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Preface

These notes are meant to provide an introduction to fundamental parts of lin-
ear algebra, as might be applied to problems in combinatorics. I assume the
reader has had a first course in linear algebra, and is familiar with determinants.
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To Do

1. Interlacing, via Courant-Fischer and by rational functions. Need equi-
table partitions for this.

2. Walk modules. Controllable graphs.

3. Quadrics.

4. Matrix exponential.

5. Lie algebras, s/(2) repns.

6. Perron-Frobenius, symbolic dynamics.

7. Perturbation theory.
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Chapter 1

Spaces and Subspaces

We review the basic results on vector spaces.

1.1 Vector Spaces

We assume familiarity with the basic terminology of vector spaces—linear com-
binations, subspaces, linear dependence and independence, span, spanning
sets, and bases. We present a proof of the existence of bases (in vector spaces
with a finite spanning set).

We define a circuit in a vector space V to be a minimal dependent set. Thus
if C is a circuit and x is any element of C then C\ x is linearly independent.
Hence C\x and C have the same span.

1.1.1 Lemma. If the vector v lies in the span of a set S, then there is a circuit in
S U v that contains v.

Proof. Suppose that v is a linear combination of the vectors xi,..., x; from S,
and that v is not a linear combination of any subset of S with fewer than k
elements. Then xi,..., xi is linearly independent, for otherwise it contains a
circuit and by deleting an element of this circuit, we obtain a set of k—1 vectors
whose span still contains v. It follows that if for some i, the set

{V’xl)---rxk}\xi

is linearly dependent, then v is a linear combination of at most k — 1 elements
of S. Therefore this set is linearly independent for each i, and so we conclude
that {v, x1,..., x;} is a circuit. O
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Abasis, we recall, is a linearly independent spanning set. We show they exist
if V has a finite spanning set S. If S is linearly independent, there is nothing to
prove. Otherwise S contains a circuit C; if x € C then C\x and C have the same
span, and consequently S\x and S have the span. Therefore, by deleting a finite
number of elements from S, we obtain a linearly independent set S; with the
same span as S, and so S; is our basis.

Now we show that all finite bases have the same size. To do this we prove
the following:

1.1.2 Lemma. Let V be a vector space. If S is a finite linearly independent subset
of V and T is a spanning set, then |S| < |T]|.

Proof. We prove the result by induction on |S\ T|. Set k equal to |S\T|; if k=0
the result is immediate, so suppose k > 0. Choose a vector u from S\ T.

Since T is a spanning set, u is a linear combination of elements of T, and
therefore by the lemma above there is a circuit C in T U u that contains u. Since
S is linearly independent, C is not contained in S and therefore there is an ele-
ment v in C that does not lie in S. Now v lies in the span of C\ v, and

C\vce(T\v)uu.

Therefore v belongs to the span of (T'\ v) U u. Since this span contains 7'\ v, it
contains T.

We conclude that (T'\ v) U u is a spanning set in V that meets S in k+1
elements. O

It follows from this that any two finite linearly independent spanning sub-
sets of V have the same size, which we define to be the dimension of V. A vector
space has finite dimension if and only if it has a finite basis. If V has dimension
n then any independent set of size 7 is a basis, as is spanning set of size n. Each
independent set is contained in a basis and, as we already knew, each spanning
set contains a basis.

If a = (vy,...,vy,) is an ordered basis for the vector space V and w € V then
there are unique scalars ay, ..., a;, such that

n
w = Z a;v;.
i=1

The coordinate vector [w], of w with respect to a is the nx1 matrix with entries
ai,...,a,. The function that maps w to [w], is an injective map from V to F".
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We can also show that
(w+ X]g = [W]g + [X]a, [cwlq = clw]gq.

This shows that the coordinate map is an example of a linear mapping.

1.2 Subspaces

The intersection of any two subspaces (indeed, of any collection of subspaces)
is a subspace. The union of two subspaces is rarely a subspace—in particular
no vector space over an infinite field can be expressed as the union of a finite set
of proper subspaces. There is a replacement for union though: the sum U + V
of two subspaces U and V. We define this by

U+V:={u+v:ueU,veV}.

We see that U + V is the span of U U V and therefore it is a subspace and it
is contained in any subspace that contains U and V. Consequently it is the
intersection of all subspaces that contained U and V and it follows that the
subspaces of a vector space, with the operations of intersection and sum, forms
alattice. If UnV = {0}, we say that U + V is the direct sum of U and V.

Here we are concerned with the dimension of U + V. For this we need some
preliminaries. Suppose U is a subspace of W. We say that a subspace V of W
isa complement to Uif UNV = {0} and U + V = W. We construct examples as
follows. Suppose S is a basis of W and (S;, S») is a partition of S into two parts.
Let U; denote the span of S;. Then U; + U, contains S, and hence it is equal to
V. It is also not hard to show that U; n U, = {0}. Hence U, is a complement to
U; (and vice versa).

1.2.1 Lemma. Let W be a vector space with finite dimension. Then any sub-
space of W has a complement.

Proof. Let U be a subspace of W and let S be a basis for U. Then there is a basis
T for W that contains S, let V be the span of T'\ S. O

1.2.2 Theorem. If U and V are finite-dimensional subspaces of V, then

dim(U + V) =dim((U) + dim(V) —dim(U N V).



4 CHAPTER 1. SPACES AND SUBSPACES

Proof. We first establish a special case of the theorem: if U; and U, are sub-
spaces and U; n U, = {0}, then

dim(U; + U,) = dim(U;) + dim(Uy).

To derive this, we note that if S; is an independent subset of U; (i = 1,2) and
Uy nU, = {0} then S; U S; is linearly independent. Hence the union of a basis of
U; and a basis of U, is a basis for U; + Us.

Now we consider the general case. Let V; be a complement to UNnV in V.
Then by what we have just proved,

dim(V;) =dim(V) —dim(U N V).
We show that V} is a complement to U in U + V. First
U+Vi=U+((UnV)+\))=U+V.
Second, UnVicUnVandUnNnV, €14, so
UnVicUnV)nV; ={0}.
Therefore V; is a complement to U in U + V and consequently
dim(V}) =dim(U + V) — dim(U).

The two expressions for dim(V;) imply the result. O

1.3 Linear Mappings

Let V and W be vector spaces over the same field. A function T with domain U
and codomain V is a linear mapping from U to V if, for all vectors u; and uy in
U,

T(uy+ up) = T(uy) + T(up)

and if, for all scalars ¢ and all vectors u in U,
T(cu) =cT(u).

To specify a linear mapping, we must explicitly give its codomain. (This matters
most when we consider adjoints.)



1.3. LINEAR MAPPINGS 5

A bijective linear mapping is called an isomorphism. All this should be fa-
miliar. The image and kernel of a linear mapping T are subspaces. The dimen-
sion of im(7) is its rank and the dimension of ker(T) is its corank. The following
important relation between these parameters is sometimes called the “dimen-
sion theorem” for linear mappings.

1.3.1 Theorem. If T is a linear mapping with domain V then
tk(T) + cork(T) = dim(V).

Proof. Choose a basis vy,..., v, for V such that vy,..., vy is a basis for ker(T).
Let U be the span of vi41,...,v,. fue U and Tu =0, then

ue Unker(T) ={0}.

Hence the set T'(vi+1),..., T(vy) is linearly independent, and consequently it is
a basis for im(7). O

This is perhaps the most useful formula in linear algebra. An important
consequence is that, if T maps V to itself, then it is onto if and only if it is one-
to-one.

The coordinate map with respect to a basis is an important example of a
linear mapping.

If Ais an m x n matrix over [ then the function that sends x € F"”" to Ax in F""*
is a linear mapping, often denoted T4. This gives an even more important class
of examples. Note that ker(74) is the null space of A and im(T,) is the column
space of A, so the dimension theorem yields that

rk(A) + cork(A) = n.

As an application, we rederive the formula for the dimension of the sum of
two subspaces. If U and V are vector spaces over the same field, their external
direct sum is the vector space with vectors

{(u,v):ueV, ve Vi,

where
(U1, v1) + (Up, v2) = (U + U, V1 + 12)

and
c(u,v) =(cu,cv).
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We denote this by U @ V, and claim that
dim(UeV)=dimU +dim V.

Now suppose that U and V are subspaces of W. Then we can define a linear
map S from U V to W by

S:(u,v)— u-—v.

Note that S is a linear map from U @ V to the subspace U+ V of W. It is
easy to see that S is onto, and that its kernel consists of the vectors (x, x), where
xeUnV. Hence

dim(U + V) = rk(S) = dim(U) + dim(V) —dim((U n V).

Define
(U,0):={(u,0): uec U}

and define (0, V) similarly. Then (U, 0) and (0, V) are subspaces of U @ V having
zero intersection and

UsV=(U,0)+(0,V).

Thus an external direct sum is a direct sum of subspaces, as in the previous
section.

The term “external direct sum” is somewhat confusing. It may help to view
this as follows. We have a simple construction of a vector space W from two
vector spaces U and V over a field F. The space W is the direct sum, in our
original sense, of subspaces isomorphicto U and V.

1.4 Duals and Adjoints

Since we can add linear transformations from V to W and multiply them by
scalars, the set Z(V, W) of all linear transformations from V to W forms a vec-
tor space. Hence:

1.4.1 Theorem. If V and W are vector spaces over [, then £ (V, W) is a vector
space with dimension dim(V) dim(W).

Proof. We present you a set of linear mappings, and invite you to prove they
form a basis.
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Let vy,..., v, beabasis for Vand wy,..., w,, be abasis for W. Let E; ; be the
element of Z(V, W) given by

wj, ifr=1i;
E;j(vy) = 0

, otherwise.

(We use the fact that a linear transformation can be defined by specifying its val-
ues on a basis.) This set of dim(V) dim(W) operators is the subset we promised. D

Here we will be most interested in the dual space £ (V,F), which we denote
by V*. We consider some examples.

Suppose V is the space of all polynomials over F. If ¢ € V*, then v is de-
termined by its values on a basis, and hence determined by its values on the
powers of x. If we denote v (x") by v, then we find that

v Z pix' — Z PiVyi.

i=0 i=0

Thus each sequence () >0 determines an element of V*. It follows that we
can identify V* with the space of all formal power series in x.

Each element v of V gives rise to a map from V* to F, that sends ¥ in V*
to w(v) in F. This map is linear and injective, and allows us to identify V with a
subspace of (V*)*. The previous example shows that this map need not be an
isomorphism in general, but it is an isomorphism when dim(V) is finite. (This
follows from the observation that V, V* and V** all have the same dimension.)

If V = [F", then the map that sends an element v to its i-th coordinate is
linear, and so belongs to V*. In this case V* = V.

If V = Mat,,«,(F), then the trace function is an element of V*.

We cannot resist remarking on one special property of V*. There is a natural
product onit: if f, g € V* then fg is defined by (fg)(u) = f(u)g(w).

Let T be a linear map from V to W. If g € W*, then the composition go T
is a linear mapping from V to F; hence it is an element of V*. Thus we have a
mapping that takes an element g of W* to an element go T in V*. This map is
linear (prove it!), and is called the adjoint of T. We denote it by T*. (We also
offer a warning: if T is a linear operator on an inner product space, the term
‘adjoint’ is applied to a different map.)

(1) Prove that T* is linear.
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(2) Prove that T is one-to-one if and only if T* is onto, and that T is onto if and
only if T* is one-to-one.

(3) Provethat T**=T.

(4) Prove that V is isomorphic to a subspace of V**.

1.5 Bilinear Forms
Suppose @ is a linear mapping from V to V*. If u, v € V, then the map
(u,v) — @(u)(v)

is linear in each variable. Such a map is called a bilinear form. The simplest
example arises if we take V to be the space of n x 1 matrices over F. Then we
can identify V* with the space of 1 x n matrices. If vT € V* and u € V, then the
value of v” on u is v” u. So we may take @ to be the transpose map, and then
the bilinear form takes (u, v) to u” v. We generally denote the value of a bilinear
form by (u, v).

If ue Vand @(u)(v) =0 for all v then @(u) must be the zero vector, and so
uekerd. If @(u)(v) = 0 for all u, then im@® lies in the subspace of V* formed
by the elements f such that f(v) = 0. If V is finite dimensional, then V and V*
have the same dimension and ker @ is the zero subspace if and only ifim® = V*.
We say that a bilinear form is non-degenerate if @ is invertible; in this case @ is
an isomorphism and we have the following description of V*:

1.5.1 Lemma. Let V be a finite-dimensional vector space with a non-degenerate
bilinear form. If f € V*, then there is a vector v in V such that f(x) = (v,x). O

A bilinear form is symmetric if
(u, vy =(v,u)
for all u and v. Itis alternating if
(u,v) = —(v, u)

and (u,u) = 0 for all u. (The first condition implies the second unless we are
working over a field of characteristic two.)
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We describe one simple construction of bilinear forms. Let A be an nxn
matrix over F. If u and v belong to ", define

(u,v) := u’ Av.

It is easy to verify this is bilinear. It is non-degenerate if and only if A is invert-
ible. It is symmetric if and only if A = AT and alternating if and only if both
AT = — A and all diagonal entries of A are zero.

If S is a subset of V then we define S* to be the set of vectors v such that
(v,x) =0forall xin S. (In practice, S will usually be a subspace or a vector.) It
is true that if U is a subspace of V, then

dim Ut = dimV - dim U;
but we leave you to prove this. (See the exercises at the end of this section.)

(1) If U is asubspace of V, show that V =U + U+t ifand onlyif Un Ut =1{0}.

(2) Given that dim(U+') = dim(V) — dim(U), prove that U++ = U.

1.6 Counting

We count bases and subspaces in vector spaces over GF(q). Throughout this
section we assume that F has order g. Let V =[F". Then V contains exactly g”
elements.

We begin by counting the number of subspaces of dimension 1. First we
note that two distinct subspaces of dimension 1 have only the zero vector in
common, and that a subspace of dimension 1 contains exactly g — 1 non-zero
vectors. It follows that there are exactly (g —1)/(g—1) 1-dimensional subspaces
of V. This number plays quite a role in what follows, so we define

_q"-1
=1
(We will write [n], if we need to make the order of F explicit.) Note that [1] =1
and [2] =g +1.

We next determine the number of ordered k-tuples (vy,..., v§) of vectors
from V such that vy,..., vk is linearly independent. Suppose we have such a

(k—1)-tuple. We can extend it to a k-tuple by choosing vector not in the (k—1)-
dimensional subspace spanned by the (k — 1)-tuple. There are g — g*~! such

[n]:
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factors, and now a simple induction argument yields that the number of or-
dered k-tuples of linearly independent vectors is

@" =D (""" = gD G- D nn -1 n-k+11.

Since each k-tuple of linearly independent vectors spans a unique subspace of
dimension k, and since each subspace of dimension k gives rise to exactly

g (g - D*klk -1 1]

k-tuples of linearly independent vectors, we find that the number of subspaces
of dimension k is

® (g _ 1k 1 [n-k+1] KR 11 (1] = [nln—1]---[n-k+1]
q¥(q—1)"[nl[n-1] —q(g (g—D"kl ]---[1] k=111
This suggests the use of the following notation. We define
[nll:=[nl[n—-1]---[1]
and
o P 1.6.1)
[k]'_ [klln— k]!’ (1.6

The right side of (1.6.1) is known as the Gaussian binomial coefficient. Using it,
we have:

1.6.1 Theorem. The number of subspaces of dimension k in a vector space of
dimension n over a field of order q is [} ]. O

We note another consequence. An ordered basis for F” is the same thing as
an invertible n x n matrix. Hence:

1.6.2 Lemma. The number of invertible n x n matrices over a field of order q is
@ (g-1)"n). O

Although it may not be immediately apparent, the Gaussian binomial coef-
ficient is a polynomial in g.

(1) Prove the recurrence for Gauss...

(2) Let U be a fixed subspace of F” with dimension k. Compute the number of
/-dimensional subspaces V of F” such that V n U = {0}.

(3) Let U and V be subspaces of F” such that dim(U) = k, dim(V) = n— k and
U nV = {0}, where 2k < n. Compute the number of subspaces W with di-
mension k such that

WnU=WnYV={0}.



1.7. NORMAL FORMS 11

1.7 Normal Forms

There are a number of cases where we wish to decide if two linear independent
sets in a vector space span the same subspace. We can answer this by construct-
ing normal forms.

The conventional way to do this is using reduced row echelon form. At first
glance this only solves our problem for the vector spaces F”, but we can always
translate our problem to F” using the coordinate map with respect to some ba-
sis.

Let V be a finite dimensional vector space and let fi,..., f, be an ordered
basis for V*. If v € V, we define the height of v to be the least value of i such
that f;(v) # 0. We write v < w if the height of v is less than the height of w.
(Technically the relation we have just introduced is a pre-order on V.)

1.7.1 Lemma. Let S be a finite subset of the finite-dimensional vector space V.
Then there is a subset T of V such that span(S) = span(7T) and no two elements
of T have the same height.

Proof. We convert S to T in a number of steps, as follows. If S does not contain
a pair of elements of the same height, there is nothing to be done. If S does
contain a pair of elements of the same height, choose a pair v and w with the
least possible height, i say. Then replace w by

W
w =w ﬁ(l,U) V.

Then the height of w’ is greater than the height of w and
span((S\ w) U w') = span(S).

In this we may replace each element of height i, other than v, by a vector with
greater height, eventually reaching the situation where v is the unique element
of height i.

By induction on the number of elements, we may convert S\ v to a set T}
such that span(S\ v) = span(7}), no two elements of 77 have the same height,
and the least height of an element of T; is greater than i. Then we may take T
tobe Ty U v. i

We remark that this lemma holds in the vector space of all polynomials.
Take f; to be the element of the dual space that maps a polynomial to the coef-
ficient of x”". Then f;(p) = 0 for all r if and only if p is the zero polynomial, and
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this is all we need to make the argument work. One interesting point is that the
f+’s do not form a basis of the dual space. Note also that in this case the height
of a polynomial is just its degree. For Pol(R), the above lemma asserts that each
subspace with finite dimension has a spanning set containing at most one poly-
nomial of each degree.

We will say that S is in echelon form if it contains at most one element of
each height. If S is in echelon form, then |S| < n and S is linearly independent.
Further, if S does not contain an element of height i, then no element of span(S)
has height i. Consequently a basis for V must have size n.

We will say S is in normal form if:

(@) If ve Shasheight i, then f;(v) =1.
(b) There is at most one element of any given height in S.

(c) If vand w are elements of S with heights i and j respectively and i < j, then

fi(w)=0.

These properties are a straighforward extension of the concept of reduced row-
echelon form.

1.7.2 Lemma. Let V be a finite dimensional vector space, and suppose S; and
S, are subsets of V in normal form. If Sy and S, have the same span, they are
equal.

