuffle at a future
stage. Each queue will contain at most one component at a time. We will refer to
each τ -j-queue as being a τ -queue.

As in the previous construction, at stage s + 1, we will say that a number q is
fresh if νi(q)[s] for each i, and for each σ, q is not σ-reserved, and furthermore, for
no t < s+ 1 do we have q = piσ,t for any i.

We now give the construction.
The Construction
Stage 0:
We set νi(q) = {q} for each q and for 0 ≤ i ≤ 2. Set r(σ)[0] = 0 for all

σ ∈ 3<ω. For 0 ≤ i ≤ 2, λ-mark the precious components piλ,0 in νi. For the least

components of form xl and yk, λ-mark them in each νi and say they are λ-reserved.
For 0 ≤ i ≤ 2, say that w〈λ,i〉 is the active witness for λ-i-diagonalization, and

λ-mark the component w〈λ,i〉 in νj for 0 ≤ j ≤ 2.
Say that none of the requirements Qτ,i are currently satisfied, and that none

have been prepared.
Say that the τ -i-queue is empty for each τ ∈ 3<ω and each i such that 0 ≤ i ≤ 2.
Stage s+ 1:
We check on the status of the requirements Qτ,i for each τ � αs+1 and 0 ≤ i ≤ 2,

so that we can decide which to meet.

Condition 4.3. Suppose τ � αs+1 is of length e and and Qτ,i is not currently
satisfied.

For each θ � τ say that a component q of νi+1 is θ-unpredictable if there is some
σ such that σ l̂ � θ, where l is either 0 or 1, and such that q is either σ-reserved,
or is of the form f j,i+1(pjσ)[s] for some j, and θ does not s-predict q to be precious.

Suppose w〈τ,n〉 is the active witness for τ -i-diagonalization.
Check whether there is some θ such that τ � θ � αs+1, k ≤ s, and g such that:

(1) g = f i+1,i+2
θ,s � k

(2) If x is a component of νi+1 which is θ-unpredictable, then k ≤ x
(3) Φge(w〈τ,n〉)[s] ↓= w〈τ,n〉.

If such θ, k, and g exist say that Qτ,i requires attention.

We will say that Qτ,i can be completed if it has previously been prepared, but
the most recent preparation has not been canceled.

Preparing the requirement Qτ,i will ensure that Φ
fi+1,i+2
τ
e (w〈τ,n〉)[s] ↓= w〈τ,n〉,

where w〈τ,n〉 is the active witness for τ -i-diagonalization. A requirement which has
been prepared will still require attention at later stages.

Find the shortest τ � αs+1 such that for some least i, Qτ,i requires attention.
At stage s + 1 we will complete Qτ,i if it can be completed. Otherwise we will

prepare it.
Case 1: Preparing Qτ,i.
Let g and θ be as specified in Condition 4.3. Suppose that |τ | = e and |θ| = d.
We will be performing a right shuffle in νi and in νi+1, and a left shuffle in νi+2.
We will define a finite sequence ν̂jn[s + 1] of components in each νj for each j

and for n < d.
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For each n < e, do as follows: Let σ = αs+1 � n. Let xl and yk be the σ-reserved
components.

If s+1 is a σ 2̂-stage, let ν̂jn be empty for each j, and do nothing to the σ-queues.
If s+ 1 is a σ 0̂-stage and an h-recovery stage for Nn, empty the σ-queues, and

for each j, let ν̂jn = xl, f
h,j(phσ)[s], yk.

If s + 1 is a σ 1̂-stage and an h-recovery stage for Nn, check whether there is
some number q in the σ-(i+ 2)-queue.

If so, remove q from the σ-(i + 2)-queue. Then, if we are performing a right
shuffle in νh at this stage, for each j let ν̂jn = xl, f

h,j(phσ)[s], f i+2,j
s (q). On the

other hand, if we are performing a left shuffle in νh at this stage, for each j let
ν̂jn = f i+2,j

s (q), fh,j(phσ)[s], yk.
If there is no number q in the σ-(i + 2)-queue, then for each j set ν̂jn =

xl, f
h,j(phσ)[s], yk.

In each of the above cases, if s+1 is an h-recovery stage for Nn, let phσ,s+1 = phσ,s,

and for j 6= h let pjσ,s+1 = fh,j(phσ)[s].

If this is not a recovery stage for Nn, then for each j let pjσ,s = pjσ,s+1.
For e ≤ n < s+ 1, let σ = αs+1 � n.
If σ 1̂ 6� θ, let ν̂jn be empty for each j (this includes the case that d ≤ n ≤ s).
If σ 1̂ � θ, let t + 1 < s + 1 be the most recent σ 0̂-stage of the construction.

Check whether f i+1,i+2
s (pi+1

σ,t+1) = pi+2
σ,t+1. If so, let ν̂jn[s+ 1] be empty for each j. If

not, then let ν̂jn[s+ 1] = xl, f
i+1,j
s (pi+1

σ,t+1), f i+2,j
s (pi+2

σ,t+1) for each j.

Perform a right shuffle in νi of the components

ν̂i0, ν̂
i
1, . . . , ν̂

i
s.

Likewise perform a right shuffle in νi+1 of the components

ν̂i+1
0 , ν̂i+1

1 , . . . , ν̂i+1
s

and a left shuffle in νi+2 of the components

ν̂i+2
0 , ν̂i+2

1 , . . . , ν̂i+2
s .

This concludes the shuffling at this stage.
Let u be the largest number such that for some j such that 0 ≤ j ≤ 2, and some

x < k, f j,i+1
s+1 (x) = u. Now set rs+1(τ) = max(u, rs(τ)) and rs+1(σ) = rs(σ) for

each σ 6= τ .
Declare that Qτ,i has been prepared.
Proceed to clean-up phase.
Case 2: Completing Qτ,i.
We will be performing a right shuffle in νi and a left shuffle in νi+1 and νi+2.

As before, let |τ | = e.
We will define ν̂jn[s+ 1] for each j and for n ≤ s.
For each n ≤ s, do as follows: Let σ = αs+1 � n. Let xl and yk be the σ-reserved

components.
If s+ 1 is a σ 2̂-stage, let ν̂jn be empty for each j.
If s + 1 is a σ 0̂-stage and an h-recovery stage for Nn, then for each l, let

ν̂ln = xl, f
h,l(phσ)[s], yk. Empty the σ-i-queue.