Proof. Suppose U = span(S;) and let H denote the set of heights of elements of
S1.If i € H, let v; denote the element of S; with height i. If x € V, let z be given
by
z:i=x-)_ filx)v;.
ieH
Then f;(z) =0when j € H.If x # z, then the height of x — z is not an element of
H. Therefore x € U if and only if x = z.

Note that i is the height of an element in span(S;) if and only if i € H. Ac-
cordingly H is also the set of heights of elements of S». Let w; and w» denote
the elements of least height in S; and S, respectively. Then w; and w; have the
same height, k say.

Since w, € U, so is w; — w». But

filwr —wz) =0

for all i in H, and therefore w; = w-.
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The set of vectors in U with height greater than k is a subspace of U; the
heights of the elements in this subspace are elements of H that are greater than
k. As both S;\w; and S, \ w, are bases for this subspace in normal form, it
follows by induction (on the dimension of U) that they are equal.

1.8 Groebner Bases

Let R be the ring of polynomials F[x,,..., x;]. An ideal in R is a subset I of R
such that, if p € R and g € I, then pg € I. An ideal is a subspace of R that is
invariant under multiplication by elements of R. An ideal is finitely generated
if it contains polynomials g, ..., g, such that

r
I:{Zpigi,piER}.
i=1

If a = (ay,...,ay) is a sequence of non-negative integers, then

n
(¢ A aj
x% = Hlxl. )
i=

We use |a| to denote }_; a;, and we say that x* is a monomial of degree |a|. A
monomial order is a total order ‘<’ of the set of all monomials in x1,..., x,, such
that

(a) Forany A, we have 1 < x“.

(b) If @, B and y are non-negative and x* < xP, then x**7 < x#*7,

One important property of monomial orders is that any set of monomials
has a least element. It follows from (b) that a monomial order is an extension
of the usual partial order on monomials, that is, if x* divides xP, then x® < xP.
We define the height of a monomial to be the number of monomials less than it,
relative to the given order. The height of a polynomial is the height of its leading
term. (Note that this is consistent with our usage in the previous section—the
map that takes a polynomial to the coefficient of a given monomial in it lies in
the dual space.)

Once we have chosen a monomial order, each polynomial in R has a unique
leading term of the form cx?, for some monomial x*. The scalar c is the leading
coefficient of the polynomial and x¢ is its leading monomial. If I is an ideal of
R, the leading-term ideal of I is the ideal generated by the leading terms of the
polynomials in 1.
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1.8.1 Lemma. Any ideal of F[x,,..., x,] that is generated by monomials is gen-
erated by a finite set of monomials.

Proof. Let I be an ideal of R, let .4 denote the set of leading monomials of I,
and let J be the ideal generated by .#. If ./ contains both x* and x# and x®
divides xP, then .# \ xP generates J. Hence we may assume that no element of
 divides another and so, by Lemma it follows that . is finite. O

1.8.2 Theorem. Every ideal of F[xy,..., x,] is finitely generated.

Proof. Let I be an ideal of R, let .4 denote the set of leading monomials of I,
and let J be the ideal generated by .#. Let g1,..., gm be set of polynomials in 1
whose leading terms generate the leading-term ideal of I. We show that these
polynomials generate I.

If h € I then there are polynomials a;,..., a,, such that the leading term of

m
Y aigi
i=1

equals the leading term of h. Hence h—Y.[" a;g; is a polynomial in I with
leading term less than the leading term of s. By induction on the height, we
conclude that this polynomial lies in the ideal generated by the g;’s, and hence
that he I. |

A Groebner basis for an ideal in F[x,...,x,] is a generating set gi,...,8n
such that the leading terms of the g;’s generate the leading-term ideal of I. The
previous result is a nice application of Groebner bases, which are a very useful
tool in computational algebra. We have managed to sidestep the question of
how we might actually find a Groebner base of an ideal. (They are not unique.)

If x and y are vectors over an ordered ring, e.g., the integers, we write x = y
if the entries of x — y are all non-negative.

1.8.3 Lemma. If S is an infinite set of n-tuples of non-negative integers, it con-
tains a pair of distinct elements x and y such that x < y.

Proof. We proceed by induction on n; the case n =1 is trivial. Consider the
subset S(i, j) of S defined by

S, j):={xeS:x;=j}.
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If S(i, j) is infinite for some i and j, then the set of (n — 1)-tuples we get by
dropping the i-th coordinate of each element of S(i, j) contains a comparable
pair of distinct elements.
So we may assume that S(i, j) is finite for all i and j. Choose an element z

of S. Then ;

U U sa.n

i=1 jSZi
is a finite union of finite sets. Accordingly there are infinitely many elements y
in S such that y > z. O

1.8.4 Corollary. Let A and B be integer matrices and let A& denote the set of
non-negative integer solutions to AX = B. Define an element of A to be inde-
composable if it cannot be written as the sum of two non-zero elements of ./ .
Then the number of indecomposable elements of A is finite. |

1.9 Codes

The goal of coding theory is to successfully transmit information, despite the
occurrence of errors in transmission. We describe one way of doing this.

We assume we have a message to transmit, which is a long binary string.
We divide the message into input words of length k, padding the message if
needed. If x is an input word, we transmit

w! =xTG. (1.9.1)

If the rows of G are linearly dependent, there will be vectors x such that x’ G=0
but x # 0. This is clearly no use to us, so we assume that rk(G) = k.

In place of w the receiver actually receives (w + e) T where e is an error vec-
tor. The receiver’s task to determine e, and then to solve the equation for
x. The possible form of e depends very much on the details. We will assume
that each bit is sent correctly with probability 1 — p, and with probability p it is
changed from a 0 to a 1, or vice versa. The expected number of errors when we
send n bits is np. Generally p is small.

An input word is just an element of Z’zC . The words we transmit, which we
call code words, are elements of row(G). If the error vector e ¢ row(G) then
(w+e)T ¢ row(G). We can decide if a received wode is a code word by attempt-
ing to solve for x. Define the Hamming distance h(v, w) between two
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binary vectors to be the number of positions at which they differ. The mini-
mum distance of a code is the minimum distance between two distinct code
words. Our basic problem is to choose G so that its rank is large, and the mini-
mum distance is atleast np+y,/np, for some positive constant y. (For example,
v =10.)

We consider an example. Let G be given by

o = O O
— o O O

1
0
1
1

— = O

1
1
0
1

S O O -
o O = O

Thus we have 16 code words in our code C. The receiver needs a method to
decide if a given element w of Z} lies in C. A convenient approach is to use a
so-called parity check matrix. This is a (n — k) x n matrix H with linearly inde-
pendent rows, such that

HGT =0.

Thus the null space of H is equal to the column space of G’ and a vector w' lies
in row(G) if and only if Hw = 0. If we receive w and Hw = 0 then the first four
entries of w are the input word. (Thus decoding is trivial.) Here we may take H
as follows (see Exercise ?? below):

1101100
H=]1 011 0 1 0].
0111001

Suppose we send w’ = x” G and the w + e; arrives at the receiver. As usual,
e; is the i-th standard basis vector—we are assuming that exactly one error oc-
curs in transmission. Then the receiver computes

Hw=H(w+e;)=Hw+ He; = He;.

This is the i-th column of H. Inspection reveals that the seven columns of H
are distinct, and thus we can decide which entry of w has been corrupted in
transmission. Consequently we can correct any single error.

We note that since the columns of H are distinct, if i # j, then

H(e;+ej)=He;+ He; #0;
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therefore we can detect if one or two transmission errors occur.

Thus we might choose simply to detect errors, and request a retransmission
whenever an error occurred. Or we might know that the probability of two er-
rors in one word is too low to worry about, and correct each error that we noted.
In this case, if two errors did occur, our “correction” would not give us the word
that was really sent.

Note that we cannot hope to correct or even detect all errors, but we can
aim to reduce the proportion of undetected or wrongly corrected errors to a
specified level.

(1) If
G:= (I Gl)

and
H:= (GlT —I),

show that the null space of H equals row(G7).

(2) Suppose G is a k x n matrix in reduced row echelon form and let G; be the
k x (n — k) matrix we get from G by deleting the basic columns of G. Con-
struct an (n — k) x n matrix as follows: if the j-th column of G is the i-th
non-basic column of G, the j-th column of H is —e;; if the j-th column of
G is basic and G;,; = 1, then the j-th column of H is times the i-th column
of G| . Prove that HG™ =0.

(3) Give a generator matrix G of order 11 x 15 such that the associated code can
be used to correct any single error.
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Chapter 2

Primary Decomposition

We use the primary decompostion to decompose vector spaces and linear map-
pings.

2.1 Modules

Let V be a vector space over [ and let T be an endomorphism of V. A subspace
U of V is T-invariant if u € U for all elements u of U. If U is T-invariant, it is
invariant under all matrices in the ring F[T] of polynomials in 7. Hence it is a
module over this ring; we may also refer to it as a T-module.

(1) If T = I then a T-invariant subspace is just another name for a subspace.
(2) The zero subspace and V itself are T-invariant, for any T.

(3) ker(T) is T-invariant, because if u € ker(7T) then Tu = 0, and certainly 0 €
ker(T).

(4) The range of T is T-invariant. For if u lies in the range of T then Tu is
contained in the range of T.

(5) If U is a subspace of V, the preimage of U relative to T is the set
fveV:TveU}.

If U is T-invariant, then so is its preimage relative to T. (Since ker(T) is the
preimage of {0}, this shows that ker(T) is T-invariant.)

19
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(6) The intersection and sum of T-invariant subspaces are T-invariant.

If U is a T-invariant subspace, then T [U denotes the endomorphism of U
that is defined by

(TTU)(u) = Tu,

for all u in U. We call T the restriction of T to U. If U is a 1-dimensional T-
invariant subspace and u spans U, then Tu must be a scalar multiple of u. If
u is a non-zero vector and Tu = Ou, we say that u is an eigenvector of T with
eigenvalue 0.

If u € W, then the subspace spanned by vectors

T v, r=0,1,...

is easily seen to be T-invariant. We call it the T-invariant subspace generated
by v, and observe that is the smallest T-invariant subspace of W that contains
v. A T-invariant subspace generated by a single vector u is called a cyclic sub-
space for T. Cyclic subspaces are perhaps the most important class of invariant
subspaces.

(1) If T € End(V) and T is invertible, show that a T-invariant subspace is T-1-
invariant.

2.2 Control Theory

Consider a system of 7 + 1 bodies arranged in a line. Assume that if the temper-
ature of the i-th body (1 < i < n) at time r is ¢;(r), then its temperature at time
i +1is given by

ti(r+1= i(ti—l(”) +2t;(r) + tiy1(r))

The temperature of the 0-th body is entirely under our control, we denote its
value at time r by u(r). The temperature of the (n + 1)-st is fixed at zero. If #(r)
is the vector in R” with i-th entry #;(r) then ¢ is determined by the equation of
the form:

t(r+1)=At(r)+u(r)b
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and the temperature vector #(0) at time zero. In particular, if 7 = 4 then

0 0 0 0 0 0 1

025 05 025 O 0 0 0

A= 0 025 05 025 O 0 b= 0
0 0 025 05 025 0 | 0l

0 0 0 025 05 025 0

0 0 0 0 0 0 0

By choosing different values for the terms of the sequence
u0),u(1)...u(m)

we can reach a variety of different temperature distributions; are there any we
cannot reach?
To study this we assume that #(0) = 0. Then

t(1)=u(0)b
t2)=ul)b+ u(0)Ab
t(3) = u(2)b+ u(1) Ab+ u(0)A*b

and
.

tr+1) =) u(r-iAb.
i=0

If W, is the matrix

W,=(b Ab --- A"7lb)
then we see that
u(0)
t(r+1)=Ww,
u(r)

The state t(r+1) is therefore reachable if and only if it lies in the column space of
W;. When r = n, this column space is precisely the A-cyclic subspace generated
by b. (As the vectors A" b lie in R” we have that A” lies in the column space of
W), and, in general, the rank of W,,, equal to the rank of W,,, whenever m = n.)
In our particular example above, W is an upper triangular matrix with diag-
onal entries 477, for r = 1,...,6. Therefore the cyclic subspace generated by b
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is R®, and so all states are reachable after at most six steps. If we change b to

—_ o O O O

then the space of reachable states has dimension two—in this case all reachable
states have 11 (r) = t5(r), t2(r) = t5(r) and t3(r) = t4(r).

(1) Show that, even if £(0) # 0, it is still true that all states are reachable after at
most 7z steps if and only if the A-cyclic subspace generated by b is all of R".

(2) Asystem given by
tr+1)=At(r), z(r)=cltr)

is observable if, given z(0), z(1),...z(m) (where m = n) we can compute (i)
for i =0,...,m. (Note: the input for the computation is A, ¢ and the val-
ues of z.) Show that this system is observable if and only if the cyclic A”-
subspace generated by c is equal to R”. Show further that, if the system
is observable, we need at most n consecutive values of z to determine all
previous states of the system.

2.3 Sums

We consider direct sums of subspaces. Suppose Uj,..., Uy are subspaces of V,
and define U’ to be the sum of the subspaces U}, where j # i. We say that V is
the direct sum of the subspaces U; if V is the sum of the subspaces U; and

UuinU;=1{0}, (i=1,...,k). (2.3.1)
If this condition holds, we write
V=U®-- o U;. (2.3.2)

There is a condition equivalent to (2.3.1) that is often easier to work with: V is
the direct sum of Uy, ..., Uy ifand onlyiffori=1,...,n-1,

Uin(Ujs +---+Up) = {0}
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We leave you to verify that these two conditions are equivalent.
As an easy consequence of the definition of direct sum, we have

dim(V) =dim(U;) + - -- + dim(Uy).
There is a converse to this: if Uj,..., Uy are subspaces of V whose sum is V and

Y dim(U;) = dim(V),

1
then V is the direct sum of the U;’s.

If holds and v € V, then v can be written in exactly one way as a sum
V=uUp 4+ U,
where u; € U;. Define amap E; : V — U; by E;(v) = u;. Then E; is linear,
Ei+---+E=1,

and

E;, ifi=j;
EiEj= .
0, otherwise.

Note that the last condition implies that E; is idempotent, that is, El2 =E;. We
call E; the projection onto U;. Conversely, if Ej,..., Ex is a set of idempotents
satisfying these conditions and U; is the range of E;, then V is the direct sum of
the spaces U;.

1. If uy,..., u, are elements of V and U; = span(u;), show that V is the direct
sum of Uy,..., U, ifand only if u,, ..., u, is a basis for V.

2.4 Invariant Sums

If T is an endomorphism of V, we say a direct sum decomposition of V is T'-
invariant if each summand is. If V is the T-invariant direct sum of Uj,..., U
and v € V then

V=1Uy 4+ Uy,

where u; € U;. Hence

T(w)=(TTUD) () +--+(TTUR) (ug),



24 CHAPTER 2. PRIMARY DECOMPOSITION

and so we say that T is the direct sum of the operators T[U;. It can be extremely
useful to be able to decompose V into a T-invariant direct sum.

We develop a characterization of invariant direct sums in terms of projec-
tions. We use the following simple tool.

2.4.1 Lemma. If E is idempotent, then x € im(E) if and only if x = Ex.

Proof. If x e im(E) then x = Ey for some y and therefore
Ex=E’y=Ey=x.

If x = Ex then clearly x € im(E). O

2.4.2 Theorem. Suppose V =V, &---& Vi and let Ey, ..., Ey be the set of projec-
tions corresponding to the subspaces V;. Let T be a linear operator on V. Then
the direct sum decomposition of V is T-invariant if and only if TE; = E; T for
eachi.

Proof. We first claim that if E is an idempotent then im(E) is T-invariant if and
onlyif (/-E)TE=0.

Now (I-E)TE =0ifand only if T maps im(E) into ker(I—E). But [-E)x =0
if and only if x = Ex and so the previous lemma implies that ker(/ — E) =€ (E).
This proves our claim.

It follows from this claim that im(] — E) is T-invariant if and only if ET (I —
E)=0.

If TE=ET, thenboth ET(I — E) and (I — E) TE are zero. Conversely, if

ETI-E)=(I-E)TE=0

then
O=ET(I-E)-(I-E)YTE=ET-TE

and so T and E commute. Hence we have shown that im(E) and im(/ — E) are
T-invariantifand only if ET = TE.

Let V; be the sum of the subspaces V; for j # i. Then V; =im(I - E;), and so
V; and Vl.’ are both T-invariant if and only if E; commutes with T. The theorem
follows directly from this. O

Our next result identifies one case where we can express V as a sum of T-
invariant subspaces.
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2.4.3 Lemma. Let T be an endomorphism of V. Then V =im(T) +ker(T) if and
only ifim(T) nker(T) = 0.

Proof. Suppose rk(T) = k and dim(W) = n. Then dim(ker(7)) = n— k and so
im(T) + ker(T) = nif and only if im(T) nker(T) = {0}. O
The constraint on T here may also be expressed thus: if w € W and T?w =0
then Tw = 0.
As an application of this lemma, suppose that T is idempotent. If T?v = 0,

then Tv = 0 and so no non-zero vector Tv lies in ker(7T). Hence V is the direct
sum of im(7T) and ker(T). Note that T [ker(T) is the zero map.

1. Show that a square matrix of the form

-

is idempotent. If T is represented by the matrix
A B
C D)’
show that T fixes ker P if and only if C = 0 and that T fixes col(P) if and

only if
XCX-AX+XD-B=0.

2.5 Minimal Polynomials

Let T be an endomorphism of the n-dimensional vector space V. If v € V, then
there is a least positive integer r such that 7" v lies in the span of v, Tv,..., 771,
Hence there are scalars ay,..., a, such that

T"v+a T v+ +agv =0.

It follows that there is a monic polynomial ¢(¢#) such that ¢(T)v = 0. If ¢, and
> are two polynomials such that ¢;(T) v = 0, then for all polynomials a, (¢) and
ax (1),

(a1(T)p1(T) + ax(T)2(T)v =0,

from which it follows that if ¢(¢) is the gcd of ¢;(#) and @2 (¢), then ¢(T)v = 0.
Consequently:
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2.5.1 Lemma. Suppose T is an endomorphism of the finite-dimensional vector
space V and v € V. There is a unique monic polynomial of least degree v ,(t)
such that v ,(T)v = 0. The degree of v, is equal to the dimension of the sub-
space generated by v. |

We call v, (1) the minimal polynomial of T relative to v. Since dimV = n,
the degree of v, (¢) is at most n.

Next we observe that space of endomorphisms of V has dimension n?, and
therefore there is a least integer r, at most n? suchthatI, T,...,T" are linearly
dependent. It follows that there is a unique monic polynomial ¢ of least degree
such that ¢ (T) = 0. Itis called the minimal polynomial of T. (If Lt denotes the
linear operator on End(V) given by L1(M) = T M, then the minimal polynomial
of T is the minimal polynomial of Lt relative to T itself.)