If s + 1 is a σ 1̂-stage and an h-recovery stage for Nn, check whether there is a
number q in the σ-i-queue. If so, remove q from the σ-i-queue.

If we are performing a right shuffle in νh at this stage then for each j let ν̂jn =
xl, f

h,j
s (phσ), f i,js (q).
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If we are performing a left shuffle in νh at this stage then for each j let ν̂jn =
f i,js (q), fh,js (phσ), yk.

If there is no number q in the σ-i-queue, then for each j set ν̂jn = xl, f
h,j
s (phσ), yk.

In each of the above cases, if s+1 is an h-recovery stage for Nn, let phσ,s+1 = phσ,s,

and for j 6= h let pjσ,s+1 = f j,m(phσ)[s]. If this is not a recovery stage for Nn, then

for each j let pjσ,s = pjσ,s+1.
Let the active witness for τ -i-diagonalization be w〈τ,n〉, with companions w〈τ,m0〉 <

w〈τ,m1〉.

Perform a right shuffle in νi of the components

w〈τ,m0〉, w〈τ,n〉, w〈τ,m1〉, ν̂
i
0, ν̂

i
1, . . . , ν̂

i
s.

Likewise perform a left shuffle in νi+1 of the components

w〈τ,m0〉, w〈τ,n〉, w〈τ,m1〉, ν̂
i+1
0 , ν̂i+1

1 , . . . , ν̂i+1
s

and a left shuffle in νi+2 of the components

w〈τ,m0〉, w〈τ,n〉, w〈τ,m1〉, ν̂
i+2
0 , ν̂i+2

1 , . . . , ν̂i+2
s .

Declare Qτ,i to be currently satisfied. Proceed to clean-up phase.
Clean-up phase after preparing or completing Qτ,i
We begin the clean-up phase by updating the queues. Let m be such that the

shuffle in νm at stage s + 1 is in the opposite direction to that in the other two
structures. For each n ≤ e do as follows. Let σ = αs+1 � n. Let xl and yk be the
σ-reserved components.

If σ 2̂ � αs+1 do nothing to the σ-queues.
If σ 0̂ � αs+1 or σ 1̂ � αs+1, suppose s + 1 is an h-recovery stage for Nn. Let

t+ 1 < s+ 1 be the most recent σ 0̂-stage of the construction.
Suppose h 6= m. Let fh,m(phσ)[t] = qm. If fh,m(phσ)[s] = qm, add qm to the

σ-m-queue.
Suppose h = m. For each j 6= m let fh,j(phσ)[t] = qj . If fh,j(phσ)[s] = qj for

each such j, then let q = f j,hs+1(qj) and add q to the σ-h-queue (note that q is

independent of the choice of j here). If fh,j(phσ)[s] 6= qj for one j 6= h then add
qj to the σ-j-queue for that j. If fh,j(phσ)[s] 6= qj for both j 6= h then make no
additions to any σ-queues.

Next, declare any component which is involved in the shuffle is no longer σ-
reserved for any σ.

For each σ >L τ , do as follows: Declare any σ-reserved components to be no
longer σ-reserved. Declare σ to be inactive. Declare each Q〈σ,i〉 to be unsatisfied,
and cancel any preparation of Q〈σ,i〉. Declare that there is no active witness for
τ -i-diagonalization. Set rs+1(σ) = 0.

For each σ, set rs+1(σ) = rs(σ) if we have not defined it yet.
For each σ ≥L τ , empty each σ-j-queue. Then choose some fresh unmarked

component z〈σ,k〉 > R(α)[s+ 1] and for each j set pjσ[s+ 1] = z〈σ,k〉.
For each j > i, if Qτ,j has been prepared but the preparation has not been

canceled, declare the preparation canceled. Declare Qτ,j unsatisfied. Declare that
there is currently no active witness for τ -j-diagonalization.

For each σ and j such that there is currently no active witness for σ-j-diagonalization,
choose a fresh unmarked number wσ,n > R(α)[s + 1] as active witness for σ-j-
diagonalization.
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We now specify the marking in the structures.
If we prepared Qτ,i at this stage, choose two fresh unmarked numbers w〈τ,m1〉 >

w〈τ,m2〉 > R(α)[s + 1] as companions to the active witness for τ -i-diagonalization.
Then τ -mark them.

For each σ � αs+1, each k, and each j, σ-mark the precious component

f j,ks+1(pjσ,s+1), and each active witness for σ-k-diagonalization.
For l < e, let τ � l = σ. If s+ 1 is a recovery stage for Nl, do as follows: σ-mark

each component q of νj which is part of the shuffle at this stage, except for those
such that for some β ≺ σ and some k, q = fk,j(pkβ,s+1), q is the active witness for τ -
k-diagonalization, or q is a companion to the active witness for τ -k-diagonalization,
and those for which there is some β ≺ σ such that q is β-reserved.

For each β such that |β| ≤ s + 1, do as follows: if there are no β-reserved
components, choose fresh unmarked components xl and yk which are larger than
R(α)[s + 1]. Then β-mark those components in each structure and declare them
β-reserved. Then β-mark the active witness for β-j-diagonalization. Finally, for
each component of a structure νj which has been β-marked in the clean-up phase,
σ-mark it for each σ ≺ β such that σ 0̂ � β or σ 1̂ � β.

Now for each component q of each structure νj which is β-marked, β-mark the

component f j,ks+1(q) of νk for each k.
This completes the construction.
Our verification will be as similar as possible to that of the previous construction,

and, when possible, we will refer the reader to the first construction for details.

Lemma 4.4. Let s+1 be some stage of the construction such that for each t < s+1,

there are unique isomorphisms f j,kt : νj [t]→ νk[t] for each j and k.
Suppose s+ 1 is a σ-stage. Then at both the beginning and end of stage s+ 1 we

have fresh σ-reserved components xl and yk which are σ-marked but not τ -marked
for any τ >L σ.

Proof. See Lemma 3.6. �

Lemma 4.5. Let s+1 be some stage of the construction such that for each t < s+1,

and each j and k, there is a unique isomorphism f j,kt : νj [t]→ νk[t].
Suppose that for each j the components involved in the shuffle carried out in νj

at stage s+ 1 are uj0, . . . , ν
j
n. Then for each j and k, and each m ≤ n, νj(ujm)[s] =

νk(ukm)[s].
Thus νj [s+ 1] and νk[s+ 1] are isomorphic.