If v € V, then certainly y(T) v = 0, and it follows that v, () must divide ¥ ().
Hence 1(¢) is the least common multiple of the polynomials v, (¢), as v runs
over a basis of V.

2.5.2 Lemma. Suppose T is an endomorphism of the finite-dimensional vec-
tor space V and v is the minimal polynomial of T. Then each zero of y is an
eigenvalue of T.

Proof. Suppose ¥, (0) =0. Then
w(t) =(t-0)p(t)

and therefore
(T-0De(T)=0.

Since ¢ is a proper factor of ¥, we see that ¢(7T) # 0. Let w be a non-zero col-
umn of ¢(T). Then (T -0I)w =0, and so w is an eigenvector for T with eigen-
value 6. i

If v, is the minimal polynomial of T relative to the vector v and v ,(f) =
(t—0)p(1), then ¢(T)v is an eigenvector for T with eigenvalue 6. When dim V'
is small, this provides an effective way of finding eigenvalues.

For example, suppose dim V = 2, and choose a non-zero vector v. If we are
very lucky, v is an eigenvector for T. If not, then T?v is a linear combination of
v and Tv, and v, is quadratic. If 8 and 7 are the zeros of v, (¢), then (T -61)v
is an eigenvector for T with eigenvalue 7.
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2.6 Primary Decomposition

We use the minimal polynomial of an endomorphism to derive a direct sum
decomposition of the space on which it acts. We use the following fact: the
greatest common divisor of the polynomials ¢;,...,¢y is 1 if and only if there
are polynomials a;, ..., ai such that

al(p1+---+ak(pk:1.

2.6.1 Theorem. Let T be an endomorphism of V with minimal polynomial v (t).
Suppose that y(t) = H;Zl wi(t), where the factors v; are pairwise coprime. Set
¢r =wly, and let a,(t),...,a,(t) be polynomials such that ) ; a;(t)@;(t) = 1.
Then V is the direct sum of T-invariant subspaces U;, where U; is the range
of the idempotent a;(T)¢;(T). The minimal polynomial of T [ U; is w;(t), and
U; = keri//i(T).

Proof. Then the greatest common divisor of the polynomials ¢; is 1, and so
there are polynomials a; such that

AL+ +argy=1. (2.6.1)

Define
E;:==a;(Tg;(T).

Then .
Y Ei=1
i=1

If i # j then v divides ¢;¢;, whence
E;E;j=0.

Together the last two equations imply that E‘l2 = E;; thus E; is an idempotent.
Let U; denote the range of E;. If u € U; then E;u = u and so

Tu=TE;u=E;Tu.

Therefore Tu lies in the range of E;, and therefore U; is T-invariant. Hence V is
a direct sum as described.

Next we show that the minimal polynomial of T'[U; is y;. Suppose p is a
polynomial such that p(T)U; = 0. Then

0=p(ME =p(Ma (D1 (T)



28 CHAPTER 2. PRIMARY DECOMPOSITION

which implies that pa;¢; is divisible by ¢ and consequently that v; divides
pa,. Since v, divides each of ay,..., a,, it follows from that a; and y;
are coprime. Hence v, divides p, and we conclude that v is the minimal poly-
nomial of T [U;. Setting 1 equal to i, the general result follows. |

Remark: If T has minimal polynomial y (1), the ring of all polynomials in T
is isomorphic to the quotient ring F[¢]/(w(f)). The preceding theory is a reflec-
tion of the structure theory of this ring.

We use the primary decomposition theorem to prove the following funda-
mental result.

2.6.2 Theorem. Let T be an endomorphism of the vector space V over the field
F, where F is algebraically closed. Then there is a diagonalizable endomor-
phism S and a nilpotent endomorphism N such that S and N are both poly-
nomialsin T and T =S+ N.

Proof. Let v be the minimal polynomial of T'. Since F is algebraically closed, we
may write ¥ as

wO=[]w-0)m.
i

Define v; by

y (1)

vi(t) = )

Let E; denote kerv;(T). The polynomials y; are coprime (as a set) and so by the
primary decomposition theorem, the E; are pairwise orthogonal idempotents
summing to I. Further each E; is polynomial in T.

Define S by
S=) 0;E;.
i

If x eker(T —0;)™ then
(T-8)Mix=(T-0;)"x=0,

from which it follows that T — S is nilpotent. As E; is a polynomial in T, we see
that S is too. |
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2.7 The Degree of the Minimal Polynomial

We have seen that the minimal polynomial of an endomorphism T of V is equal
to the least common multiple of the minimal polynomials v¥,, where v runs
over the vectors of a basis V. Fortunately something more concrete is true.

2.7.1 Theorem. If T is an endomorphism of F", then there is a vector x such
that the minimal polynomial of T relative to x is the minimal polynomial of T

Proof. Assume first that the minimal polynomial ¢ of T equals p(#)™, where p
is irreducible. Then p(T)™ = 0 but p(T)m_1 # 0. Choose a vector x such that
p(T)™ 1x #0. If ¢ is monic and ¢(T)x = 0 then ¢ must divide . If ¢ divides
p" ! then ¢(T)x # 0. Consequently ¢ = p™.

Now suppose that the minimal polynomial of T has the coprime factoriza-
tion ¥1v¥, and that U; and U, are the summands of the corresponding direct
sum decomposition of F”. Let E; and E, be the associated idempotents. Sup-
pose that x; is a vector in U; such that the minimal polynomial of T relative to
x; is w;. If ¢ is monic and

P(T)(x1 +x2) =0

then
0=E1¢p(T)(x1 + x2) = Pp(T)E7 (x1 + x2) = Pp(T) x7.

This implies that ¥, divides ¢ and a similar argument shows that v divides it.
So v divides ¢ and x; + x> is the vector we need.

An easy induction argument based on the last two paragraphs yields that
there is always a vector x such that the minimal polynomial of T is the minimal
polynomial of T relative to x.

If the field we are working with is infinite, there is an alternative proof. First,
the set of relative minimal polynomials v, is finite, since they are all monic
divisors of . Suppose y1,..., ¥, is alist of all the possibilities, and let V; be the
set of vectors v such that w;(T)v = 0. Then V; is a subspace of V and the union
of the spaces V; is V itself. But a vector space over an infinite field cannot be
the union of a finite number of proper subspaces, hence V; = V for some i and
w; is the minimal polynomial of 7.

2.7.2 Corollary. If dimV = n and T € End(V), then the degree of the minimal
polynomial of T is at most n.
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Proof. If T € End(V) has minimal polynomial ¥ (#), then there is a vector v
in V such that y(¢) is the minimal polynomial of T relative to v. Hence, if ¥
has degree d, the vectors v, Avy,..., Avg—; are linearly independent. Therefore
dim(V) =d. O

(1) Let T be an endomorphism of F” and let x,..., x, be a basis for F”. If v;
denotes the minimal polynomial of T relative to x;, show that the minimal
polynomial of T is the least common multiple of y4,...,y¥,.

(2) Prove that a vector space over an infinite field cannot be the union of a finite
number of proper subspaces.

2.8 Root Spaces

We consider primary decomposition when the field of scalars is algebraically
closed. In this case, if T is a linear operator on V with minimal polynomial
w(t), then y(t) has the coprime factorization

k
y() =[Je-60™,
i=1

where 04, ...,0% are the distinct zeros of . It follows that V is the direct sum of
the subspaces

ker(T —0;)™.

We call these subspaces the root spaces of T.

If ve Vand (T-61)"v =0, then the minimal polynomial of T relative to v
divides (¢ —0)". We say that v is a root vector for T if its minimal polynomial
relative to T has the form (£ —0)", for some integer r. If (T—61)" v =0and v # 0,
then 6 is an eigenvalue of T.

Since V is the direct sum of the root spaces of T, we have the following fun-
damental result.

2.8.1 Theorem. Let V be a finite-dimensional vector space over an algebraically
closed field. If T is a linear operator on V, then V has a basis consisting of root
vectors of T O
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The dimension of the root space of an eigenvalue 0 of T is called its alge-
braic multiplicity. (The dimension of ker(T — 1) is the geometric multiplicity
of the eigenvalue.)

2.8.2Lemma. Let T be a linear operator on V and let vy,..., v, be non-zero root
vectors. If the respective eigenvalues of these vectors are distinct, then they are
linearly independent.

Proof. Assume dim(V) = n. Suppose that we have scalars a;,..., ai, not all zero,
such that

k
Y a;jv;=0. (2.8.1)
i=1

We prove by induction on k that a; = --- = ax = 0. When k = 1, this claim is

trivial. Assume k > 1. If we apply (T—6I)" to both sides of the above expression
we get

a (T - HkI)"m +--- 4 ak_l(T—QkI)nl}k_l =0. (2.8.2)
Since none of vy, ..., vi_; lie in the root space belonging to 6, none of the k-1
terms in this sum is zero. Since each root space is T-invariant, (T —8;1)"v; is
therefore a non-zero root vector in the root space containing v;. So by induc-
tion, implies that a; = --- ax_; = 0. From it follows that a; = 0 too,
and we conclude that vy,..., vy are linearly independent. O

(1) Let T be a linear operator on V with an eigenvalue 6. Show that all root
vectors belonging to 0 are eigenvectors if and only if

ker(T —01)nrange(T —61) = {0}.

2.9 Examples of Root Spaces

We give three examples of root spaces.
Suppose dimV = n and ey,..., e, is a basis for V. Thene there is a linear
operator T on V such that

e+, ifi<m;
T(ei) — i+1 o
0, ifi=n.

Thus, if r < n then T7 (e;) = e;+» and T"e; = 0. In this case V is the root space
belonging to the eigenvalue 0.
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Let V be C*°(R) and let D be differentiation. Then ker D" is the space of
polynomials of degree less than r. With some work, we can determine ker(D —
AI)". First we define a linear operator M, on V by

My(f):=eMf.

We claim that D—AI = My DM_,. (So D and D — AI are similar.)
To verify this we compute

_4d
DM—A(f)—dte @

=-de M) +eMf ()

= e M(=Af(t) + D(f(1))
=M_,(D-ADf.

Since M;l = M_,, it follows that forall fin V,
(MpDM_y)(f) =(D-AD(f),

which is what we claimed.
Now we determine ker(D — A1)". We have

(D-AD"=M;D"M_,
and therefore (D — AI)"(g) = 0 if and only if
M;D"M_,(g) =0.
Since M, is invertible this holds if and only if
D"M_)(g)=0.

Accordingly ker(D — aI)" consists of the functions g(f) such that e */g(¢) is a
polynomial of degree less than r. Therefore ker(D — AI)" consists of the func-
tions et p(t) where p(?) is a polynomial of degree less than r.

Let V = CN and let S be the left shift on V. Define a linear operator M, by

My (ag, a1, az,...) := (ag, Aay, A’ ay,...).
If A #0, then M;' = M)-1 and

S—A =M (S-DM;".
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We can show that ker(S — I)" consists of the sequences

(p(0), p(1), p(2),...)

where p is a polynomial of degree less than r, and hence we can show that
ker(S—AI)" consists of the sequences

(p(0), Ap(1),A*p(2),...)

where p is again a polynomial of degree less than r.
The kernel of S” consists of the sequences (a;) ;> such that a; =0if i > r.

2.10 Differential Equations

We begin with two technical results. In this section V is a vector space over C.

2.10.1 Lemma. Let T : V — V belinear and suppose that if A € C, then dim (ker(T—
AI) < 1. If p(¢) is a polynomial of degree n, then dim(ker p(T)) < n.

Proof. We prove the result by induction on the degree of p(t). If n = 1, there is
nothing to prove. Assume n > 1.
Suppose 0 is a zero of p(t). Then

p(t) = (t—0)q(1),

where ¢ is a polynomial of degree n — 1. By induction on n, we see that U =
ker q(T) has dimension at most n — 1.

Now ker p(T) consists of all vectors v such that q(T)v lies in ker(T —01).
Hence g(T) maps ker p(T) into ker(T —01). Let S denote the restriction of g(T)
to ker p(T). Then by the dimension theorem,

dim(ker p(T)) = dimker(S) +rk(S) < dim(ker(q(T))) +1 < n. O

The hypotheses of this lemma hold when V = C*(R) and T is differentia-
tion, or when V = CN and T is the left shift.

2.10.2 Theorem. Let T be a linear operator on V and let p(t) be a polynomial
whose zeroes are 0y, ...,0, with respective multiplicities v,...,vk. Ifker p(T)
has finite dimension, it has a basis consisting of root vectors of T; the eigenval-
ues of these root vectors are the zeros of p(t) and the index of the root vectors
with eigenvalue 0; is at most v;.
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Proof. Suppose K :=ker p(T). If u € K, then
p(N)Tu=Tp(T)u=0

and therefore K is T-invariant. Hence K is spanned by root vectors of the re-
striction of T to K, and these are root vectors of T. Suppose z is a root vector of
T with eigenvalue 0 and index m. Then

(T-6D"z=0, p(T)z=0.

Therefore the minimal polynomial of T relative to z divides (¢ —6)"" and p(?),
and thus it divides (¢ —0)", where v is the multiplicity of 6 as a zero of p(f). ©

Let V = C*(R) and let D be differentiation. if

n-1

pt):=t"+a;t"" "+ +ap,

then the set of solutions to the differential equation
D'f+a,D" ' f+--+a,f=0

is the kernel of p(D). By Lemma(2.10.1Jwe see that ker p(D) has finite dimension
and so by Theorem [2.10.2]} it follows that ker p(D) is spanned by root vectors of
D whose eigenvalues are zeros of p(1).

We want to find all solutions to

D*f+3Df+2f=0.
The solution set of this equation is ker p(D), where
p(t):=t? +3t+2=(t+1)(t+2)

From our work above, this subspace has a basis consisting of root vectors for D.
Since the zeros of p(t) are simple we only need root vectors of index one, that
is, we only need eigenvectors. Hence the functions

e—t’ e—Zt

form a basis for the solution space of this differential equation and therefore
every solution can be written as

Ae '+ Be %,
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for some scalars A and B.
Suppose we want all solutions of

D*f+2Df+f=0

Here
p(1) = (t+1)?,

whence we see that ker p(D) is spanned by root vectors with eigenvalue —1 and
index at most two. Therefore it is spanned by

et , te’! ;
the solutions all have the form

(A+Bhe !

for some scalars A and B.

2.11 Linear Recurrence Equations
The Fibonacci sequence ¢ = (f;,) »>0 is defined by the recurrence

Jne1=fut+ fua (2.11.1)

and the initial conditions fy = fj = 1. We want to find an explicict expression
for the terms of this sequence.
Let S denote the left shift on CV. Then we may rewrite (Z.11.1) as

S%p =S¢+ ¢;
this suggests we should study ker p(S), where
pt)=t*—t-1.

The zeros of p(t) are
1+
2
denote these by 0 and 7, where 6 > 7. It follows from Theorem that
ker p(S) is spanned by root vectors for 8 and 7 with index at most one, hence
by eigenvectors.

S

)
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The eigenvector for S with eigenvalue a is the geometric series
1,a,d%...)
and therefore there are constants a and b such that
fn=a0" +bt".
Setting n = 0 and n = 1 here gives two equations in the unknowns a and b:
l=a+b, 1=ab+ br.

We can rewrite the second equation as

1:a+b_|_a—b\/§;

2 2
since a+ b = 1 this implies that
1
a-b=—.
NG
Therefore
e
2v5 V5
and
e SR
2V5 V5
We conclude that )
=—( n+l _ n+l)
fn \/g

2.12 Diagonalizability

A matrix A is diagonalizable if there is a diagonal matrix D and an invertible
matrix L such that A= LDL™!, that is, A is similar to a diagonal matrix. If A =
LDL™! then A¥ = LD*L™!, and so computing ¥ can be reduced to the simpler
task of computing D*. More generally, it is often possible to reduce questions
about diagonalizable matrices to questions are diagonal matrices (which are
often trivial).
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2.12.1 Theorem. For an n x n matrix A over an algebraically closed field F, the
following are equivalent:

(a) Aisdiagonalizable.
(b) F" has a basis that consists of eigenvectors of A.
(c) The minimal polynomial of A has no repeated factors.

Proof. If two matrices are similar, their minimal polynomials are equal, and so
(a) implies (c).

If the minimal polynomial has no repeated factors then there are no root
vectors of index greater than one, and thus it follows that F” has a basis formed
from eigenvectors of A.

Finally, suppose that the columns of L are a basis consisting of eigenvectors.
Then each column of AL is a scalar multiple of the corresponding column of L,
and therefore there is a diagonal matrix D such that AL = LD. Since L must be
invertible, (a) follows. O

If F is not algebraically closed (or close to it, like R), then diagonalizability is
not usually a useful concept.
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Chapter 3

Frobenius Normal Form

We derive some properties of matrices from the theory we have established,
and then develop the theory of the Frobenius normal form.

3.1 Companion Matrices

Let T be an endomorphism of the finite-dimensional vector space V. One of
the best ways to study T is to find T-invariant subspaces of V, and cyclic sub-
spaces are the most accessible of these.

The dimension of the subspace U generated by a vector v is the least integer
k such that T*v lies in the span of the vectors

v,Tv,...,Td_lv,

and this set of vectors forms a natural basis for U. Let v; denote T?v. Then
there are scalars ay,..., a; such that

Tvg_1=—-agvy— -—a1Vgq_1. (3.1.1)

Ifi <d—1, then Tv; = v;i+1 and therefore the matrix representing the action of
T on U, relative to the ordered basis vy, ..., v4_1, has the form

00 - 0 -ay
10 0 —ag_;
0 1 0 —ag—s (3.1.2)
00 - 1 -aq

39
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We call this matrix the companion matrix of the polynomial

p(t) = td+a1td_l +---+ay.
(We will also refer to this as the right companion matrix of p; we will meet other
flavours as we proceed.) Since v; = T' vy, from (3.1.1) we find that

p(Mvo=(T+a T ' +---+agDvy =0.
Thus p(?) is the minimal polynomial of T relative to v.

We now consider a matrix view of the previous material. Suppose v € F"* and
A € Mat,«,(F). Assume that the A-cyclic subspace generated by u has dimen-
sion d and let the matrix R be given by

Ri=(u Au --- A% 'u).

Thus col(R) is the A-cyclic subspace generated by u. If ¢ (1) is the minimal poly-
nomial of A relative to u and C is the companion matrix of ¥, then

AR=(Au A?u --- A%u)=RC.

There is a third view, which is also quite important. Suppose v is a polyno-
mial of degree d over [ and let V;, be the vector space of polynomials over F
modulo . This vector space is usually denoted by F[z]/(y/(z)); its elements are
equivalence class of polynomials, where polynomials f and g are equivalent if
and only if f — g is divisible by w. Each equivalence class contains a unique
polynomial of degree less than d, and these are the natural representatives of
the equivalence classes.