Proof. As in the previous construction, each component ukm used in the shuffle in ν̂kn
is chosen to be the image of the corresponding component ujm under the map f j,ks .
Thus by Remark 3.3, it follows that if the shuffles performed in νj and νk at stage
s+1 are in opposite directions the structures νj [s+1] and νk[s+1] are isomorphic.
Of course, if the shuffles performed in νj and νk are in the same direction, then
f j,ks is still an isomorphism between νj [s+ 1] and νk[s]. �

We now work on proving that the isomorphisms between any pair of our struc-
tures are unique at each stage of the construction.

Lemma 4.6. Suppose that for each t ≤ s and each i, j there is a unique isomor-
phism f i,jt : νi[t]→ νj [t]. Fix n ≤ s, and let αs+1 � n = σ.

Suppose 0 ≤ i ≤ 2 and that q is part of ν̂in[s + 1]. If q is part of ν̂im[t] at some
stage t < s+ 1 then m = n and αt � n = σ.
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Proof. A non-fresh component which is used in ν̂i[s+ 1] is either f j,i(pjσ) or f j,i(q)
for some component q in a σ-j-queue. In either case it is clear that this component
was most recently used in a shuffle at a σ-stage t and was part of ν̂i[t] at that
stage. �

As before, our shuffling ensures that for each q, and each i and j, νi(q)[s+1] = {q}
if and only if νj(q)[s + 1] = {q}. If this is the case, then q ∈ νi(x)[s + 1] only for
q = x.

Lemma 4.7. Suppose that for each t ≤ s and each i, j there is a unique isomor-
phism f i,jt : νi[t]→ νj [t].

Suppose that s+1 is an h-recovery stage for Nn, and that αs+1 � n = σ. Suppose
that s+ 1 is a σ 1̂-stage. Let t0 < s+ 1 be the most recent σ 0̂-stage.

Then each σ-j-queue contains at most one element at the beginning of stage s+1.
For each j let qj = fh,j(phσ)[t0].
There is an element q in the σ-h-queue at the beginning of stage s+ 1 precisely

if q 6= phσ,s and for each j 6= h, f j,hs (qj) = q. In this case q is the only component
in any σ-queue.

Otherwise, if j 6= h, then the only element which can be in the σ-j-queue is qj,
which is in the σ-j-queue at the beginning of stage s+ 1 if and only if fh,j(phσ)[s] 6=
qj.

Proof. First note that there are no σ-initialization stages between t0 and s+1, and
each recovery stage for Nn between these stages is a σ 1̂-stage, phσ,s+1 = phσ,t0 .

We work by induction on s. Let t + 1 < s + 1 be the most recent h-recovery
stage for Nn such that αt+1 � n = σ.

For each i let qi = f i,h(phσ)[t0]. Let j be such that the shuffle in νj is in the
opposite direction to the shuffles in the other two structures at stage t+ 1. We will
check that the components in the σ-i-queues at the end of stage t+ 1 are the ones
which the lemma claims to be present at the beginning of stage s+ 1. Our analysis
of the situation depends on whether j = h.

Firstly, suppose j = h.
If at the start of stage t + 1 the σ-queues are all empty, then by inductive

hypothesis fh,i(phσ)[t] = qi for each i. Because the shuffle in νh is in the opposite
direction to that in the other two structures, there is a component q 6= phσ,t+1 of

νh such that for each i 6= h, f i,ht+1(qi) = q. We add q to the σ-h-queue. At the
start of stage s+ 1 this is the only element in any σ-queue. Furthermore, we have

f i,ht+1(qi) = f i,hs (qi) = q 6= phσ,s, as required.
If at the start of stage t + 1 the σ-i-queue is nonempty for one i 6= h, then by

inductive hypothesis fh,i(phσ)[t] 6= qi, and qi is in the σ-i-queue. Let 0 ≤ k ≤ 2,

where k is equal to neither i nor h. Then fh,kt (phσ,t0) = qk by hypothesis, and because

the shuffles in νh and νk are in opposite directions at stage t+ 1, fh,kt+1(phσ,t0) 6= qk.

We put qk in the σ-k-queue at this stage. Furthermore, we do not use any elements
from any of the σ-queues in our shuffles at stage t+1, so the only component which
is part of ν̂in[t+1] and which has previously been part of a shuffle is fh,i(phσ)[t] 6= qi.
Therefore f i,hs (qi), fk,hs (qk), and phσ,s are all distinct, as required.

If at the start of stage t + 1 the σ-i-queues are nonempty for both i 6= h, then
the element in each of these σ-i-queues is qi. For each such i, fh,i(phσ)[t] 6= qi. Note

that the two values of f i,ht (qi) are distinct by hypothesis. For each i, the element
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qi is not used in the shuffle in νi at stage t+ 1 and therefore the elements f i,hs (qi)
are still distinct at the beginning of stage s+ 1, neither is equal to phσ,t0 , and each

qi is still in the σ-i-queue at the start of stage s+ 1.
Finally, suppose that there is an element q in the σ-h-queue at the beginning of

stage t+ 1. Then q is the only element in any σ-queue. Then pσt0 6= q = f i,ht (qi) for

each i 6= h, and by including q in the shuffle in νh we ensure that for each i 6= h

we have f i,hs (qi) = f i,ht+1(qi) = phσ,t0 . We remove q from the σ-h-queue, leaving all
of the σ-queues empty at the beginning of stage s+ 1 as required.

Now suppose that j 6= h.
If at the start of stage t+ 1 the σ-j-queue and σ-h-queue are both empty, then

fh,j(phσ)[t] = fh,j(phσ)[t0] and we add qj to the σ-j-queue at stage t+ 1. Our shuffle

at this stage ensures fh,jt+1(phσ,t0) = fh,js (phσ,t0) 6= qj .

If at the start of stage t+ 1, qj is in the σ-j-queue, then we have f j,ht (qj) 6= phσ,t0
and our choice of shuffle ensures that f j,hs (qj) = f j,ht+1(qj) = phσ,t0 , and we remove

qj from the σ-j-queue.
Suppose that i is the index of the third structure, equal to neither j nor h. In

each of the above cases, if qi is in the σ-i-queue at the beginning of stage t + 1,
then fh,is (phσ,t0) = f i,h(phσ,t0) 6= qi, and qi is still in the σ-i-queue at the beginning

of stage s+ 1, whereas if the σ-i-queue is empty, fh,is (phσ,t0) = f i,h(phσ,t0) = qi, and
the σ-i-queue is still empty at the beginning of stage s+ 1.

Finally, suppose that at the start of stage t + 1 there is an element q 6= phσ,t0
in the σ-h-queue (and hence no other elements in any σ-queues). Then we have

fh,it (q) = qi for each i 6= h and since q is not used in the shuffle in νi at this stage

we ensure that fh,is (q) = fh,it+1(q) = qi for each such i. At the beginning of stage
s+ 1, q is still in the σ-h-queue, as required.

�

Remark 4.8. Suppose that for each t ≤ s and each i, j there is a unique isomor-
phism f i,jt : νi[t]→ νj [t]. Suppose further that at some stage t+ 1 < s+ 1, ν̂in[t+ 1]
is nonempty. By observing which components can be the images of precious com-
ponents and which components can be put into σ-queues, we may rule out the
possibility of certain components ever being part of a shuffle at a later stage:

If we perform a right shuffle in νi at stage t then the rightmost component of
ν̂in[t+ 1] is not used in a shuffle at any later stage.

If we perform a left shuffle in νi at a stage t then the leftmost component of
ν̂in[t+ 1] is not used in a shuffle at any later stage.

Lemma 4.9. Let s+1 be some stage of the construction such that for each t < s+1,
there is a unique isomorphism f i,jt : νi[t]→ νj [t] for each i and j.

Suppose that p is a component of νi which is part of ν̂in[t0] at some first σ-stage
t0 ≤ s+ 1.

Suppose that q is used in the shuffle in νi at stage s+1 and that p ∈ νi(q)[s+1].
Suppose that αt0 � n = σ. Then s+ 1 is a σ-stage and either

(1) q is a member of ν̂in[s+ 1],
(2) or this is the last stage at which q is part of a shuffle.

Proof. The proof is by induction on s.
If s + 1 = t0, suppose p ∈ νi(q)[t0]. If q = p then q is certainly a member of

ν̂in[t0]. Otherwise, if the shuffle in νi at stage t0 is a right shuffle q is directly to the
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left of p in the shuffle, and if the shuffle is a left shuffle, q is directly to the right of
p in the shuffle.

Suppose q is not a member of ν̂in[t0]. If the shuffle in νi at stage t0 is a right
shuffle q is either the rightmost component of νim[t0] for for some m, or is the
companion to the right of the active witness for τ -h-diagonalization, if this is a
stage at which we are attempting to meet Qτ,h for some h. If the shuffle in νi at
stage t0 is a left shuffle, q is either the leftmost component of ν̂im[t0] for for some
m, or is the companion to the left of the active witness for τ -h-diagonalization. In
either case, this is a component which is not part of a shuffle at any later stage.

Now suppose s+ 1 > t0.
Suppose q to be a component of νi such that p ∈ νi(q)[s + 1]. Note that if

p ∈ νi(q)[s] and q 6= p then by hypothesis it must be the case that at some previous
σ-stage t < s+ 1, q is part of ν̂in[t]. Thus s+ 1 is also a σ-stage and q is a member
of ν̂in[s+ 1], by Lemma 4.6.

So we may assume that s + 1 is the first stage at which p ∈ νi(q)[s + 1]. Then
either we are performing a right shuffle in νi and q is directly to the left of a
component u such that p ∈ νi(u)[s], or we are performing a left shuffle in νi and q
is directly to the right of a component u such that p ∈ νi(u)[s] (here we view the
shuffle as a cycle, so that the first component in the shuffle is immediately to the
right of the last). Applying the inductive hypothesis to u, we see that s + 1 is a
σ-stage, and that u is a member of ν̂in[s+ 1].

As in the base case, if q is not also a member of ν̂in[s+ 1], this is the last stage
at which q is part of a shuffle in νi. �

Lemma 4.10. Let s + 1 be some stage of the construction such that for each
t < s+ 1, there is a unique isomorphism f i,jt : νi[t]→ νj [t] for each i and j.

Suppose t0 < s+ 1 is the most recent σ-initialization stage, p = piσ[t0], and that
τ 6= σ.

Then p /∈ pjτ [s+ 1] for any j.
However, if s+ 1 is not a σ-initialization stage then p ∈ pjσ[s+ 1] for each j.

Proof. See the proof of Lemma 3.14. Lemma 4.9 should be used instead of Lemma
3.13. �

Lemma 4.11. Let s + 1 be some stage of the construction such that for each
t < s+ 1, there is a unique isomorphism f i,jt : νi[t]→ νj [t] for each i and j.

Fix some i. Suppose that νi(x)[s] 6⊆ νi(y)[s] for each x 6= y.
Then νi(x)[s+ 1] 6⊆ νi(y)[s+ 1] for each x 6= y.
Thus by induction on s, νi[s] and νj [s] are rigid isomorphic structures for each

s.

Proof. See Lemma 3.15. The itemized list of conditions (1)-(3) given in the proof
of that lemma are still appropriate, although “left” and “right” may need to be
swapped depending on the direction of the shuffle carried out in νi. Lemma 4.9
should be used in place of Lemma 3.13. �

Lemma 4.12. Suppose that the components involved in the shuffle in νi at stage
s+ 1 are n0, . . . , nk, and define n−1 = nk, and nk+1 = n0.

If we perform a right shuffle in νi at stage s+ 1, then for 0 ≤ j ≤ k, νi(q)[s] ⊆
νi(nj)[s+ 1] only for q = nj and q = nj−1.
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If we perform a left shuffle in νi at stage s + 1, then for 0 ≤ j ≤ k, νi(q)[s] ⊆
νi(nj)[s+ 1] only for q = nj and q = nj+1.

Proof. See Lemma 3.16, once again using Lemma 4.9 instead of Lemma 3.13. �

Lemma 4.13. Fix σ, and suppose that |σ| = e. For each i, if q is a component of
ν̂ie[s] at infinitely many σ-stages of the construction, then σ 1̂ ≺ TP .

Proof. As in the two-structure construction, it is easy to check that if σ <L TP � e,
or σ 2̂ ≺ TP , then there are only finitely many σ-stages s at which ν̂ie[s] is nonempty.

On the other hand, if αs � e <L σ then σ ceases to be active at stage s, and no
component which is part of ν̂ie[t] at any σ-stage t < s will ever be part of a shuffle
after stage s, and so if σ >L TP � e each component of νi can be part of at most
finitely many shuffles.

Now suppose σ 0̂ ≺ TP , that for s > t we have αs � e ≥ σ, and that after stage
t we never prepare or complete a requirement Qτ,i for τ ≤L σ.