The powers

l,z,...,z”l_1

provide one basis for V;,. Multiplication by z is an endomorphism of Vy,, and
the matrix respresenting multiplication by z relative to this basis is easily seen
to be the companion matrix of v.

1. Let p(z) be a polynomial of degree k as above and let C,, denote its com-
panion matrix. If f is a polynomial of degree less than &k, let f be the
coordinate vector of f relative to the standard basis 1, x, ..., x*=1, Use the
fact that f(z)z' and z’ f(z) have the same remainder modulo p to prove
that

fC=(f Cof ... (CHF).
Deduce that f(Cy)g = g(Cp)f.
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2. If C, is a companion matrix of order n x n, show that rk(C, —-01) = n—1,
for any element 6 of F. Deduce that the geometric multiplicity of any
eigenvalue is at most 1. (This implies that C is diagonalizable if and only
if the zeros of p are all simple.)

3. Let U be the subspace spanned by the vectors T" u, where r = 0. If Su € U,
show that there is a polynomial p such that Su = p(T)u. Hence deduce
that if U is S-invariant and ST = T'S, then S|U is a polynomial in T [U.

3.2 Transposes

We introduce a second basis for Vy,. If

v =t +at? + -+ ay,

define polynomials y1,...,¥4 by

Hlyvragg.

Vvi(z):= iy a -
These polynomials can also be defined by the initial condition ¥ ,4(z) = 1 and
the backwards recurrence

Vi-1(2) = zyi(2) + ag-i+1- 3.2.1)

As a third alternative, we can view ¥;(z) as the polynomial part of the rational
function z‘iw(z). Since v;(z) is monic of degree d — i, we see that these poly-
nomials form a basis for Vy,, sometimes called the control basis.

Suppose v € V and T is an endomorphism of V with minimal polynomial
¥ (z) relative to v. Then the vectors

w1(T)V,...,Wd(T)U

form a basis for the T-cyclic subspace U generated by v. It follows from (??)
that
—agv, ifi=1;

Tw: (v =
vich {wi—l(T)U_acHl—iU, if2<i<d.

From this we see that the matrix representing T with respect to the control basis
is C$ , the transpose of the companion matrix of .
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It follows that since C and C” both represent the action of T on U, they are
similar. We can say more about this.
Let Q be the d x d matrix given by

ag-1 aq—2 ... A1 1

aq-2 agq-3 1 0

Q=] : :
a) 1 0

1 0o .. 0

Note that Q is symmetric and invertible. Choose an ordered basis a for V and
let A be the matrix representing T in its action of V. Let R be the matrix with
the coordinate vectors [T?v], as its columns and let S be the matrix with the
vectors [p;(T)v]q as its columns. Then S = RQ and

AR=RC, AS=SCT.

Hence ARQ = AS = SCT = RQCT and therefore RCQ = RQCT. Since the columns
of R are linearly independent, it follows that QCT = CQ.

It will follow from what we have just proved that if A is an n x n matrix, there
is a symmetric invertible matrix Q such that AT = Q! AQ.

3.3 Eigenvectors for Companion Matrices

We give explicit formulas for the left and right eigenvectors of a companion ma-
trix. We use ey, ..., e to denote the standard basis vectors of F4, as customary.

3.3.1 Lemma. Let ¥(z) be a polynomial of degree d and let C be its companion
matrix. Then

1z - 29YC=2z(1 z - z9Y)-y(ae).

Proof. Suppose
v =t +at* +-+ay.
If i < d, the i-th entry of
(1 z - z¥YcC
is z'*1; while the d-th entry is
1

= z¢ -y (2).

—(a1+ azz+---+ agz®

The lemma follows at once from this. a
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If, in the above lemma, we take z to be a zero 6 of y, then it follows that
(1 o - 0971

is a left eigenvector of C with eigenvalue 6.
Our next lemma will provide right eigenvectors. Let y1,...,%4 denote the
control basis for V.

3.3.2 Lemma. Let ¢ (z) be a polynomial of degree d and let C be its companion
matrix. Then

(41 L4
Cl : |=z| : |-v(@e.
Va Va
Proof. This is again routine; we leave it as an exercise. O

These two lemmas provides right and left eigenvectors for C, one for each
zero 0 of w(z). If w(z) has d distinct zeros, we obtain d distinct left eigenvec-
tors for C. Since the eigenvalues are distinct, these eigenvectors are linearly
independent.

If we are working over R or C, we can say something useful when v (z) has
zeros with multiplicity greater than 1. The idea is to differentiate both sides of
the identity in Lemma[3.3.2] Define

V1
VY(z):=

va
and let ¥ (z) denote the r-th derivative of ¥ (z). Then
CYN(2) =2 (2) + r?"V —y M (2)e;.
If 0 is a zero of w with multiplicity m and r < m, then w"” (0) = 0 and therefore
(C-0D"P"©O) = rv ().

Note the since the polynomials ¥; form a basis for the polynomials of degree
less than d, they cannot all be zero at 0; therefore ¥ (0) # 0. It follows that the
vectors ¥ (0) are a basis for the root space associated with 6. (Exercise: show
that these vectors are linearly independent.)
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1. By expanding the expression

in two different ways, derive the identity

(w-2)Y wyi(2) =y w) -y
i

(If we take w and z to be zeros of v, this gives the orthogonality relation
between the right and left eigenvectors of C.)

2. Let Q be the symmetric matrix from ?2. Show that

and hence deduce that CT = Q71 CQ.

3.4 Inverses of Companion Matrices

Suppose A € Mat,«,(F) and that u € F” that generates an A-cyclic subspace of
dimension d. Let ¥ be the minimal polynomial of A relative to u. If

w(t) =t +a "+ gy,
then C is invertible if and only if ay # 0. (There are a number of ways to see this.
Perhaps the easiest is to note that if we move the last column of C to the first
position, the resulting matrix C’ is lower triangular with (C');; = —ay and all
other diagonal entries equal to 1.) If C is invertible, there is a simple expression
for C™1. To describe this, we need a new operation on polynomials.

If g is a polynomial with degree k, let § denote the polynomial t*q(t7!).
(This is g with its coefficients reversed.) Note that if A is invertible, then p(A) =
0 if and only if

Afpah =o.
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It follows that if p is the minimal polynomial of A, then a;l p is the minimal
polynomial of AL,
Let R be the matrix given by

R=(u Au - Ad_lu).

Then AR = RC and col(R) is the A-cyclic subspace generated by u. If Ais invert-
ible, then A lisa polynomial in A and therefore col(R) is A~Ll-invariant. Hence
there is a matrix D such that

AT'R=RD

and D=C™'. Now
A u Au - AW =(ATw o u - A9,

whence D is a d x d matrix of the form

(Y Id—l).

cg O
If we write C in the form .

C:(Id—l ‘Zi),

then the equation DC = I implies that
1= Ig-y agy+a
a=1 o agxq

Consequently we must have

-1 -1

and therefore o
D: (_a('_ila Id_l).
a, 0
This expression for D makes sense if and only if a; # 0, because C can be invert-
ible even when A is not. Hence we have proved the following:

3.4.1 Theorem. Let p be a polynomial with degree k and let C be the compan-
ion matrix of p. Then C is invertible if and only if p(0) # 0. If p(0) # 0, then

c'=T1TDT,

where D is the companion matrix of a,;l p and T is the matrix whose columns
are the standard basis vectors in reverse order. i
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By way of example, we have

—c/d 1 0 0\{0 0 0 —d
~b/id 0 1 0[f1 00 —c|_,
—ald 0 0 1|0 1 0 —b|
~1/d 0 0 0J{0 0 1 -a

If C is a companion matrix and T is the permutation matrix in the previ-
ous theorem, we say that TCT is a left companion matrix. Analogously we will
call CT a bottom companion matrix. And to round off the list, TCT T is a top
companion matrix. All four flavours occur in practice.

3.5 Cycles

Let P be the n x n matrix such that Pe; = ¢,; and, if 2 < i < n then Pe; = ¢;_; and
Pe,, = ey. Thusifn=>5,

00001
1 0000
P=|10 1 0 0 O
001 00O
00010

We see that P" = [ and P is a companion matrix for the polynomial ¢ — 1. Fur-
ther P~! = PT, and therefore P is orthogonal.
Let vy be the vector of length n with i-th entry ', Thus

Vg = Zei‘lei

1

and consequently, if 0" = 1, then

Puyg = ZHHPei = Z@i_lei_l =0vpg.

1 1

Therefore the vectors vy, as 0 runs over the distinct n-th roots of unity, are eigen-
vectors for P. Itis not hard to show that, if n is odd, any real eigenvector of P is
a scalar multiple of v;.

Now let A= P+ PT. Then A is symmetric and

Avg = (0 +0 Y.
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Therefore the vectors vy, as 0 runs over the distinct n-th roots of unity, are eigen-
vectors for A. Note that here the eigenvalues

0+0"'=0+0

are real, even though the eigenvectors themselves are complex (unless 0 is real).
The eigenvalues of P are roots of unity. Suppose Q is orthogonal and v is an
eigenvector for it with eigenvalue 6. Then Qv =0 v, but

vl =1Qul =l0vi=101lvl.
It follows that all eigenvalues of an orthogonal matrix lie on the unit circle in
the complex plane.
3.6 Circulants and Cyclic Codes

Let P,, be the companion matrix for the polynomial " — 1. Thus if n = 5 then

00001
10000
Ps=(0 1 000
00100
00010

We see that P,,e; = e;+1 if i < n and P, e, = e;. A circulant matrix is a matrix
which is a polynomial in P,. This is equivalent to stating that a matrix is a cir-
culant if it is square and each row is a cyclic right shift of the row above it. If the

first column of the circulant A is
a

an
then
n .
A= Z a; P =1
i=1
It follows that there is an isomorphism between the vector space of n x n circu-
lant matrices and the space of polynomials with degree less than n. But this is

misleading. Suppose a and b are polynomials with degree less than n, and asso-
ciated circulants A and B respectively. Then the product AB is a circulant, but
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the polynomial belonging to it cannot be ab unless the degree of this product
is less than n. In fact the polynomial is the remainder of the product a(t)b(t)
on division by " — 1. Thus the space of n x n circulants is isomorphic to the
quotient ring F[x]/(x"™ — 1). This isomorphism is an algebra isomorphism. If
deg(a) < n, we use Cy to denote the circulant associated with g.

The row space of an n x n circulant over [ is a cyclic code of length n. Sup-
pose f is a polynomial and that g is its greatest common divisor with ¢ — 1.
Then there are polynomials a and b such that

a(t)f()+b)(t"-1) = g(1).

Hence
Cg = Caf = Cacf

and therefore row(Cg) < row(Cy). On the other hand, f = f1 g and so
Cr=CrCy

which implies that row(Cy) < row(Cg) and hence that row(Cy) = row(Cyg). This
proves that a cyclic code of length n over F is equal to Cg, for some divisor g of
t"—1.

One of the most important parameters of a code is its dimension. Thus we
would like to determine rk(Cy). If g has degree d, then the submatrix formed by
the intersection of the first n — d columns and last n-d rows of Cy is the identity
matrix I,,_;. Therefore

tk(Cg) = n—d.

Suppose a(t) is a polynomial of degree less than n, and let [a] denote its
coordinate vector with respect to the ordered basis 1,¢,..., "L If Cglal =0,
then

0=Cglal = P"Cglal = C4P"[al

for all r and consequently

CgCq=0.
Equivalently, C¢C, = 0 if and only if C¢Cze; = 0. Now C¢C, = 0 if and only
if ¢ — 1 divides g(r)a(r), and accordingly the null space of C, consists of the
vectors [a] such that (¢"—1)/g(t) divides a(t). Ifwe set h(t) equal to (t"—1)/g(t),
then the null space of Cy is the column space of Cj,. The dimensions of the row
and column spaces of Cj, are equal, and therefore

tk(Cp)=zn—(n—-d) =d.
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So by the rank+nullity theorem,
tk(Cyg) +1k(Cp) = n,

which forces us to conclude that rk(Cg) = n—d.

If Cg2[al = 0 then C,2C, = 0 and so " — 1 divides g(H%a(t). If t" — 1 has no
repeated factors, then " —1 divides g(£)?a(t) if and only if it divides g(f)a(#). In
this case it follows that Cg is diagonalizable. If x" —1 = p( 1)2q(1), then Cf,q =0
and Cy, is nilpotent, and not diagonalizable.

However x" — 1 has a repeated factor if and only if its gcd with its derivative
nx"1 is not constant, in other words, if and only if 7 is not divisible by the
characteristic of F. In particular, if the characteristic of F does not divide n,
then [F” is the direct sum of ker(Cg) and col(Cy).

Let E be an extension field of F in which ¢" — 1 splits into linear factors. If n
and the characteristic of [F are coprime, these factors are all distinct. It follows
that each divisor g of " — 1 is determined by the set of n-th roots of 1 on which
it vanishes. Let vy be the vector of length n with i-th entry equal to 8°~!. Then
if0" =1,

Cg Vg =§ (9_1)

and so row(Cy) consists of the vectors xT such that
xT vg=0

whenever 07! is a zero of g.

3.7 Frobenius Normal Form

A square matrix C is in Frobenius normal form if

(@) Itisblock-diagonal, with diagonal blocks Cy,..., Cy,.

(b) Each diagonal block is the companion matrix of a polynomial v;(¢).
(¢c) Fori=1,...,m—1, the polynomial y;; divides ;.

Thus the Frobenius normal form can be specified by giving the sequence of
polynomials ;.

We want to prove that two matrices over a field are similar if and only if they
have the same Frobenius normal form. We require two preliminary results.
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3.7.1 Lemma. Then if Ny and N, are similar, they are equal.

Proof. Suppose that

. Ll 0 L L2 0
Nl"(o Dl)’ NZ'_(O Dg)

are both in Frobenius normal form. Then p(NN) =0 if and only if p(L;) =0 and
p(D;) = 0. Hence the minimal polynomial of N; is the minimal polynomial
of L;. Since N; and N, are similar, they have the same minimal polynomial,
and this is also the minimal polynomial of L,. Thus L; and L, have the same
minimal polynomial, and as they are companion matrices this implies that they
are equal.

Now let y; be the minimal polynomial of D,. Then y;(N;) and v, (IN») are

similar and thus
(1,’/1(L) 0) _ (wl(L) 0 )
0 0 0 w1(Dy))"

This implies that y;(D,) = 0 (prove it!) and we conclude that D, and D, have
the same minimal polynomial. An easy induction argument now yields that
D1 = Dg. O

3.7.2 Lemma. Let A be an n x n matrix over F. If there is a non-zero cyclic sub-
space U of dimension k, then there is a cyclic subspace of F" of dimension at
least k with an A-invariant complement. If dim(U) equals the degree of the
minimal polynomial of A, then U has an A-invariant complement.

Proof. Let u be a non-zero vector and suppose that the A-invariant subspace it
generates has dimension k. Let U be the n x k matrix with the vectors

u,Au,...,Ak_lu

as its columns. Then rk(U) = k, and by Lemma ??, there is a n x k matrix V such
that VT U = I. Let w denote the last column of V. (Now that we have w, we will
ignore V.)
We have
1, ifr=k-1-s;
wTArAsu: wTAr+su: '

0, ifr<k-1-s.

If W is the matrix with columns

A YTw (AR Ty, AT w, w



3.7. FROBENIUS NORMAL FORM 51

then WU is a lower triangular matrix with diagonal entries equal to 1. There-
fore it is invertible, and therefore rk(W) = k.

Let ¢ be the dimension of the AT -invariant subspace generated by w. Since
rk(W) = k, we see that k < ¢. If k # ¢, then repeating the above argument with
AT in place of A and w in place of U, we obtain a cyclic subspace for A with
dimension at least . By repeating both these steps a finite number of times,
we reduce to the case where k = ¢. Therefore we may assume that col(W) is
AT -invariant, and so there is a matrix L such that ATW = WLT. f Wlx =0
then

0=IWTx=wTAx;

accordingly the null-space K of W' is A-invariant. Since W U is invertible, no
non-zero element of col(U) lies in K. Since rk(W) = k, we see thatdimK =n—k
and therefore K is an A-invariant complement to col(U).

To obtain the last statement of the proof, note that A and A’ have the same
minimal polynomial. So if k equals the degree of this polynomial, then rk(U) =
rk(W). O

It follows readily from this lemma that every square matrix is similar to a
block diagonal matrix, where each block is a companion matrix. We can also
use it as follows to verify the existence of the Frobenius normal form.

3.7.3 Theorem. Every square matrix is similar to a matrix in Frobenius normal
form.

Proof. Let Abe an n x n matrix with minimal polynomial v () of degree k. By 22,
there is a vector u such that v is the minimal polynomial of A with respect to u,
and therefore u generates a cyclic subspace V of dimension k. By the previous
lemma, it follows that this subspace has an A-invariant complement K.

Choose a basis for F” consisting of the columns of V followed by a basis for
K. Relative to this basis, A is represented by a block-diagonal matrix

L o

0 B)’
where L is the companion matrix of the minimal polynomial of A. The minimal
polynomial of B divides the minimal polynomial of A. By induction on n we

see that B is similar to a matrix in Frobenius normal form; stacking L on top of
this produces a matrix in Frobenius normal form that is similar to A. |
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We can use Lemma to compute the minimal polynomial of a sqaure
matrix. First compute a block-diagonal matrix similar to A, with companion
matrices as its blocks. The least common multiple of the polynomials associ-
ated to these companion matrices is the minimal polynomial of A.

3.8 Applications

We use € (M) to denote the commutant of M, that is, the set of matrices that
commute with M. This a subspace that contains all polynomials in M.

3.8.1 Theorem. Let A and B be square matrices. If € (A) < €6(B), then B is a
polynomial in A.

Proof. Assume Ais nxn. We can decompose " as the direct sum of A-invariant
subspaces V1,..., Vi. For each subspace there is a cyclic vector v; such that the
powers A" v; span V;. If y; is the minimal polynomial of A[Uj, then its degree
equals dim V;, and v, divides ;.

Let P; denote the projection on V;. From ??, the projections P; commute
with A. Hence they commute with B and, again by 22, it follows that the sub-
spaces V; are B-invariant. Therefore Bv; € V; and therefore there is a polyno-
mial g; such that Bv; = g;(A)v;. As AB = BA, we have

BAr Vi = ArBVl' = Argi(A) Vi = gi(A)Ar Vi,

and therefore Bv = g;(A)v for all vin V;.

To complete the proof, we show that g;(A)v; = g1(A)v;. This implies that
B =g (A).

Let g; := y1/vw;. Consider the map that sends f(A)v; to q;(A) f(A)vy. If
f(A)v; =0, then v; divides f and so ¥, = v;q; divides q;(A) f(A)v;. It follows
that this is a well-defined linear map from V; to V;. We extend it a linear map
X; from V to V by defining X;(v) =0if v € V; and j # i; if v = f(A)v; then
Xiv=qi(Af(Auv.

Ifi # j and v € V}, then AX;v = X; Av = 0. Further

AXif(Av; = Aqi(A f(An

and
XiAf(Av; =qi(AAf(Auv,.
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Therefore X; commutes with A, and therefore it commutes with B. Now
XiBv; = X;gi(A)vy = gi(A)qi(An

and
BXivi=Bqi(A)v: =qi(A)Bv, = qi(A) g1 (Av.

Since X; and B commute, this implies that
(gi(A)—g1(A)gi(Av =0,

whence (g; — g1)q1 is divisible by p; = g;p;, and so p; divides g; — g;. Conse-
quently
gi(Avi=g1(Av;,

forall i. a

The above proof follows Prasalov.

3.9 Nilpotent Matrices

A linear mapping or a matrix is nilpotent if some power of it is zero. The canon-
ical example is
0 0
!

10

whose square is zero. If T is nilpotent then its minimal polynomial is ¢* for
some k, sometimes called the index of nilpotency of T (but not very often, if we
can help it). A nilpotent matrix of index 1 is the zero matrix. We note that N,
is the companion matrix of 2. More generally the companion matrix of ¢* is a
nilpotent matrix with index k, which we will denote by Ni. Note that Nie; =0
and Nie;;1 =e; wheni=1.

Nilpotent matrices are interesting and useful, but also a source of difficul-
ties. Since Nie; = 0, we see that e; is an eigenvector of N with eigenvalue 0.
Since the minimal polynomial of Ny is t*, we see that 0 is the only eigenvalue
of Ni. Further, since rk(IVy) = k-1, the eigenspace associated with 0 has di-
mension 1, and therefore equals the span of e;. Consequently eigenvalues and
eigenvectors provide very little information about nilpotent matrices.

We have the following structure theorem.
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3.9.1 Theorem. If M is a nilpotent matrix, then it is similar to a block diagonal
matrix, where each diagonal block is equal to Ny for some k.

Proof. The required block diagonal matrix is the Frobenius normal form of M.

One corollary of this is that the number of similarity classes of n x n nilpo-
tent matrices over a field equals the number of vectors of non-negative integers

(kly---)kl’l)
suchthatk; = ky=---=kjand ) ; k; = n.

3.9.2 Lemma. Let A be an n x n matrix over an algebraically closed field with
minimal polynomial w(t). Then A is similar to a block diagonal matrix with
diagonal blocks of the form 61+ Ny, where 0 runs over the zeros of v, and Ny is
nilpotent with index equal to the multiplicity of 0 as a zero of y (t).

Proof. By the primary decomposition theorem Theorem [2.6.1} we know that A
is similar to a diagonal matrix with diagonal blocks Ay indexed by the zeros of v,
such that the minimal polynomial of Ay is (£—0)", where myg is the multiplicity
of O as a zero of w (). Hence A — 01 is nilpotent, with index my. Thus we may
write

Ag =01+ Ny,

where Ny is nilpotent, of index my. O

The corank of (A—61)" is known as the algebraic multiplicity of the eigen-
value 0. This distinguishes it from the geometric multiplicity, which is the
corank of A—-61.

We present one application. We wish to determine when a matrix A has a
square root, that is, when there is a matrix X such that X2=A If A=LBL!
and B has a square root Y, then

(LYL Y =LY?’L'=LBL™' = A.

This allows us to use the primary decomposition theory; more precisely, we
assume that A is block diagonal with blocks of the form

Ag :91+N9.

It follows that A has a square root if and only if each of its blocks does.
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Suppose M is nilpotent. Then I + M has a square root

1
(I+M)1/2: Z (Z)Mr.

r=0

Note that this is a finite sum, since M" = 0 for all but finitely many values of r.
It follows that, if @ # 0, then

01+ Ny=06(+60"'Np)

has a square root. Hence we are left with the case where 6 = 0, and this our
questions reduces to deciding which nilpotent matrices have a square root. If
N is nilpotent with index k and X? = N, then X?* = 0 and so X is nilpotent with
index 2k. (This implies that the matrices Ny are not squares.)

Assume now that N is in Frobenius normal form. We claim that the (k+1) x

(k+1) matrix
/. N 0O
Nk.—( X 0)

has a square root. (You do it!) It follows that N has a square root if and only if
its corank is at least as large as the number of non-zero blocks.

3.10 A Similarity Condition

We are given the following two n x n matrices:
A 0 A B
0 D)’ 0 D)’

where A and D are square. We ask for which matrices B are they similar.
We note that

M

(I —X)(A B)(I X)_(A AX-XD+B

o0 I /o DJlo 1) |0 D

and deduce that they are similar if there is a matrix X such that
AX-XD=B.

We show that this condition is necessary.
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Suppose that our two matrices are similar. Then there is an invertible matrix
S such that
A 0 A B
(o o)=(6 bJs

We define linear mappings 77 and T on the space of n x n matrices by

A 0 A 0 A B A 0
nn=(d Or-v(2 O, mon=(d Br-v[2 9)
We have
1 oA 0) .1 B A 0
S(Ty (S Y))—S(0 D)S Y Y(O D)
A B A 0
=[5 5)7 (6 o)
=T>(Y),

and therefore ker(7T7) and ker(7>) have the same dimension.
Let Y be the matrix
v = (Yl,l YI,Z)
You Yoo

where the partitioning is compatible with the partitioning of the other matrices
above. Then

T/ (Y) = AY11-Y11A AY12-Y12D
BT DYy 1 - Y21B  DYap - YooD
and
T,(Y) = AYl,l - Y1,1A+ BY2y1 AYI,Z - YlyzD + BYZ,Z
2 DY, — Yy D DY;5—YooD |
We note that
Yip Y2
5 1)

lies in ker(7T>) if and only if AY; » — Y7 2D — B =0, and we can prove our claim by
showing that there is a matrix of this form in ker(7>).
Let J; denote the restriction to ker T; of the linear map

(Y1,1 Yip

— (Y- Yoo).
o Ym) (Yor Yao)

We will prove that 9, and 9>, have the same image.
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From the expressions for 71(Y) and T»>(Y), we see that ker 97 = ker 9,. Fur-
ther
imJ7 ={(Y2,1 Y2):DY21—Y21A=0, DY2,— Y2,D =0}

and im 9> consists of the elements of ker 97 for which there are matrices Y; ;
and Yj » such that

CYr1=Y11A-AY1, CYro=Y12D— AY; 5.
It follows that im 9, € im 97. Now

dim((97)) + rk(97) = dim(ker T7)
dim((97)) + rk(93) = dim(ker T»).

Since 97 and 93, have the same corank and since 77 and T, have the same
corank, it follows that 97 and 95 have the same rank.
Finally, it easy to verify that

0 0
(0 _I)ekerTl

whence
(0 —-I)eimJ; =im I

and accordingly there is a matrix in ker 75 of the form

Yip Yip
0 -1/

This completes the proof.

3.11 Triangular Maps

A flagin V is a sequence Vj, ..., V; of distinct subspaces such that
VOCVI CCVr

If dim V = n, then a flag contains at most 7 + 1 subspaces, and a maximal flag is
a flag with n + 1 elements. A maximal flag Vy,...,V,, has V, = {0} and V;, = V. If
v,..., Uy is a basis for V and we define V = {0} and

V; :=span{vy,..., vi}
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then Vj,...,V, is a maximal flag. There is a converse to this. Suppose that
Vo,..., Vy is a maximal flag, and for i = 1,...,n choose a non-zero vector w; in
Vi\V;_;. Then wy,..., w, is a basis (as you are invited to prove). Let T be an en-
domorphism of V. A flag & is T-invariant if each subspace of & is T-invariant.
If & is T-invariant, we also say that T fixes %.

3.11.1 Lemma. If § = x3,..., X, is a basis for the vector space V and the linear
map A fixes the flag associated to 3, then the matrix that represents A relative
to B is upper triangular. |

3.11.2 Theorem. An endomorphism of a finite-dimensional vector space over
an algebraically closed field fixes a maximal flag.

Proof. We prove the result by induction on dim V. We define a hyperplane in V
to be a subspace with dimension dim(V) — 1. It will be enough to prove that any
endomorphism of a vector space fixes a hyperplane H for then, by induction,
we may assume that 7| H fixes a maximal flag of H.

By Lemma[2.5.2] the adjoint T* of T has an eigenvector in V*. Choose such
an eigenvector f. Then T* f = Af for some scalar A, but T* f is the composition
f o T and therefore

f(Tv)y=Af(v),

for all elements v of V. This implies that if f(v) =0, then f(Tv) = 0 and there-
fore ker f is T-invariant.

Since f # 0, there is a vector v such that f(v) # 0. If f(w) # 0 too, then the
vector

fwyv-fww
lies in ker f, from which it follows that ker f is a hyperplane. O

In Section [3.12}, we will prove a more concrete version of this result using a
variation of the above argument.

(1) Prove that each maximal flag determines a basis, as described above.
(2) Provethatif f € V*, then ker f is a hyperplane.

(3) Let S and T be endomorphisms of V that fix the same flag, and suppose
n =dim V. Prove that the minimal polynomial of ST — T'S divides t".
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3.12 Triangulations

We prove that if A is a square matrix over C, then there is a unitary matrix L
such that L™ AL is triangular. We have already proved a version of this result
for linear mappings (see Section ??) but our argument there did not yield the
fact that we could choose L to be unitary.

3.12.1 Theorem. Let A be an n x n matrix over C. Then there is a unitary matrix
L such that L™! AL is lower triangular.

Proof. We proceed by induction on n. Let u; be an eigenvector for A* with
eigenvalue 0 and let U denote the subspace

ut={xeC":u*x=0.
Then U is A-invariant: if v € U, then
uf Av=(A*u) v=0ulv=0.

Let u,,...,u,; be an orthonormal basis for U. Since u; ¢ U, the vectors
uy, Uy, ..., U, form an orthonormal basis for C". If we define the matrix L, by

Li:=(wm up - up)

then L, is unitary and
0
ALy =L, (“ )

b A
We may assume inductively that there is a unitary matrix M such that M~ A, M
is lower triangular; then L = L; M is the unitary matrix we need. O

Suppose that M is an upper triangular n x n matrix. If Mv = v, then (M —
01)v =0and so M—601is notinvertible. The matrix M —61 is also upper triangu-
lar; it is invertible if and only if its diagonal entries are non-zero. We conclude
that the eigenvalues of M are precisely the diagonal entries of M. This gener-
alises the fact the the eigenvalues of a diagonal matrix are its diagonal entries.

3.13 The “Fundamental” “Theorem of Algebra”

The fundamental theorem of algebra is the assertion that any polynomial with
coefficients from C has a root in C. It is equivalent to the claim that every com-
plex matrix has an eigenvector, and we offer a proof of this due to Harm Derk-
son. The original appears in the American Math. Monthly, and on his web page.



60 CHAPTER 3. FROBENIUS NORMAL FORM

(It has been stated that this result is theorem of analysis, not algebra, and is not
fundamental. I tend to agree.)

3.13.1 Theorem. Every square complex matrix has an eigenvector.

Before setting out on the proof, some terminology. Let « be a set with a
multiplication defined on it. If A, B € o/, we denote their product by AB. A set
o/ of endomorphisms of V is an algebra if

(a) « isavector space over [F.
(b) If A,Be «f,then AB€ «.
(c) Thereis an element I in o« such that AI=1A= Aforall Ain «/.

If V is avector space over I, then End(V) is an algebra. If the elements of an alge-
bra «f are endomorphisms of V, it is called an operator algebra; if the elements
of «/ are matrices we call it a matrix algebra. The set of all upper triangular
matrices is an example of a matrix algebra. The set of strictly upper triangular
matrices is not an algebra according to our definition, because it does not con-
tain the identity matrix. An algebra .« is commutative if AB = BA for all A and
Bin . If Ais asquare matrix, the set of all polynomials in A is a commutative
algebra.

We note next that if f(¢) is a polynomial over R with odd degree, then f has
areal zero. (This is a comparatively simple exercise in calculus.)

We now start the proof of the theorem. We divide it into a number of lem-
mas.

3.13.2 Lemma. If A is an n x n real matrix and n is odd, then A has an eigenvec-
tor.

Proof. The space R" is a direct sum of cyclic subspaces for A. Since 7 is odd,
there is a cyclic subspace U for A with odd dimension d. The minimal polyno-
mial ¢ of A[U has degree d, and therefore there is a real number 6 such that
w(0) = 0. It follows that A has an eigenvector with eigenvalue 6. |

3.13.3 Lemma. If «/ is a commutative algebra of real n x n matrices and n is
odd, there is a vector z which is an eigenvector for all matrices in A.
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Proof. Let Ay,..., A be a basis for «f. If «f is generated by I, there is nothing to
prove, so we may assume A; # I. By the previous lemma, A; has an eigenvector
z; let @ be its eigenvalue. The subspaces ker(A; —01) and im(A; —601) are proper
non-zero subspaces of R” and by the rank theorem,

dim(ker(A; —01)) + dim(im(A; —61)) = n.

Therefore one of these subspaces has odd dimension; we denote it by U.
If Ayu=0u, then
AjAju=A;Aiu=0A;u

and consequently A;u € ker(A; —01) if u e ker(A; —01). If v = (A; —01)w, then
Aiv=Ai(A1—0Dw= (A1 —0DA;weim(A, —01).

Hence U is invariant under each matrix Ay,..., A}, and so it is invariant under
all matrices in <.

Since U is a proper non-zero subspace of R” with odd dimension, it follows
by induction that there is a vector in U which is an eigenvector for each matrix
in«. O

3.13.4 Lemma. If A is an n x n complex matrix and n is odd, then A has an
eigenvector.

Proof. Let W denote the vector space of all n x n Hermitian matrices (which is
not an algebra if n > 1). We define linear operators L, and L, by

Li(M) = %(AM+ MA™),
Ly(M) = %(AM— MA®).
If M = M*, then
(Li(M)* = %(AM+ MA*)* = %(MA* + AM) = L (M)

and
(Lo(M)* = _LZI,(AM—MA*)* = _LZZ,(MA* —AM) = Ly(M).

Therefore L;, L, € End(W). Also

11 11
LiLy(M) = EZ[A(AM_MA*) +(AM-MA")A*] = EE[AZM—M(A*)Z]
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and
11 * * * 11 2 *2
Lng(Z\/I):EE[A(AM+MA )—-(AM+MA™)A ]:EE[A M—-M(A™)"].

Therefore L, and L, commute.

Now W is a vector space of dimension n“ over R, and n? is odd. If we choose
a basis for W, the matrices representing L; and L, relative to this basis have or-
der n? x n? and they commute. Consequently they have a common eigenvector,
and this is an eigenvector for L; and L, This eigenvector is a non-zero matrix
M such that

2

Liy(M) =AM, Ly(M)=uM.

Then
AM=Li(M)+iLy(M)=A+iwM

and this shows that each non-zero column of M is an eigenvector for A. O

3.13.5 Lemma. If «f is a commutative algebra of complex n x n matrices and n
is odd, there is a vector z which is an eigenvector for all matrices in A.

Proof. We simply apply the proof of Lemma[3.13.3] If Ay,..., A is a basis for o/
and A; has an eigenvector, then there is a non-zero proper subspace of C" of
odd dimension over C which is invariant under <. By induction this contains
an eigenvector for . |

3.13.6 Lemma. A square complex matrix has an eigenvector.

Proof. Assume n = 2%n;, where n; is odd. We prove the lemma by induction on
k. Let W denote the space of all matrices M in Mat,, ,(C) such that MT = —M.
We note that

n
dim(W) =
and therefore 2* does not divide dim(W). We define two mappings L; and L,

as follows:

Li(M) =AM+ MAT,
Ly(M)= AMAT.

Then L;,L, € End(W) and L;L, = L,L;. Choose a basis for W. The matrices
representing L, and L, relative to this basis commute and have order (3) x ().
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By induction on k, the algebra generated by these matrices has an eigenvector
M; this is an eigenvector for L; and L, and we may assume that its eigenvalues
are A and p respectively. Hence

puM = AMA" = A(Ly(M) - AM) = (AA— A*)M
and so
(A2 AA+uhM =0.

Let z be a non-zero column of M. Then the minimal polynomial of A rela-
tive to z is quadratic, and so the A-cyclic subspace generated by z has dimen-
sion at most two. Assume that the minimal polynomial y of A relative to z is
quadratic, and is equal to

2 —At—p.

This quadratic has two roots in C, and so there are complex numbers 6 and
such that
(A-0D(A-1Dz=0.

If (A-711)z =0, then z is an eigenvector for A with eigenvalue 7; if (A-11)z#0
then (A—-11)z is an eigenvector for A with eigenvalue 6. Thus we have shown
that A has an eigenvector. O

3.14 The Kronecker Product

If A and B are matrices over [, we construct their Kronecker product A ® B by
replacing the i j-entry of A with
A B,

forall i and j. We find that
(A®B)(u®v)=Au® Bv
and, more generally that
(A®B)(C® D)= AC®BD,

provided only that the products AC and BD are defined. It follows that if x is an
eigenvector for A and y is an eigenvector for B, then x ® y is an eigenvector for
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A® B. Consequently the eigenvectors of A® B are just the products Au, where
A is an eigenvalue of A and u is an eigenvalue of B. We also have

AeB) T =ATeBT.

If X is an m x n matrix, then vec(X) is the mn x 1 matrix we get by stacking
the columns of X one above the other. In other terms

vec(X) =) X je;i®e;j.
We have
vec(AX) = (I® A)vec(X), vec(XB) = (BT ® I vec(X).
It follows for example, that there is a matrix X such that
AX-XB=C

if and only if
(I® A- BT ® ) vec(X) = vec(C).

The eigenvalues of the matrix I ® A— BT ® I are the differences u — A, where 1
is an eigenvalue of A and p is an eigenvalue of B, and therefore it is invertible if
and only if A and B have no eigenvalues in common.

Let P be the matrix such that
Px®y)=y®x.

Then P maps U® V to Ve U. If V = U, then P? = P. We say an element u of
V ® V is symmetric if Pu = u and antisymmetric if Pu = —u. Thus u® u and

ulurv+uveu

are symmetric and
URUV—-veu

is antisymmetric. (Thus symmetric and antisymmetric elements of V® V are
eigenvectors for P, with eigenvalues 1 and —1 respectively.) If A and B belong
to End(V), then

P(A®B)P(u®v)=P(A®B)(veou)=(B®A)(u®v).

We also have
Pvec(X) =vec(X").
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(1) Show that the matrix P(A® AT) is symmetric.

(2) Let V be Mat;«,(F) and let A be a fixed matrix. If X € V, define the map
Ad 4 in End(V) by
Ads(X):= AX - XA.