Let t ≤ t0 + 1 < t1 + 1, where t0 + 1 and t1 + 1 are successive σ 0̂-stages of the
construction. Suppose that t0 + 1 is an h-recovery stage for Ne. Let s+ 1 < t1 + 1
be the most recent σ-stage which is a recovery stage for Ne. Then t1 + 1 is a j-
recovery stage for Ne, where j is a number such that the shuffles in νh and νj at
stage s+1 are in opposite directions. If there are two such numbers j, then t1 +1 is
a j-recovery stage for the j such that the most recent σ-stage which is a j-recovery
stage for Ne is earliest. Thus phσ,s+1 6= f j,h(pjσ)[s + 1] = f j,h(pjσ)[t1]. Because we
empty the σ-queues at stage t1 + 1, it is clear that no component can be part of
ν̂he [T ] at a σ-stage T < t1 + 1 and at a σ-stage T ≥ t1 + 1.

From this it follows that if there are infinitely many σ 0̂-stages which are h-
recovery stages for Ne then no component will be part of ν̂he [s] at infinitely many
stages s of the construction.

Suppose then that νh, νi and νj are our three structures, than σ 0̂ ≺ TP and
that there are only finitely many σ 0̂-stages which are i-recovery stages for Ne.
Then from some point onward, all σ 0̂-stages alternate between h- and j-recovery
stages for Ne.

Suppose as before that t0+1 < t1+1 are successive σ 0̂-stages of the construction
after stage t, that t0 + 1 is an h-recovery stage for Ne, s+ 1 < t1 + 1 be the most
recent σ-stage which is a recovery stage for Ne. Assume that after stage t there are
no more σ 0̂-stages which are i-recovery stages for Ne, and that the most recent
σ 0̂-stage prior to t0 + 1 is a j-recovery stage for Ne.

Then at at stage s+ 1 the shuffles in νh and νi are in the same direction, since
otherwise t1 + 1 would be an i-recovery stage for Ne. Let qi = fh,i(phσ)[t0].

If qi = fh,i(phσ)[s] then qi = fh,i(phσ)[s+ 1] because the shuffles in νi and νh are
in the same direction at stage s+ 1. Then qi 6= f j,i(pjσ)[t1].

If qi 6= fh,i(phσ)[s], then because the shuffles in νi and νh are in the same direction
at stage s+1, we do not include any elements from the σ-i-queue or σ-h-queue in any
shuffles at this stage. Thus qi cannot be part of νin[s+ 1], and so qi 6= f j,i(pjσ)[t1],
since that component is part of νin[s+ 1].

In either case it follows that no component can be part of ν̂in[T ] at a σ-stage
T < t1 + 1 and a σ-stage T ≥ t1 + 1. Once again, we can use the fact that there
are infinitely many σ 0̂-stages to see that there is no component of νi which is part
of a shuffle at infinitely many stages of the construction. �
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We now wish to check that our construction is guaranteed to produce the same
infinite components in each of our structures, so that they really are isomorphic.

Before we do so, we note that any time we place a component into a σ-queue,
it is because we wish to include it in another shuffle, and suspect it may be an
infinite component. So we need to check that no component which should be
infinite becomes permanently stuck in a σ-queue. To prove this, we will need to
check that eventually there will be a σ-stage at which the shuffles in our structures
are all in the appropriate directions to allow the component to be removed from
its queue. Since the direction of shuffle is determined by which of the requirements
we are attending to, we need to show that eventually we will attend to a suitable
requirement. Thus we chose this point to show that the requirements Qτ,i are only
injured finitely often for τ ≺ TP .

Lemma 4.14. Suppose that σ <L TP . Fix some i ≤ 2. Then there are finitely
many stages at which we prepare or complete the requirement Qσ,i, and lims rs(σ)
exists and is finite.

Proof. We will show that for σ <L TP , lims rs(σ) exists and is finite.
If σ <L TP but σ 6≺ TP then there are only finitely many σ-stages, we only

attempt to meet Qσ,i finitely often, and rs(σ) approaches a finite limit.
Now we work by induction on the length of σ ≺ TP . Given a pair σ, i such that

σ ≺ TP and i ≤ 2 suppose that t is a stage such that after stage t we never prepare
or complete a requirement of the form Qτ,j for τ <L σ or for τ = σ and j < i,
and that for τ <L σ, rtτ = lims rs(τ). Assume in addition that for s ≥ t we have
αs � n ≥ σ. After stage t we we will always have the same active witness w〈σ,n〉 for
σ-i-diagonalization.

Suppose that at some later stage s + 1 ≥ t, Qσ,i is not currently satisfied and
has not been prepared (or the most recent preparation has been canceled), but that
Qσ,i requires attention. Then at that stage we prepare Qσ,i. At the next σ-stage
we will complete the requirement Qσ,i. This is the last stage at which we attend
to this requirement. If s+ 1 is the last stage at which we attend to a requirement
Qσ,i for any i, then for t > s we have rs+1(σ) = rt(σ). �

Lemma 4.15. Let σ ≺ TP . For each i there are infinitely many σ-stages of the
construction at which the shuffle in νi is in the opposite direction to the shuffles in
the other two structures.

Proof. Let σ ≺ TP . Fix some stage s + 1. We will show that there is a σ-stage
after stage s + 1 at which the shuffle in νi is in the opposite direction to that in
each of the other two structures.

Choose some large n > e such that ΦAn (x) = x for every oracle A and every
number x. Let β = TP � n. Assume we have never prepared Qβ,i−1 before stage
s+ 1. Since σ ≺ β, if we ever prepare the requirement Qβ,i−1 at a stage after s+ 1,
then that stage is a σ-stage at which the shuffle in νi is in the opposite direction to
the shuffles in the other two structures. At some later β-stage Qβ,i−1 will require
attention, and by Lemma 4.14 we may assume it is the highest priority requirement
to do so. Thus at that stage we will prepare it. �

Lemma 4.16. Suppose that σ 1̂ ≺ TP , that |σ| = e, and that for s + 1 > t + 1,
αs+1 ≥ σ 1̂ and that after stage t+1 we do not prepare or complete any requirement
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of the form Qτ,i for τ � σ. Suppose furthermore that t + 1 is a σ 0̂-stage, and an
h-recovery stage for Ne.

Then for s > t, phσ[t] = phσ[s], and this is the only component which is part of ν̂hn
at infinitely many σ-stages.