If A" =0, prove that Ad%" = 0.
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Chapter 4

Orthogonality

We study inner product spaces over R and C.

4.1 Properties of Projections

Let U be subspace of the inner product space V. Then orthogonal projection
onto U is a function P from V to itself such that, for all vin V, we have v—P(v) €
U+. We establish a number of properties of P, the most important of which is
that it is linear.

4.1.1 Lemma. Let P be the orthogonal projection of V onto U. Then P is linear
mapping and

(a) im(P) = U.

(b) ker(P)=U" .

(c) P>=P.

(d) Ifv,weV,then{(v,Pw)={(Pv, w).

Proof. Suppose v,w € V. Then v - P(v) and w — P(w) both belong to Ut,
whence
w+w)-PW) +Pw) =w-Pw)+w-Pw) € U".

Since P(v)+P(w) € U, this implies that P(v)+ P(w) is the orthogonal projection
of v+ w onto U. Therefore P is linear.

67
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Since Pv € U for all vin V, we see that im(P) € U, and since Pu = u forall u
in U, we see that im(P) = U and P? = P. This proves (a) and (c).

For (b), we note that if P(v) = 0 then v € UL. On the other hand, v — P(v) €
U+ and soif v € UL then P(v) € U+. Since P(v) € U, this implies that P(v) = 0.

Finally, for any vectors v and w we have

(v—Pv,Pw) =0, (Pv,Pw—-w) =0.
Summing these two expressions yields
0=<(v,Pw)—-{(Pv)Pw+{(Pv,Pw)—-{(Pv,w),

whence (d) follows. O

Linear mappings P such that P? = P are called idempotent. If (v,Pw) =
(Pv, w) for all v and w, we say P is self adjoint with respect to the inner product.

4.2 Matrices Representing Projections

If we are working in Euclidean space—R" with dot product—then we can give
an explicit formula for the matrix representing orthogonal projection.

4.2.1 Lemma. Let V be R" equipped with dot product, and let U be a subspace
of V with dimension k. If B is an n x k matrix whose columns form a basis for
U, the matrix representing orthogonal projection on U is

BB'B)'BT.

Proof. We offer two proofs. The first is a simple verification that the quoted
formula is correct. First you may easily verify that B(B”B)"'B” is symmetric.
Then we compute that

(I-BB'B)'B) B=B-BMB'B)"'BTB=B-B=0
and therefore

w-BB'B) 'BTn'B=v"U-BB"'B)'B)'B
=vI(U-BB'B)'B)B
=0.
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So, if u:= B(BTB)"'BT v, then v — u is orthogonal to each column of B. Hence
it lies in U+, and therefore u is the orthogonal projection of v onto U.

A difficulty with the previous argument is that it gives no indication how
we found the matrix B(BTB)™'B7 in the first place. We outline the reasoning.
Suppose Q is the matrix representing orthogonal projection on U. Then rkQ =
k and by Theorem ?? we can write

Q=ABT,

where A and B are n x k matrices with rank k. Since col(A) = col(Q) = U, the
columns of A form a basis for U. Since the columns of A are linearly indepen-
dent, if Ax = 0 then x = 0. Therefore ker B’ = kerP = U+ and consequently
col(B) c UL+ = U. As rk B = k, this shows that col B = U. Since each column of
Alies in U, we have

A=QA=ABTA

and therefore BT A = I. On the other hand, the columns of B form a basis for
U, so each column of A is a linear combination of columns of B, and there-
fore there is a k x k matrix M such that A= BM. If BT A = I, this implies that
BTBM =Tandso M = (BTB)~!. Accordingly

Q=BB'B)'BT. O

(It might be a useful exercise to identify where in this argument we have
used that our inner product is the dot product.)

To sum up, we have two ways to compute the orthogonal projection of a
vector v onto a subspace U. If we are given an orthogonal basis for U, we can
use (??). If we are working in R” with dot product and given a basis for U, we
could construct Q = B(B'B)"'BT, in which case the answer is Qu.

(1) If {-,-) is the dot product, show that (22) implies that P = P,

(2) Suppose B and C are n x k matrices with rank k and the same column space.
Prove that B(BTB)"'B=c(CcTCO)™'C.

(3) Letuy,..., ur be an orthogonal basis for the subspace U. Show that the ma-
trix representing orthogonal projection on U is equal to

k

-1, T
Y ui, ui) " uu;
i=1
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4.3 Least Squares

We consider a version of the least squares problem. Let W be an m x n matrix
where m < n, and rk(W) = m. Then the system of equations

Wx=v (4.3.1)

will have infinitely many solutions, but some may suit us better than others. For
example, in the control theory setting of Chapter |11} a solution x to an equa-
tion of the form Wx = v represented a sequence of inputs that would drive our
system to a chosen state. In this case, x” x corresponds to the power that this
sequence would require, and it would be very natural to seek to minimize it.
Thus we want to find the solution to with minimum squared length.

Suppose that x is any solution to (4.3.1), and let X be the orthogonal pro-
jection of x on col(WT). Then x— X is orthogonal to col(WT), and therefore
W(x-x)=0. Hence

Wx=Wx=u.

If y is another solution to (4.3.1), then Wy = Wx and so y—x is in the null space
of W. Consequently y — x is orthogonal to X and

2 12 1 1512
Iyll= =Ny =X+ lI%]°.

Thus X is the solution to (¢.3.1I) with minimum norm.

How can we compute x? If we can assume that the rows of W are linearly
independent then, by Lemmal4.2.1} the matrix representing orthogonal projec-
tion onto col W7 is

Q=wiwwhlw
and our solution is Qx. However we do not need to find x; we have
Qx=wIwwhHwx=wlfwwhH1y,
and we can proceed as follows: given v, solve the system

wwlz= v,

the desired solution is W' z. (This approach avoids the need to compute the
inverse of WW . Computing an inverse explicitly is rarely worth the trouble. It
may also pay to avoid computing WW T, but we digress. ...)

In 22, we will develop a general method for least squares problems, which
does not require that the rows of W are linearly independent.
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4.4 Orthogonal Polynomials

Let V be the space of all real polynomials, or the vector space of polynomials
with degree at most n. Assume V is equipped with an inner product such that

(p,xq) ={xp,q),

and, if p(x) is non-negative and not zero, then (1, p) > 0. All our examples have
these properties.

If we apply Gram-Schmidt to the basis of V formed by the powers of x, we
obtain a sequence of polynomials (p;),>0, where p, has degree r. A sequence
of orthogonal polynomials is an orthogonal set of polynomials (p;),>0, where
pr has degree r (and po # 0). If we multiply each member of a sequence of
orthogonal polynomials by a non-zero scalar, the result is still a sequence of
orthogonal polynomials.

4.4.1 Lemma. The sequence of polynomials (p,),=¢ is an orthogonal basis if
and only if p, is non-zero and is orthogonal to all polynomials of degree less
thanr. O

4.4.2 Lemma. Let (p,)r=0 be a sequence of orthogonal polynomials. If p,(x) =
a(x)b(x), where a and b are polynomials and b(x) = 0 for all x, then b is con-
stant.

Proof. We have
(pr,a) = (ab,a) = (1,a*b).

Now a@?b is non-zero and non-negative and therefore (1, a’by > 0. But, if the
degree of b is positive, then the degree of a is less than r and, by the previous
lemma, {p;,, a) = 0. We conclude that b must be constant. i

4.4.3 Theorem. If p is a member of a sequence of orthogonal polynomials, its
zeros are real and simple.

Proof. Suppose 6 is a complex zero of p. Then its complex conjugate 0 is also a
zero of p and therefore the real quadratic polynomial

(x—0)(x—0)

divides p. Since this quadratic has two complex roots and is monic, it is non-
negative. By the previous lemma, it cannot divide p. This proves the first claim.

For the second, note that (x —0)? is non-negative and the same technique
yields that this cannot divide p. |
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(1) Let{p,q):= fol p(x)q(x)dx. Show that if p is a member of the sequence of
orthogonal polynomials associated to this inner product, all zeros of p lie
in the interval (0,1).

(2) Suppose p, and p,,; are consecutive members of a sequence of orthogonal
polynomials. Show that they cannot have a common zero.

4,5 The Three-Term Recurrence

We provide an easier way to construct families of orthogonal polynomials. The
key is to note that
(xpr, pj) =0
if j¢ {r—1,r,r+1}. Forif j <r—1then xp; has degree less than r, and therefore
(xpr,pj)=<xpr,pj) =0.
If j > r + 1 then similarly p; is orthogonal to xp;.

4.5.1 Theorem. Let (p;),>0 be a sequence of monic orthogonal polynomials.
Then

Pni1=(X—ap)pn—bnpn-1,
where an = (XPn, Pn)/{Pn, Pn) and by = (Pn, Pn)/ {Pn-1, Pn-1)-
Proof. From our remarks just above, xp,, is a linear combination of p,_1, pn
and p;+1. Thus we may write

XPn=YPn+1+apn+ Ppn-1.

Here
_ {XPpn, Pn+1)

B <pn+1y pn+1> .
Since p;+1 is monic, xp, = pn+1 — g, where g has degree less than n. So

(XPn, Pn+1) = Pn+1, Pn+1)
and therefore y = 1.
Next we see that a = (xpy, pn)/{pn, pn) and

_ AXpn, Pn-1)

P, Pn-1)
Arguing as before,

(Xpn, Pn-1) = Pn> Pn)

and this leads to the stated expression for b,,. |
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One consequence of the formulas for the coefficients in this recurrence is
that b,, > 0 for all n.

There is another way of stating the last result. Let (p;),>0 be a monic se-
quence of orthogonal polynomials. Let M, denote the linear transformation
that maps a polynomial p to xp. Then the matrix representing M, with respect
to the basis (p;)r=0 is

ap bl
1 a) bg
1 ay b3

This is an example of a tridiagonal matrix.

4.6 Numerical Integration

We want to compute definite integrals of the form

b
f F(Ow(r)dt.
a

Here w(t) is a weight function. For example if the interval of integration is
[0,00], then we may use w(t) = e’. But for now we take w(t) to be identically
1, and the interval of integration will be [0, 1]. So all we want is

1
f fadt.
0

The problem is that we do not know the anti-derivative of f, and so we seek a
procedure that will produce a reasonably accurate answer in reasonable time.

There are many possible notions of what ‘reasonably accurate’ might mean.
Before we discuss this, we specify the sort of procedure we want in more detail.
The first thing is to note that the map

1
y:f»—»f fadt.
0

is a linear map from the space C[0,1] of continuous functions on [0, 1] to R.
Hence it is an element of the dual space C[0,1]*. This has the property that
if f =0, then #(f) = 0—it maps non-negative functions to non-negative real
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numbers. In this context, the elements of C[0,1]* are known as linear func-
tionals, and we say a linear functional is non-negative if it maps non-negative
functions to non-negative numbers.

There are many other non-negative linear functionals, and amongst the
simplest are the evaluation maps e, for a € R, given by

eq(f):= f(a).

Our aim is to choose an increasing sequence of nodes 01, ...,0, and a sequence
of weights wn, ..., wy, such that the linear functional

2= Z Wieg,
i

is a good approximation to .. We call a linear functional of this form a quadra-
ture scheme. Define the degree of precision of £ to be the greatest integer k
such that

1
2(p) :fo pHdt

for all polynomials p with degree at most k.
By way of example, if 2 has degree of precision 1, then

1
201)=1 Q(t)_i'

These hold if and only if
1
Zwizl, Zwiei:—.
i i 2

It is easy to find nodes and weights for which these conditions hold.

We will be more greedy. Suppose we are given nodes a, ..., a,, and that we
try to find weights to go with them. Let py, ..., p, be the Lagrange interpolating
polynomials at the given nodes. Thus

piaj)=6i;.

Then
2pi) =) wjpia;) = w;
J
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and, if we want degree of precision at least n — 1, we will need

1
w;i :f pi(p)dt.
0

There is one problem: there are good reasons to require that the weights w;
be non-negative, and it is not clear how to choose the nodes to ensure this in
general.

We can go further if we use orthogonal polynomials. Define an inner prod-
uct on C[0, 1] by

1
(P @ =f0 p(qt)dr.

Let py, ..., pn be the first n + 1 members of the corresponding family of orthog-
onal polynomials, and let 6,...,0,, be the zeroes of p, in increasing order. (We
know by Theorem that these zeroes are real and distinct.) Using the La-
grange interpolating polynomials, we compute the weights w; for a quadrature
scheme with degree of precision at least n — 1. Then, as Gauss first noted, a
miracle occurs: the degree of precision of our scheme is 21 — 1.

We verify this. Suppose f is a polynomial with degree at most 2n — 1. By the
Euclidean algorithm, there are polynomials g and r, both with degree at most
n—1, such that

@) =q(O)pn(t) +r(1).
Now

1
fo fde=1,f)=1,q@Opa) +1,r(0).

Since g has degree less than n,

(1, g pn(0)) ={q (1), pn(1)) =0,

1 1
ff(t)dt:f r(t)dt.
0 0

Because the degree of r(¢) is at most n — 1, the integral on the right can be com-
puted exactly using our (well, Gauss’s) quadrature scheme. Hence this scheme
has degree of precision at least 2n — 1. However it is exactly 2n — 1, because

and therefore

1
2(pa()?) =0<f pn(t)?dt.
0
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Chapter 5
Eigenthings

In this chpater we understake a study of questions related to existence of eigen-
vectors and eigenvalues. Our focus is on self-adjoint operators, because that is
where eigenvalues are most useful.

5.1 Self-Adjoint Operators

If S is an operator on an inner product space V, we define the adjoint S* of S to
be an operator such that, for all ©, v in V we have

(S*u,v) = (u, Sv).

It is an easy exercise to show that, if it exists, the adjoint is unique. If V is C" and
the inner product is the usual complex dot product, amd M is a matrix repsent-
ing S on V, then S8 is represented by the conjugate transpose of M, which we
usually denote by M*.

By way of a second example, if V is the vector space of all real polynomials
and

b
(p,q ::f p(x)q(x) w(x)dx

then
(xp,q) ={p,xq).
Hence the operation of multiplication by x is a self-adjoint linear mapping of

V. (This is why the theory of orthogonal polynomials is so rich.)

77
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We turn to the existence question. There is a notational difficulty that arises
because, outside the context of inner product space, the dual of a linear map-
ping is often referred as the adjoint (with good reason). We will temporarily use
$% to denote the dual of a linear mapping.

There are two steps to the existence proof. Assume V is an inner product
space. If a € V then we have a map 8, in V* given by

0.(v) =(a,v).

This is linear, and is an isomorphism from V to its dual V*. If € End V then, by
the definition of the dual,

(U, Sv) = (040 8)(b) = (590, (b).

Now S$%06, € V8 and, since the map a — 6, is an isomorphism, there is a vector
S§*(a) in V such that
Sd Oea = Bs*m).

As the notation suggests, and as you should prove, the map a — S*(a) is linear.
We say that S* is the adjoint of S.

5.2 Diagonalizability

We prove that self-adjoint operators are diagonalizable, and more.

5.2.1 Theorem. Let S be a self-adjoint operator on the inner product space V.
Then

(@) The minimal polynomial of S has only simple zeros.

(b) Eigenvectors of S with distinct eigenvalues are orthogonal.
(c) The eigenvalues of S are real.

(d) S is diagonalizable.

Proof. Assume by way of contradiction that the minimal polynomial y(¢) of S
has a multiple root. Then there is a proper divisor p(f) of w(#) such that y(¢)
divides p(£)?. Suppose S; := p(S). Then S; # 0 because p is a proper divisor of
¥, but S?=0.If ve V, then S3v=0and

0=(v,S;v) =(S1v,S1v),
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whence we see that S; v = 0. Since v can be chosen arbitrarily in V, this implies
that S; =0, our contradiction.
Next, suppose
Su=0u, Sv=r1v.

Then
(U, v) =(u,7v) =(u, Sv) = (Su, v) =Ou, v) = 0{u, v);

and we conclude that either 8 = 7, or {u, v) = 0.

It follows from (a) that S is diagonalizable, and therefore V is a direct sum of
S-invariant subspaces V; on each of which § acts as multiplication by a scalar
0.

On the other hand, the proof of Corollary[5.4.2|shows that each S* S-invariant
subspace of V' contains an eigenvector for S*S with a non-negative real eigen-
value. Since S*S = §2, any S-invariant subspace is S* S-invariant. Suppose the
eigenvalue of S?on V;iso;. Theno; = 0?, and therefore 6 is real. O

5.2.2 Corollary. Suppose S is a self-adjoint operator on the inner product space
V. Then there is an orthogonal basis for V formed of eigenvectors for S. |

5.3 Diagonalizability, Again

We offer a second proof that for any self-adjoint operator on a finite dimen-
sional space, there is an orthogonal basis for the space that consists of eigen-
vectors. They is the following result.

5.3.1 Lemma. Let S be a self-adjoint operator on the inner product space V. If
U is an S-invariant subspace of V, then U L js S-invariant.

Proof. If v € U+, then
(Sv,uy = (v, Su)

and therefore Sv lies in U+. O

This makes everything easy. Suppose S is self-adjoint and A is a zero of its
minimal polynomial. Then there is an eigenvector z associated with A. Its span
U is certainly S-invariant, and hence U~ is S-invariant. The restriction of S to
U+ is self-adjoint (prove it) and therefore by induction on the dimension, U+
has an orthogonal basis formed from eigenvectors. This basis together with z
provides the basis of V that we need. |
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5.4 Eigenvectors and Optimization

We present a result which may appear to be of limited interest, but it provides
an important reason why we should be interested in eigenvectors. It also illus-
trates how self-adjoint operators can arise in practice.

5.4.1 Lemma. Let L be a linear map from R" to R, let U be a subspace of R",
and let u be a unit vector in U such that || Lu| is maximal. Ifh € U and hTu =0,
then h" LT Lu=0.

Proof. We have
1L+ th)* = (u+th) LT Lu+th) = u" LT Lu+2tu" L' Lh+ " LT Lh.
Since {u, h) =0, we have
I+ chll? = llul® + 1R = 1+ [ h]%.
Assuming that ¢ is small enough that #? is negligible, we find that

IL(u+th)|?
lu+th|?
We may choose ¢ to be positive or negative; as we have chosen the unit vector u

in U to maximize ||Lul| it follows that if / is orthogonal to u, then W'rTLu=o,
and therefore Lu and h are orthogonal. |

| Lul|® - ~—2th"LTLu.

Now we present the application of this lemma to eigenvectors.

5.4.2 Corollary. Let L be a linear map from R" to R™, let U be a subspace of R",
and let u be a unit vector in U such that || Lu|| is maximal. IfU is LT L-invariant,
then u is an eigenvector of LT L, and its eigenvalue is non-negative and real.