For each i 6= h let qi = fh,i(phσ)[t]. Then for each i 6= h, qi is part of ν̂in[s + 1]
at infinitely many σ-stages s + 1 > t, and is the only component for which this is
true. Furthermore, there are infinitely many σ-stages s+ 1 > t at which qi is part

of the shuffle in νi and fh,is+1(phσ,t) = qi. Thus νi(qi) = νh(phσ,t).

Proof. Let σ, t and the qi be as stated. It is clear that phσ,t = phσ,s for s ≥ t and

that this component is part of ν̂hn [s] at infinitely many σ-stages s.
Suppose that for some i 6= h, the component qi is part of ν̂in[s+ 1] at a σ-stage

s+1 ≥ t, and that fh,is (phσ,t) = qi. We will show that qi is also used in a shuffle at a

later stage. If the shuffles in νh and νi are in the same direction at stage s+1, then

fh,is+1(phσ,t) = qi, and qi will also be part of the shuffle in νi at the next σ-stage. So

we assume that the shuffles in νh and νi are in opposite directions at stage s+ 1.
There are several cases to consider depending on whether the shuffle in the third

structure is in the same direction as the shuffle in νi or the shuffle in νh at stage
s+ 1.

If the shuffle in νi is in the opposite direction to both of the other shuffles at
stage s + 1, we add qi to the σ-i-queue. If s0 + 1 > s + 1 is the next σ 1̂-stage
at which the shuffle in νi is in the opposite direction to the shuffles in the other
two structures, then qi is still in the σ-i-queue at the start of stage s0 + 1, and is

included in the shuffle in νi at stage s0 + 1. Thus fh,is0+1(phσ,t) = qi.

Otherwise the shuffle in νh at stage s + 1 is in the opposite direction to the
shuffles in both of the other structures at that stage. Let νj be the third of our

structures, and let qj = fh,jt (phσ,t).

If fh,js (phσ,t) 6= qj then there is already an element in the σ-j-queue at the be-

ginning of stage s + 1, and at this stage we add qi to the σ-i-queue, and wait for
a stage at which the shuffle in νi is in the opposite direction to the shuffles in the
other two structures, at which point we include qi in the shuffle in νi as above. If
s0 + 1 > s + 1 is the next stage at which we include qi in the shuffle in νi, then

once again we have fh,is0+1(q) = fh,is0+1(phσ,t) = qi.

Finally, if fh,js (phσ,t) = qj , then after the shuffle at stage s + 1 we let q be the

number such that f i,hs (qi) = f j,hs (qj) = q and add q to the σ-h-queue. Once
again, we are eventually guaranteed a stage s0 + 1 at which the shuffle in νh is
in the opposite direction to that in the other two structures, and will include q
in the shuffle in νh and qi in the shuffle in νi at stage s0 + 1, and arranging that

fh,is0 (q) = fh,is0+1(phσ,t) = qi.

This exhausts all possible cases, and shows that that qi is included in shuffles in
νi at infinitely many σ 1̂-stages s at which fh,is (phσ,t) = qi, and so νi(qi) = νh(phσ,t),
as required.

Now we check that phσ,t is the only component in ν̂hn [s + 1] at infinitely many

stages, and likewise that for each i 6= h, qi is the only component which is part of
ν̂in[s+ 1] at infinitely many stages s+ 1 of the construction.

In the case of ν̂hn , suppose that q 6= phσ,t is a component which is a member of

ν̂hn [s + 1] at some σ-stage s + 1 > t. Note that the only way that this component
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can be part of ν̂hn [s0 + 1] at some later σ-stage s0 + 1 > s+ 1 is if at stage s+ 1 we

add fh,js+1(q) to the σ-j-queue for some j. Let s0 +1 be the first such stage. Observe

that if we are performing a right shuffle in νh, then q is the rightmost component in
ν̂hn [s0 + 1], whereas if we are performing a left shuffle, q is the leftmost component
in ν̂hn [s0 + 1]. In either case q is never again part of a shuffle, as noted in Remark
4.8.

Now suppose that i 6= h, and that q 6= qi is part of ν̂in[s + 1] at some stage
s + 1 > t. We must show that q is only part of the shuffle in νi at finitely many
stages, and therefore may assume that q has already been part of the shuffle in νi

at some previous stage. Let νj be the third structure other than νi and νh. There
are two cases to consider.

The first case we consider is that q = fh,is (phσ,t). Then q is the middle element of

ν̂in[s+ 1]. Let s0 + 1 ≥ s+ 1 be the first σ 1̂-stage at which the shuffles in νh and

νi are in opposite directions. Then q = fh,is0 (phσ,t) but q 6= fh,is0+1(phσ,t). The only
reason that q can be included in a shuffle again at a future σ-stage s1 + 1 > s0 + 1
is if q = f j,is1 (qj) and qj is in the σ-j-queue at the beginning of stage s1 + 1. We
will treat this possibility as our second case.

The second case is that q = f j,is (qj), and qj is in the σ-j-queue at the beginning
of stage s + 1, and s + 1 is a stage at which the shuffle in νj is in the opposite
direction to that of the shuffles in the other two structures. But then if the shuffle
performed in νi at stage s+1 is a right/left shuffle, then q is the rightmost/leftmost
element in νin[s+ 1] and is therefore never part of a shuffle at any future stage.

Thus we see that q is included in a shuffle at most three times: after being
shuffled once, it can be part of the shuffle at most once at a stage at which the first
case applies, and then possibly at one more stage for the second case. �

Lemma 4.17. For each i, if x and y are distinct components of νi then νi(x) 6⊆
νi(y), and for each i and j there is a unique homomorphic embedding f : νi → νj,
which is an isomorphism.

Proof. It is clear that if either of x or y is finite then νi(x) 6⊆ νi(y), since no infinite
component can embed into an finite component, and any embedding into a finite
component is ruled out at the stage at which we enumerate the last element into
it.

Lemma 4.16 precisely identifies the infinite components of our structures, and
shows that we build identical infinite components in each structure. Furthermore,
Lemma 4.10 and Lemma 4.11 together show that if x and y are distinct infinite
components of νi then νi(x) 6⊆ νi(y). This suffices to give the result. �

Now that we have verified that our structures are all isomorphic, we return to
the requirements Qτ,i: having already seen that we only attend to each one finitely
often, we must check that we succeed in meeting them.