Proof. Suppose u is as stated. From the previous lemma we see that if h € U
and h e ut, then h" LT Lu = 0. Therefore

Unutc@'D)?,
from which we have
LTLue span(u) + Ut

Therefore LT Lu = Ou + v, where v € U+, But U is LT L-invariant, and therefore
LTLue U. Hence
LTLu-0ueUtnUu=1{0}

and so u is an eigenvector for LT L. O
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Obviously R” itself is LT L-invariant, and thus it follows that if u is a unit
vector in R” that maximizes u” L™ Lu, then u is an eigenvector for LT L Since the
associated eigenvalue is the maximum value of a non-negative real function,
the final claim holds. |

We consider one important case where we are interested in maximizing
|Lu| over unit vectors. Let A be an n x n invertible matrix and consider the
system of linear equations

Ax=h. (5.4.1)

If z is a vector then the solution to Ax = b+ zis A"'b+ A™!z. Thus we may say
that an error z in b leads to an error A~!z in the solution to (5.4.1).

Which vector z leads to the greatest error? It is clear that if, for example, we
replace z by 2z then the error is doubled, thus it makes sense to consider

max || A7z

lzll=1
From our considerations above, the maximum value of this occurs when z is an
eigenvector of

(A—I)TA—]. - (AAT)_I.

The magnitude of the error will be given by the eigenvalue associated with z.
We will see that the eigenvalues of AAT are real and positive. If the matrix M
is invertible, then 6 is an eigenvalue of M if and only if 67! is an eigenvalue of

M~ It follows that the solution of (5.4.1) will be most sensitive to errors in b
when the least eigenvalue of AAT is small.

5.5 The Singular Value Decomposition

If the m x n matrix A has rank k, then it can be shown that there is an m x k
matrix X and a k x n matrix Y such that tk(X) =rk(Y) = kand A= XYT. When
we work over R (or C), we can prove a somewhat stronger version of this, known
as the singular value decomposition. This is extremely important in practice.

5.5.1 Theorem. Let A be a non-zero real matrix with rank k. Then A= YXXT,
where

(@ X'X=1I,

(b) X2 is a k x k diagonal matrix X with positive diagonal entries,
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© Y'Y =1I.

Proof. Assume A is m x n. Using induction on k, we construct an orthonormal
subset x1, ..., X of R” and an orthonormal subset y1,..., yr of R” such that y; =
0;Ax; and

_ T
A=) 0;yix;.

k
i=1
This is equivalent to the statement of the theorem.

Let Uy denote R" and let x; be a unit vector in Uy such that || Ax; || is maximal.

Set 0 equal to || Ax|| and define
X1:=x, )1= Ul_lel.

Let U; denote le. By Lemmawe see thatif h!x; =0, then hT AT Ax; = and
consequently A(UlL) c A(Up)—.
Suppose
A= A—alyxT.

Since y lies in the column space of A, we see that col(A;) < col(A). Since A# 0
we see that x; # 0 and y; # 0. Therefore Ax # 0, but

Alx:Ax—alyxTx:aly—alyZO.

Consequently rk(A;) <tk(A). As rk(alyxT) =1 it follows that rk(A;) = k— 1.

Note next that if x € Uj, then Ax = A;x and so A and A, agree on U;. Work-
ing now with A; and U;, we conclude by induction on k that there are orthog-
onal unit vectors xp,..., xXx in R” and orthogonal unit vectors ys,..., i in R,
such that y; = Ay x; and, if o; := || A1 x; |, then

k

T

Al = Z oiYiX; .
i=2

Our theorem follows immediately. |

In numerical work, the following alternative version of the singular value
decomposition may be more useful. (It does not assume we know the rank of
A)

5.5.2 Corollary. If A is a square matrix, there are orthogonal matrices X and Y,
and a non-negative diagonal matrix X such that A= Y>X7. |
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The matrices Y and X in the singular value decomposition Y X' of A are
not unique in any useful sense. However X is determined up to a permutation.
Its entries are known as the singular values of A; there are usually denoted by
0y,...,05, with the assumption that they form a non-increasing sequence.

The easiest way to see that the singular values are determined by A is to
verify that there squares are the eigenvalues of AA”. To show this, note that

AAT=vxxTxxyT=yv3x%vyT,

and therefore
AATY = v 32

It follows from this that the columns of Y are eigenvectors for AA”, and the
diagonal entries of X? are its eigenvalues.

In a similar fashion we can show that the squares of the singular values of
A are the eigenvalues of AT A. Hence we see that AAT and A” A have the same
eigenvalues. (This actually holds over any field, although the proof at hand only
works over R or, with modest extra effort, over C.)

(1) Prove Corollary

(2) Compute the singular values of a companion matrix. (You may work with
either CCT or CTC, but one is significantly easier. First show that all but
two of the singular values are equal to 1.)

(3) Show that the sum of the singular values of a square matrix is a norm.

(4) If o1(A) denote the largest singular value of A, show that it is a norm.

5.6 LeastSquares
We consider the system of linear equations
Ax=b (5.6.1)

where A is m x n. In 72 we considered the case where the rows of A are linearly
independent. Then the columns of A span R”, and we want the vector x with
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minimum norm such that Ax = b. The second, and more commonly met sit-
uation, is when the columns of A are linearly independent, and we want the
vector x such that ||b— Ax||? is minimal.

We draw attention to one difficulty. It is in fact a non-trivial numerical prob-
lem to determine the rank of a real matrix, and so it may not be easy to verify
that the rows or columns of A are linearly independent. In fact, the best way
to determine the rank in finite precision arithmetic is to use the singular value
decomposition A=YZXX T since rk(A) = rk(Z). (Thus determining the rank of
A is reduced to determining the rank of a diagonal matrix; in the presence of
rounding errors and uncertainties in the data, this still may require thought.)
But rather than using the singular value decomposition just to get the rank of
A, we can use it to solve the least squares problem.

5.6.1 Lemma. Let A be an m x n real matrix with singular value decomposition
A=YZXXT, where X is k x k and invertible. Then the vector z of minimum
norm, such that b— Az has minimum norm is given by

z=Xx>"'yTh.
Proof. We note that the columns of Y form an orthonormal basis for col(A),
whence the matrix representing projection onto col(A) is YY . Similarly, the
columns of X form an orthonormal basis for col(A7), and therefore X X7 is the

matrix representing projection onto col(AT).

Consequently y = YY T bis the vector in col(A) closest to b. Suppose Ax = y.
Then

YExTx=vv'h
and, multiplying both sides on the left by Y7, we have
XT'x=3"1v"Th.
Now X X x is the projection of x onto col(A”), and accordingly
z=XZ'y"p

is the vector of minimum norm such that Az is closest to b. O
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5.7 Legendre Polynomials

Let V be Pol(R), the vector space of all real polynomials, with inner product

2X) Zf_ll p(nq(dt.
Define a linear mapping L: V — V by
Lip)=1Q-tHp"-2tp'.
If n =2 then
Lt =Q-nm-Dt" 2 -2nt"=—nn+ D" +nn-Dt"2.  (5.7.1)

It follows that
1
(™, Lt"y = f (nn-Dt""2 _pn+ D™ dt;
-1
when m + n is odd the integral here is zero, if m + n is even then it is

2n(n—-1) 2n(n+1)
m+n—-1 m+n+1

_ 4dmn
T m+n2-1

Hence
™, Lt") =(Lt", ")
for all m and n. It follows that for any polynomials p and g,

(p,Lq) =(Lp,q),

and therefore L is self-adjoint. (This can also be proved directly using integra-
tion by parts.)

It follows that the eigenvalues of L are real, and eigenvectors with distinct
eigenvectors are orthogonal with respect to the above inner product. It is not
hard to determine the eigenvalues of L. From we see that Pol,(R) is
L-invariant and further, if L, denotes the restriction of L to Pol,(R) and f =
{1,¢,..., t"} is the standard basis for Pol,,(R), then

0 O 2
-2 0 6
[Ln]ﬁ — -6 0 12

-12 0
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This is a triangular matrix, and reveals that the eigenvalues of L,, are the integers
-mim-1)form=1,...,n.

As the eigenvalues are distinct, each eigenspace is 1-dimensional and is
thus spanned by a polynomial. The polynomial with eigenvalue —m(m —1) will
have degree m and is a solution of Legendre’s equation:

1-)p" -2tp'+m(m-1)p=0.

We call p,, the Legendre polynomial of degree m. The first five Legendre poly-
nomials are as follows:

po=1
p1=t
p2 =3t —1
p3=5t2-3t

pa=35t"—30¢%+3.

It makes no harm if we replace p; by any non-zero scalar multiple of itself, and
it is customary to choose the multiple so that p;(1) = 1. (But we have not done
that here.)

There are a number of related examples (of self-adjoint linear operators on
P(R)). We summarize some of them here. The numbers 1y, 14, ... are the eigen-
values of the operator.

(a) Chebyshev.

Lp=Q0-t)p"—tp; <p,q>:flp(t)q(t) di ; Ap=-n?.
-1 V1-12

(a) Laguerre.
Lp=tp"+0-0ps (p,q) =f p(Oqgetdt; Ay=-n.
0
(a) Hermite.
o 2
Lp=p"-1tp’ <p,c/>=f p(qe " ?dt; A,=-n.

In general, if
Lp=fp"+gp
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then we may write
LP — w—l (wfp/)/

where
gu) )

t
wit) = f(t) pf w*

(The value of the lower limit « in this integral will be determined by context.)
Then L is self-adjoint relative to the inner product

27 =fp(t)q(t)w(t)dt.

To see this, compute in outline as follows:

<Lp,q>:fq(wfp’)’dt=—fwfp’q'dt=—fwm’lﬁ'dt

- f pwfq) dt
={(p,Lq).

For this computation to be accurate, f(#)w(f) must vanish at the endpoints of
the interval over which we integrate.

The eigenvectors of L will be polynomials only if w(t) satisfies further re-
strictions.

5.8 Computing Eigenvalues

How do people really compute the eigenvalues of symmetric matrices? They
do not use the method offered in most introductory linear algebra course—
compute the characteristic polynomial, find its zeros—that is probably the fourth
best method. Here we outline the second best.

So, suppose A is a real symmetric n x n matrix. We want to find an orthog-
onal matrix L such that LT AL is diagonal. What we will actually do is to de-
scribe how to find a sequence of orthogonal matrices Sy,...,S; such that all
off-diagonal entries of

SrT"'SlTASr"Sr

are very small, we can then take the diagonal entries of this matrix to be the
eigenvalues of A.
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The basic idea is to note that we can diagonalize symmetric 2 x 2 matrices.
Using this we choose the matrix S;;; so that it makes some off-diagonal entry
of ST --- ST AS; ---S; equal to 0. Unfortunately this will usually make some off-
diagonal entries non-zero, when they were already zero. This will make us work
harder, but will not prevent eventual success.

If M is a symmetric matrix then there is an orthogonal matrix L such that
LT ML is diagonal; if M is 2 x 2 then we may assume that L has the form

c -
s ¢
where ¢? + s2 = 1. (We could, but do not, assume that ¢ = 0.) Now suppose that

Ais a symmetric n x n matrix, that B is the leading principal 2 x 2 submatrix of
A and that R is an orthogonal matrix such that R” BR is diagonal. Let S denote

the matrix
R O
0 I n-2 '

B=STAS

Then

is similar to A and B; > = 0. In general, if A; ; # 0 then there is an orthogonal
matrix S such that the only non-zero off-diagonal entries of S are the i j and ji
entries, and (STAS)l-,j = 0. We call S a Givens rotation.

How does this help us. If A and B are n x n matrices, define

(A,B)=trABT.
Then || A||2 is the sum of the squares of the entries of A and, if L is orthogonal,
ILTALI? = tr(LT ATLLTATL) = tr (LT LAAT L) = tr(AAT) = | A2,

Let sqo(A) denote the sum of the squares of the off-diagonal entries of A. Note
that, in passing from A to ST AS, the only diagonal entries that change are the
ii- and j j-entries and that the sum of the squares of these two entries increases
by 2(A;,j)2. It follows that, if S and A are as above,

sqo(ST AS) = sqo(A) —2(A; ).

If sqo(A) = ¢, there are indices i and j such that

(A,-j)zzL
’ nn-1)
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and hence there is a Givens rotation S such that

sqo(STAS) sc(l— - )
nn-1)

This implies that, by successively applying Givens rotations, we can form a ma-
trix M, orthogonally similar to A and such that sqo(M) is as small as we like.
The diagonal entries of M will be the eigenvalues of A.

5.9 Jacobi: An Example
By way of example, suppose that
1 0.5 0.3333
A=| 0.5 0.3333 0.25 |.
0.3333 0.25 0.2

Then Jacobi’s method runs through the following iterations.

0.065741 0 0.063132
-0.471
(i) = ( 0088716875); (1,2] — 0 1.2675 -0.41185
' 0.063132 -0.41185 0.2

0.06574 —0.05975 —0.02037
~0.322
(i):(_gg 4623); [2,3] — | ~0.05975  0.05958 0
' 002037 0 140801
0002829 0  0.01403
(E) = (:g'ggggg; L,21—| 0 012250 -0.01477
' 0.01403 —0.01477 1.40801

—0.00016 0.12232 0
—0.01403 0 1.40818

0.00283 -0.00016 -0.01403
(2,3] —

c) _(-0.99993)
s] 1-0.01149)’
0.00269 0.00016 0

(g):(_‘gé’g:gg); [1,3] — | 0.00016 0.12233 0
: 0 0  1.40832

0.00268 0 0

(c) ( -1.0 )
= ;o [1L,2]— 0 0.122327 0
S 0.00135 0 0 1.40832
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Here the diagonal entries are the eigenvalues of A, and further iterations do not
change them.

(1) Suppose that (Av, Aw) = 0 whenever (v, w) = 0. Prove, or disprove, that A is
a scalar multiple of an orthogonal matrix.

(2) Suppose Q? = Q and Q = Q”. Show that I —2Q is a symmetric orthogonal
matrix, and explain the connection to reflections.

(3) Prove that an involution is symmetric if and only if it is orthogonal.
(4) Show that each involution has the form I —2P, for some idempotent P.

(5) Show that, if Aand A~! are similar, there is an involution T such that TAT =
AL



Chapter 6

Spectral Decomposition

6.1 Self-Adjoint Operators

The spectral decomposition of an operator is a more concrete form of diago-
nalizability. It is most useful when the operator is self-adjoint, so we confine
ourselves to that case.

Suppose S is an operator on the inner product space V and that the minimal
polynomial ¥ of S is given by

k
w) =[[e-6y,
i=1

where the zeros 6; are distinct. (Thus A is diagonalizable.) By the primary de-
composition theorem (Theorem|2.6.1), there are polynomials p; such that

k
1=) pi(S), (6.1.1)
i=1

where
(@) p;(S) isidempotent,
(b) pSp;(S)=0ifi# j,and
(c) Sactson col(p;(S)) as multiplication by ;.
Assume E; := p;(S). Then SE; = 0;E; and, by (6.1.1),
S=) 0;E;. (6.1.2)
i

91
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Equation (6.1.2) is known as the spectral decomposition of S.
One consequence of the spectral decomposition is that

Sn = ZH?E,';
i

this can provide a simple way to compute powers of S.
If S is self-adjoint, then the operators E; are self-adjoint, because each E; is
a polynomial in S.

We now offer a matrix view of the spectral decomposition. If A is a diago-
nalizable n x n matrix, then F” has a basis consisting of eigenvectors for A. Let
L be the matrix with these eigenvectors as its columns. Then L is an invertible
matrix and there is a diagonal matrix D such that

AL=LD.

It follows that
A=LDL".

We can write D as a sum of 01-diagonal matrices D;:
D= Z Bi Di)
i
where 01, ...,0,, are the distinct eigenvalues of Aand ) ; D; = I. Accordingly
A=Y 0;,LD;L".
i

It is easy to verify that
(LD;L™YHY? =LD;L™!

and, if i # j, then D;D; =0 and

LD;L"'LD;L' =LD;D;L™' =0

6.2 Commutative Algebras

Two idempotents E and F are orthogonal if EF = 0. For example, if E is an
idempotent, then E and I — E are orthogonal idempotents. We can define a
partial ordering on the idempotents of a commutative algebra </ as follows. If
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E and F are idempotents in </, we declare that E < F if FE = E. This relation is
reflexive, antisymmetric and transitive; therefore it is a partial order. A minimal
idempotent is a minimal element of the set of non-zero idempotents, relative
to this order. If E and F are idempotents, then EF < E, F. It follows that if E and
F are minimal, then they are orthogonal.

6.2.1 Theorem. Let 28 be a commutative matrix algebra with identity over an
algebraically closed field. Assume that if N € 2 and N*> = 0, then N = 0. Then
2B has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of 48 is a linear combination
of idempotents.

Assme the matrices in 98 have order n x n. Suppose A € 98 and let y(¢t) =
]'[fle (t—6;)™ be its minimal polynomial. There are idempotents E;, summing
to i, such that im(E;) is the root space associated with 6;, and F”" is the direct
sum of these root spaces.

Further, the minimal polynomial of A on im(E;) is (¢t —6;)™, and hence we
have

0=(A-0;D"™E;=((A-0;DE)™.

If m; >1, we set k= [(m; +1)2) and N = ((A—0;1)E;)*. Then N # 0 but N2 = 0.
We conclude that zeros of the minimal polynomial of A are simple. We also see
that im(E;) is an eigenspace for A and as I =)_; E; it follows that

A=AI=) AE;=) 0;E;.
i i
Therefore A is a linear combination of idempotents belonging to 98, and it fol-
lows that 28 is spanned by idempotents.

The problem that remains is to show that minimal idempotents exist. Sup-
pose E and F are distinct idempotents and E < F. Then

F(I-E)=F-E#0

but E(I — E) = 0. Hence the column space of E must be a proper subspace of
the column space of F. Therefore if E,..., E;, are distinct idempotents and

Ej<---<Ep

then m < n+ 1. We conclude that minimal idempotents exist.



94 CHAPTER 6. SPECTRAL DECOMPOSITION

Now we prove that each idempotent is a sum of minimal idempotents. Sup-
pose F is an idempotent and E is a minimal idempotent. If EF # 0, then EF < E
and therefore EF = E. This also shows that distinct minimal idempotents are
orthogonal. Let Fjy be the sum of the distinct minimal idempotents E such that
E < F. Then F, is an idempotent. If F # F then F — F is an idempotent and so
there is a minimal idempotent below it, which contradicts our choice of Fy. We
conclude that 48 is spanned by minimal idempotents. O

A matrix N is nilpotent if N* = 0 for some k. Theorem asserts that
a commutative matrix algebra with identity has a basis of orthogonal idempo-
tents if there are no non-zero nilpotent matrices in it. Since a non-zero linear
combination of pairwise orthogonal idempotents cannot be nilpotent, this con-
dition is necessary too. A commutative algebra is semisimple if it contains no
non-zero nilpotent elements.