Lemma 4.18. Let τ = TP � e, and suppose 0 ≤ i ≤ 2. Suppose that s + 1 is a
stage of the construction such that for t ≥ s+ 1, αt ≥L τ , and that after stage s we
never prepare or complete a requirement of the form Qσ,j for any σ ≺ τ , nor any
requirement of the form Qτ,j for j < i.

Suppose that s + 1 is a τ -stage at which Qτ,i requires attention, and at which
any prior preparation of that requirement has been canceled. Let g be the function
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of Condition 4.3 which we use when preparing Qτ,i at stage s + 1. Suppose w〈τ,n〉
is the active witness for τ -i-diagonalization at stage s+ 1.

Then g � f i+1,i+2, f i,i+1(w〈τ,n〉) 6= w〈τ,n〉, and

Φf
i+1,i+2

e (w〈τ,n〉) ↓= w〈τ,n〉 6= f i,i+1(w〈τ,n〉).

Proof. Let θ, g and k be as in Condition 4.3. Suppose that |θ| = d. We will first
show that f i+1

τ,s+1 � k = f i+2
θ � k.

Because of the restrictions placed on g by Condition 4.3, the only components
q < k of νi+1 involved in the shuffle at stage s + 1 are those s-predicted to be
precious by θ.

Each component q < k of νi+1 which is s-predicted to be precious by τ has
f i+1,i+2
θ,s (q) = f i+1,i+2

τ,s (q) = f i+1,i+2
τ,s+1 (q), since τ � θ.

For e ≤ n < d, ν̂jn[s + 1] is nonempty for precisely those n such that σ = θ � n
and σ 1̂ � θ and for which f i+1,i+2

s (pi+1
σ,t+1) 6= pi+2

σ,t+1, where t + 1 < s + 1 is the
most recent σ 0̂-stage of the construction. Furthermore, in that case our choice of
ν̂i+1
n [s+ 1] and ν̂i+2

n [s+ 1] ensures that f i+1,i+2
s+1 (pi+1

σ,t+1) = pi+2
σ,t+1. Thus if q < k is

a component of νi+1 which is s-predicted to be precious by θ but not by τ , then
f i+1,i+2
s+1 (q) = f i+1,i+2

τ,s+1 (q) = f i+1,i+2
θ,s (q).

Since these are the only components smaller than k which are used in the shuffle
in νi+1 at this stage, the only components on which the maps fτ,s � k and fτ,s+1 � k
can differ are those which are s-predicted to be precious by θ. So f i+1,i+2

τ,s+1 � k =

f i+1,i+2
θ,s � k.

We set rs+1(τ) ≥ u, where u = max
x<k,0≤i,j≤2

(f i,j(x)). For each β ≥ τ and every

j, we define pjβ [s+ 1] to be a number larger than Rs+1(τ). In addition, we choose

new active witnesses w〈β,n〉 > Rs+1(τ) for β-j-diagonalization for each for β >L τ
as well as for for β = τ and j > i. We also β-reserve new elements xl and yk, both
larger than Rs+1(τ), for each β � τ and β >L τ .

But αs0+1 ≥L τ for s0 + 1 > s + 1, and s + 1 is a stage after which we never
attempt to prepare or complete a requirement of higher priority than Qτ,i. So for
each j, the only components q < Rs+1(τ) of νi+1 which can be part of a shuffle at
a stage t > s+1 are those which are s-predicted to be precious by τ , and the active
witness w〈τ,n〉 for τ -i-diagonalization.

When we first chose w〈τ,n〉 as our active witness for τ -i-diagonalization, it had
never been part of a shuffle. Since at stage s + 1 we prepare Qτ,i, any witness for
τ -i-diagonalization active during a previous canceled attempt to prepare Qτ,i has
since been replaced. So w〈τ,n〉 has not been used in a shuffle before stage s+ 1.

Thus f i,i+1
s (w〈τ,n〉) = f i,i+1

s+1 (w〈τ,n〉) = w〈τ,n〉. Note that w〈τ,n〉 is part of the
right shuffle at the next τ -stage s1 + 1 > s+ 1, since at that stage the requirement
Qτ,i is the highest priority requirement which requires attention, and is therefore
completed at that stage. We never use the component w〈τ,n〉 of νi in a shuffle after

stage s1 + 1, so f i,i+1(w〈τ,n〉) = f i,i+1
s1+1 (w〈τ,n〉) 6= w〈τ,n〉.

Furthermore, at stage s1 + 1 the shuffles in νi+1 and νi+2 are in the same di-
rection, so that f i+1,i+2

s+1 � k = f i+1,i+2
s1 � k = f i+1,i+2

s1+1 � k and f i+1,i+2
τ,s1+1 � k =

f i+1,i+2
τ,s+1 � k. After stage s+ 1, the only components q < Rs+1(τ) of νi+1 which are

ever involved in a shuffle are those which are s-predicted to be precious by τ . Each
such component is of the form pi+1

σ,t+1 for some σ such that σ 1̂ � τ ≺ TP , where
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t+ 1 < s+ 1 is the most recent σ 0̂-stage of the construction. As we saw in Lemma
4.16, for such components, f i+1,i+2(pi+1

σ,t+1) = pi+2
σ,t+1.

This is sufficient to show g ≺ f i+1,i+2, since g = f i+1,i+2
τ,s0+1 � k at all stages

s0 + 1 > s + 1, and we have σ 1̂ � τ ≺ TP , so f i+1,i+2
τ,s0+1 (pi+1

σ,t+1) = pi+2
σ,t+1 for each

such σ. So
Φf

i+1,i+2

e (w〈τ,n〉) ↓= w〈τ,n〉 6= f i,i+1(w〈τ,n〉)

and thus the requirement Qτ,i has been satisfied by the preparation and completion
performed at stages s+ 1 and s1 + 1. �

Lemma 4.19. For 0 ≤ i ≤ 2, f i+1,i+2 6≥T f i,i+1.

Proof. We must show that for each τ = TP � e we either prepare and complete the
requirement Qτ,i at a stage after which it is never canceled, or that we are able to
passively meet the requirement.

So fix some i and e, let τ = TP � e, and suppose that t0 is a stage such that
at stages s + 1 ≥ t0 we never attempt to meet a requirement of the form Qβ,j
for any β <L τ and any j or Qτ,j for any j < i. Assume in addition that for
s + 1 ≥ t0 we have αs+1 ≥L τ . We may suppose that t0 is the least stage with
this property, in which case any preparation or completion of the requirement Qτ,i
performed at a stage prior to t0 is canceled at stage t0. Let w〈τ,n〉 be the active
witness for τ -i-diagonalization at stage t0. Note that this is the active witness for
τ -i-diagonalization at every future stage s+ 1 ≥ t0 of the construction.

If we ever prepare the requirement Qτ,i after stage s+1, we will then complete it

at a later stage as in Lemma 4.18, in which case Φf
i+1,i+2

e (w〈τ,n〉) ↓6= f i,i+1(w〈τ,n〉).

So suppose that we never prepareQτ,i after stage t0, but that Φf
i+1,i+2

e (w〈τ,n〉) ↓=
f i,i+1(w〈τ,n〉). If so, f i,i+1(w〈τ,n〉) = w〈τ,n〉 because w〈τ,n〉 is never used in a shuffle.

Since Φf
i+1,i+2

e (w〈τ,n〉) ↓= w〈τ,n〉, choose some k and s0 such that Φf
i+1,i+2�k
e,s0 (w〈τ,n〉) =

w〈τ,n〉. Choose θ ≺ TP such that τ ≺ θ and such that every infinite component

q < k of νi+1 is of the form pi+1
σ [t] for infinitely many t > t0, where σ 1̂ � θ.

Let s > s0 be a stage so large that for t > s, αt ≥L θ, and no finite component
q < k of νi+1 is part of a shuffle after stage s. Then at every θ-stage t > s, we
have f i+1,i+2

θ,t � k = f i+1,i+2 � k, by choice of k, s, and θ. At the first such stage t,

Φfθ�ke (w〈τ,n〉)[t] ↓= w〈τ,n〉. Thus at this stage Qτ,i requires attention, and therefore
we must prepare it, contrary to our assumption.

So either Φf
i+1,i+2

e (w〈τ,n〉) ↓6= f i,i+1(w〈τ,n〉) or Φf
i+1,i+2

e (w〈τ,n〉) ↑, and thus (con-

sidering every e) we have f i+1,i+2 6≥T f i,i+1. �

As in the two-structure construction, it is clear that for each i and j, f i,j(x) = y
if and only if fs(x) = y for infinitely many s, and thus that f i,j ≤T ∅′′. The
requirements Qτ,i also ensure that f i,j <T ∅′′ for each i and j.

For each e we now wish to determine whether the structure ρe is isomorphic to
our structures νi, and, if so, show that it is computably isomorphic to one of the
νi. In this way we will meet the requirement Ne.

As in the two structure construction, it suffices to note that there is some string
σ of length e and some number l such that σ l̂ ≺ TP , and then check the three
cases.

Lemma 4.20. If σ is of length e and σ 2̂ ≺ TP then for each i, ρe is not isomorphic
to νi.
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Proof. See Lemma 3.26. �

Lemma 4.21. If σ is of length e and σ 1̂ ≺ TP , let i be such that after some stage,
every σ 1̂-stage is an i-recovery stage for Ne. Then if ρe is isomorphic to νi, the
isomorphism is computable.

Proof. See Lemma 3.29. �

In the case that σ 0̂ ≺ TP , there are slightly less trivial changes arising from the
fact that there are three structures, and we also require a variant of Lemma 3.27.
We now state this lemma and give a brief sketch to point out the (minor) changes
to the proof.

Lemma 4.22. Let σ be of length e, and suppose σ ≺ TP . Assume that for t ≥ t0,
αt ≥L σ, that t0 is a σ-stage which is a recovery stage for Ne, and that after stage
t0 we never attempt to meet Qθ,i for any θ ≤L σ.

Suppose s + 1 > t0 is a σ-stage of the construction which is an i-recovery stage
for Ne.

Suppose that pσ is the component of ρe for which hiσ(piσ)[s] = pσ.
Suppose t + 1 > s + 1 is the next σ-stage which is a recovery stage for Ne, and

that t+ 1 is a σ 0̂ stage. Suppose that t+ 1 is a j-recovery stage for Ne.
Then νi(piσ)[s] ( νj(pjσ)[t] ⊆ ρe(pσ)[t].

Proof. Let pσ = hiσ(piσ)[t]. As in the two-structure construction, we note that
for n ≥ e the components of ν̂in[s + 1] are σ-marked at stage s + 1. Using this
together with Lemma 4.12, we see that hiσ[s] ⊆ hiσ[t] if and only if hiσ(piσ)[t] = pσ.
Since hiσ[s] 6⊆ hiσ[t], let j be such that the shuffles in νj and νi are in opposite
directions at stage s + 1. But pσ is in the range of hiσ[t], and must be the image
of a component q of νj such that νi(piσ)[s] ⊆ νj(q)[t] but νj(q)[t] 6= piσ[t]. Since

pjσ,t = pjσ,s+1 = f i,j(piσ)[s] and the shuffles in νi and νj are in opposite directions

at stage s + 1, pjσ[s] is the unique component of νj satisfying this condition. So
νi(piσ)[s] ( νj(pjσ)[t] ⊆ ρe(pσ)[t]. This is true in particular for that j for which t+1
is a j-recovery stage for Ne. �

Lemma 4.23. If σ is of length e and σ 0̂ ≺ TP then for each i, ρe is not isomorphic
to νi.

Proof. Let t0 be such that for t ≥ t0, αt ≥L σ, that t0 + 1 is a σ-stage which is an
i0-recovery stage for Ne, and that after stage t0 we never attempt to meet Qθ,j for
any j and any θ ≤L σ.

Suppose that t0 + 1 < t1 + 1 < · · · are all of the σ 0̂-stages of the construction
after t0.

Let pσ be the component of ρe such that hi0σ (pσ)[t0] = pi0σ,t0 .

It follows from Lemma 4.22 that we have ρe(pσ)[tn] ⊇ νin(pinσ )[tn] for each n. So
pσ is an infinite component of ρe such that ρe(pσ) ⊃ νi(pi0σ )[t0]. However, there is
no component q of our structure νi such that νi(q) ⊃ νi(pi0σ )[t0], since by Lemma
4.13, no component is part of ν̂in[t] at infinitely many stages t. �

As noted earlier, these three cases are exhaustive. Thus either our structures
νi are not isomorphic to the computable structure ρe, or one of our structures is
computably isomorphic to ρe. So we have met each requirement Ne.

This concludes the verification that we have met the requirements laid out in
the construction. Theorem 4.1 and hence Corollary 4.2 now follow immediately
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from the correspondence between c.e. Friedberg enumerations and their associated
graphs.
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