6.3 Normal Operators

An operator A on an inner product space is normal if AA* = A* A. We consider
examples. Clearly any self-adjoint operator is normal. Unitary operators are a
second important class. If A= L* DL where D is diagonal and L is unitary, then

AA* =L*DLL*DL=L*DDL=L*DDL=A*A

and so any matrix that is unitarily similar to a diagonal matrix is normal.
Exercise: determine which complex 2 x 2 matrices are normal.
Exercise: If H is normal, show that we can write it as H = A+ iB, where A
and B are Hermitian and commute.

6.3.1 Theorem. Suppose «f is a commutative subalgebra of Mat,«,(C) that is
closed under conjugate transpose and contains the identity. Then </ has a basis
of matrix idempotents Ey, ..., E; such that

(a) EiEj = 5,'ij1'.

(b) The columns of E; are eigenvectors for each matrix in < .
d _

(© YL, Ei=1

(d) E = E;. =



6.3. NORMAL OPERATORS 95

Proof. Suppose N € o/ and N? = 0. Then
0=(N*)’N*= (N*N)*

and hence
0= tr((N*N)Z) =tr(N*N)*(N* N)).

If H:= N*N, then tr(H* H) = 0 if and only if H = 0, so we deduce that N* N = 0.
But then tr(N* N) = 0 and therefore N = 0. Hence «f satisfies the hypotheses of
and therefore it has a basis that consists of pairwise orthogonal idempo-
tents.

We show that the idempotents E; are Hermitian. Since <« is closed un-
der transpose and complex conjugation, E; € «f. Therefore there are scalars
agp, ..., a, such that

E l* = Z a j E j
J
and so
E'E; = fiE;.

Since tr(El?" E;) > 0and tr(Ej) > 0, it follows that f; # 0. But El* isaminimal idem-
potent, and therefore f; = 0if j # i. This implies that E7 is a scalar multiple of
E;, but tr(E;) = tr(E]), and therefore E; = E;. O

6.3.2 Theorem. If A is normal, then A is unitarily similar to a diagonal matrix.
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Chapter 7

Norms

7.1 Convexity

We work over R. We say that a vector v is an affine combination of vectors
X1,..., Xp if
V=) a;x
i

and ) a; = 1. An affine combination is proper if it has at least two non-zero
coefficients. The set of all affine combinations of a set of vectors is the affine
hull of the set. The affine hull of x is x itself. The affine hull of {x, y} (where

X#Y)is
{tx+(A-0y:teR}.

Geometrically this set is the unique line passing through the points represented
by x and y. Note that this line contains 0 if and only if x and y are linearly
dependent.

If U is a subspace of V and then a coset of U is a set of the form

fa+u:ueU},
for some ain V.

7.1.1 Lemma. The affine hull of a set of vectors {x;,..., x;;} is a coset of the sub-
space spanned by x, — x1,..., Xy, — X1. O

An affine subspace is a set S that is closed under affine combinations.

97
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We say that vectors xi,..., X, are affinely dependent if there are scalars a;,

not all zero, such that
Zai:O, Zaix,-:O.
i i

If a setis not affinely dependent, it is affinely independent. Note that any single
vector, including the zero vector, is affinely independent.

A vector v is a convex combination of vectors xi,..., X, if there are scalars
ai,..., ay such that

Yai=1, a;=0(=1,...,m)
i

and

V=) a;x;.
Thus a convex combination is a non-negative affine combination. A convex
combination is proper if its has at least two non-zero coefficients. The convex
hull of a subset S is the set of all convex combinations of elements of S. A set S
is convex if any convex combinations of its elements is contained in S, that is,
if S is equal to its convex hull.

The convex hull of two distinct vectors consists of the line segment that
joins them. Hence a set S is convex if, whenever x and y belong to S, so do
all points on the line segment joining them. We also see that the intersection of
two convex sets is convex.

A real-valued function f on R” is convex if

fx+AQ-Dy)<tfx)+A-f(), O0<t=<l1.

(1) If a € R", show that f(x) := exp(a’ x) is a convex function.

(2) Show that set of positive semidefinite matrices is the convex hull of the ma-
trices with rank 1.

(3) Suppose a; =0and ) ; a; = 1. If f is convex, prove that
f (Z al-xl-) < Z a; f(x;).
i i
(4) Use the result of the previous exercise with f(x) = x” (p > 1) to show that
Y bxiyil < (1xat?) P (1yat9) 9,
i

where 1/p+1/q = 1. (This is Holder’s inequality.)
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7.2 Extreme Points

Let C be a convex set. A point x is C is extreme if it cannot be expressed as the
convex combination of points in C\x. The extreme points of a line segment are
its endpoints. Suppose C is convex and x € C. Let ¢ be a line through x. Then
¢nCisaline segment. The interior points of this line segment are not extreme.
A closed convex set is the convex hull of its extreme points. We will not prove
this, but we consider two cases that will be useful.

7.2.1 Lemma. Let S be the set of vectors x in R" such that |x;| <1 for all i. Then
S is the convex hull of the vectors with all entries +1.

Proof. 1t is easy to verify that S is convex, we leave this as an exercise. We show
that it is the convex hull of the +1-vectors.

We prove this by induction on n, asserting that it is trivial when n = 1. As-
sume v € S and that v; = 1. Let v be the vector we get by deleting the first entry
of v. Then v’ lies in the set of vectors x in R”~! such that |x;| < 1, and so by
induction it is a convex combination of the +1-vectors in R”~!. It follows that v
is a convex combination of those +1-vectors in R” with first entry equal to 1. If
v1 = —1, then —v' is a convex combination of +1-vectors xi,..., X,,, and so v’ is
a convex combination of the vectors —x;,..., —Xx;;, but these are +1-vectors too.
It follows that if |v;| = 1, then v is a convex combination of +1-vectors.

Now suppose that |v;| < 1 for all i. Let v* be the vector such that (v*); = 1 if
vi=0and (v*); =-1if v; <0. Then
1-t+tv;, ifv;=0;

(A=-Dv +tv); = .
t—1+tv;, otherwise.

from which we eventually deduce that w = (1—t)v" + tv € S provided
2
0<ts< .
1—|vil
Choose ¢ so that r = 2/(1 - |v;|) for some j. Then |w;| = 1, and therefore v is a

convex combination of v* and w. Since |w il =1, it is the convex combination
of +1-vectors, and therefore v is too. i

7.2.2 Lemma. Let S be the set of vectors x such that

Y Ixil 1.

l

Then S is the convex hull of the vectors +e; fori =1,...,n. O
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(1) Show that if x is a proper convex combination of points from C, it is the
proper convex combination of two points.

(2) Let C be a convex set and let f be a convex function. If the point xy in C
maximizes the value of f, show that it is an extreme point.

(3) Prove (22).

7.3 Norms

Let V be a vector space over F, where [F is R or C. A norm on V is a function
from V to R, whose value on x is written || x||, such that

(1) lIxl=0and | x|| =0if and only if x = 0.
(2) If ceR, then |icx|l =lc|lx].
@) Ifllx+yl<lxll+lyl.

The third axiom is called the triangle inequality. It implies that any norm is a
convex function on V. The set

{x:llxll =1}

is called the unit ball of the norm, but it need not be very round.
We consider some examples over R. If we have an inner product on V, then

we can define a norm by
]l := v/ <x, X)
The only difficulty here is to verify the triangle inequality. We note that
X+ tylI> = (x+ £y, x+ ty) = (x,,) X+ 2{x, Y)Y t + (p, y) 12
This is a quadratic in ¢ which is non-negative for all ¢, and consequently
(X, 1)° = (X, x)(y, ¥ <0,
which is usually called the Cauchy-Schwarz inequality. It follows that

(%, X) + 20X, PY L+ (3, Y12 < (3, X) + 20, Y)Y E+ (3, ) 2
< (x, %)+ 2l x| 1yl £+ (y, )y t*
= (Ix]l + tllyl2.
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We conclude that ||x|| + ty < || x|l + [ £y, which yields the triangle inequality.

If our inner product is the dot product our norm is the usual Euclidean
norm or ¢>-norm and is denoted by ||-||> or, sometimes, by |-|. The unit ball
for the Euclidean norm is the unit ball.

If (-,-) is a complex inner product, the function

VX, x)

is a norm. Note that (x, x) is guaranteed to be real and non-negative.

Once we have a norm, we can declare that a sequence xy, x1,... of vectors
converges to x if the sequence of real numbers

I = xoll, I1x = X1 l,...

converges to 0. It is a somewhat surprising fact that if a sequence of vectors in
a finite-dimensional vector space converges with respect to one norm, then it
converges with respect to all. (This is false if the dimension is infinite, as the
exercises show.)

(1) Prove that a norm is a convex function.

(2) Let V = CJ0,1], the space of continuous functions on the interval [0,1]. If
feV,let]|fll bethe norm asssociated with the inner product

(f,8:= fol fgx)dx
and let || f|lo be the norm defined by
I flloo = max{f(x): x € [0,1]}.
(You may prove that this is a norm.) Define
gr(x):=(“x(1-x)".

Prove that || g;|| = 0as r — oo, but ||glloo = 1 for all r.
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7.4 Dual Norms

We introduce two further norms. We define || x||; by

IMh:muEMA
i s
15
and | x|l by
| X[l := max|x;|.
1

These are known respectively as the ¢; and ¢,,-norms on R”. As we saw in
the previous section, the unit ball for the #;-norm is the convex hull of the vec-
tors +e; and the unit ball for the /,-norm is the convex hull of the +1 vec-
tors. (These definitions work over both R and C, we will only use them over R
though.)

If ||-]l is a norm, we define the dual norm |-||* by

lall* := max x” a.
lxl=1
We leave the proof that this is a norm as an exercise. As another exercise, we
leave you to prove that || x| ** = || x|, for any x.

By way of example, we determine the dual of the /,-norm. Our problem
is compute the maximum value of the function x” a over the vectors x in the
unit ball of the /,-norm. This is linear in x, and hence convex; therefore its
maximum value occurs at an extreme point of this ball. By Lemma(7.2.1} the
extreme points are the +1-vectors and hence | al}, is equal to the maximum
value of x” a, as x ranges over the set of +1-vectors. Clearly this maximum is
realized when x;a; > 0 for each i, and therefore

lally, =) lail = llall.

2

(1) Let V be the Euclidean space R". Determine the largest C and the smallest
D such that
Cllxlloo = x|l < D Xl co-

(2) If the function ||-||* is defined on R” by

T
lyll* = max x" y,
Ixl=1

show that it is a norm.
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(3) Prove that ||x||** = ||x]|, for any x.
(4) Prove that yTx < |lxllllyllI*, and show that this bound is tight.

(5) Show that the ¢;-norm is dual to the ¢,,-norm, and vice versa.

7.5 Matrix Norms

Let &8 be an algebra over the reals. A norm on 48 is a function ||-|| from % to R
that is norm, when we view 28 as a vector space, and in addition satisfies:

I|AB| < [[Al | BI|.
If |||l is a norm on a vector space V then the unit ball
{xeV:|xll<1}

is a closed convex set. If ||-| is a norm on an algebra then the unit ball must be
closed under multiplication, hence forms a semigroup.

Now suppose ||-|| is a norm on L(V), viewed as a vector space. The unit ball
is compact and so, if A € L(V) then there is a constant y 4 such that, if | X[ < 1,

IAX] <7ya.
If we define y to be the maximum value of y 4, where || Al| < 1, then
IAB| = Al I Blly.

From this it follows that y‘l |-l isanorm on L(V), viewed as an algebra. We will
refer to a norm on an algebra as an operator norm or matrix norm, according
as the elements of our algebra are linear mappings or matrices.

Let V be a normed vector space, with norm || - ||. If T is an endomorphism
of V, we define the induced norm of T by

1Tl = max{[| Tx| : llx[l = 1}.

Equivalently, it is the maximum value of || Tx||/| x|, for all non-zero vectors x
in V. It is straightforward to verify that this is a norm on L(V), with the useful
properties:

ITxll < ITIl ]l
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and
ISTI=<ISIITI.

Unless explicitly stated otherwise, we use the same symbol to denote a norm
on R" and the norm it induces on n x n matrices. If |-|| is an induced norm,
then ||I]] = 1.
If ||-|| is an induced norm then for any matrix A and vector x, we have the
very useful inequality:
| Ax|l < [IA]l | x].

If [l and ||-]|, are any two norms on a vector space, we say that |||, domi-
nates ||-||, if, for all vin V,

Ivlla=Ilvip.
A norm is minimal if it does not dominate any other norm. Generally minimal
norms are more useful than general norms.

7.5.1 Lemma. Every matrix norm dominates an induced norm.

Proof. Suppose || is a matrix norm. We use this to construct a norm on R”
whose induced norm is dominated by |-|.
Let a be a fixed non-zero vector in R". We define |||, by

1bllq:=lIba™|.
Then
IAX] o = Il Axa™ | < | Allllxll4
and the matrix norm induced by ||| ; is dominated by ||-||. i

7.5.2 Theorem. Let ||-|| be a norm on R" with dual norm ||-||*. If A is a square
matrix then || All* = | AT

Proof. We have

|Ax]* = max yTAx = max x’ AT
lyl=1 lyl=1
and so
IAII* = max max x' ATy.
lxl*=1lyl=1
Now

max x” b= ||b|** = bl
lxll*=1
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and consequently

IAI* = max | AT y| = [IAT].
lyll=1

In the sequel any norm we use on matrices will be a matrix norm. If (A;) >0
is a sequence of matrices and we write that A, — 0, we mean that || A, || — 0, for
some norm |-||.

(1) Let ||-|| be a norm on R”, and let ||-|| also denote the induced matrix norm.
Prove that |ab” || = ||a|l |b|* and hence that b a < ||ab”|.

(2) Prove thatif n > 1, then || A?|Y" < | A].

7.6 Examples

The Euclidean or trace norm of a matrix is the norm associated with the inner

product
(A,B):=tr AT B.

We denote this norm by ||-||2 or, sometimes, by ||-||. Note that || AII% is the sum of
the squares of the entries of A. We have

IABI; = Z 2 s;(gmi,rﬁ) (;|Br,,-|2)
[

ZAi,rBr,j

r

Z |Ai,r|2
i,r

= | All5 | Bll5.

We have || I,;]| = n and so the trace norm is not an induced norm.
We turn next to induced matrix norms. First we note that

I Ax|l5 = (Ax)T Ax = xT AT Ax

and therefore
max | Ax||2
lxll2=1
is equal to \/p, where p is the largest eigenvalue of AT A. (But since we have not
discussed eigenvalues at any length yet, we defer any further discussion.)
Both of above norms have the useful property that, if Q is orthogonal, then
1QAIl = I Al
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7.6.1 Lemma. Let A be a square matrix. Then

T
| Allo = max|le; All;.
1

Proof. The function x — || Ax|« is convex and hence realizes its maximum at
an extreme point of the unit ball relative to the £, norm. These extreme points
are the +1-vectors. If x is a +1-vector then

(Al =1 A jxjl < Y 1A jxj < Y 1A j1 = lle] Al
J J J

Further, equality holds throughout if we choose x so that A; ;x; = 0. This proves
the lemma. a

7.6.2 Lemma. Let A be a square matrix. Then

IAlln = max]||Ae; .
1

Proof. Since ¢ and ¢,,-norms are dual, we can apply Theorem to the
previous lemma, concluding that

T T AT
[AllL =lA" loo = max|le; A" ||} = max|| Ae;ll;. 0
l 1

(1) If |||l is the trace norm or the induced ¢,-norm, and Q is an orthogonal
matrix, show that |QA| = || A]

7.7 Matrix Functions

We say a matrix is a function of a variable  if each element of the matrix is. This
makes sense over any field, but here we work over R or C. If the matrix A(¢) is a
function of ¢ then

iA(t)
dat

is the matrix we get by differentiating each entry of A(z) with respect to t.
As an example, we consider the differential equation

f"+af'+b=0. (7.7.1)
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This is equivalent to the following pair of equations:

d ! !
2 —_af —b,
dat af

.
%f:f’

alr)= (o
dr\f) \1 0J{f)
We can solve this using the matrix exponential.
For any square matrix A we define

which we can rewrite as

o0 tn
exp(tA):= Z ;A”.

n=0 "*

But we need to see that this makes sense. We have
1A oo < 1Al S

and so, if @ := || Allo, €ach entry of A" is bounded in absolute value by a”. There-
fore each entry of

m l-n

Y

n=0 n!

converges as m — oo, for any value of . Moreover we are entitled to differenti-
ate the series term-by-term, with the result that

d oo n-1
— tA) = A=A tA).
FTAR n; (n-1)! exp(tA)

Now define the vector F(f) by

o)

and suppose
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Then (7.7.1) becomes

iF(t) = AF(1)
dt B

and it is easy to see that this has the solution
F(t) = exp(tA) F(0).

Although this method of solving differential equations is very important, it
is of limited use as a tool for solving particular equations. It is computationally
difficult to compute exp(A) because, even though

1
—A"->0
n!

as n — oo, for moderate values of n this ratio can be very large. The difficulty is
essentially the same as attempting to compute exp(100) using the power series
for the exponential.

(1) Show that
expt(A+ B) =exp(tA)exp(tB)

ifand only if AB—BA=0.
(2) If S is skew symmetric, show that exp(S) is orthogonal.

3) If

show that exp(nH) = —1.

7.8 Powers

We have seen the exponential series in a matrix A is well-defined and useful.
We will find useful to consider other power series with matrix arguments. Our
next result provides a basic tool.

7.8.1 Lemma. If A is a non-zero matrix and ||-|| is a matrix norm, then the se-
quence | A"|''"* converges to a limit p. Further p < | A"||"'"* for all n.
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Proof. By way of abbreviation, let f(n) = || A" 1/n Note first that
LAR™ ) < 1 A™)%,

and therefore f(km) < f(m). Assume n=km+ ¢, where 0 < ¢ < m. Then

km

Flkm+0) < f(km) st f(0) Tt < f(m)Tnst f(£) e

Given € > 0 and fixed m, it follows that for all but finitely many »n, we have
fn)<(1+e¢)f(m).
We say that f(m) is a record for f if, when k < m,

f(m) < f(k).

Consider the sequence of records for f. Ifitis finite, let p denote its last member.
If it is not finite, then it is a strictly decreasing sequence, bounded below by 0
and therefore it has a limit, which we denote by p. From the previous paragraph
it follows that if € > 0, then f(n) < (1 +¢€)p for all but finitely many values of n.
Consequently the sequence | A% converges to p and p < I A 1Y for all n. o

This lemma does not guarantee that p~"* A” converges. For example, if

_ [cos@ —sinf
~|sinf cos@

then

AT cosnf —sinnf
~ \sinnf cosnf

and, using the trace norm
A" = | Al = 2.

Therefore ||A”||*'" = 1 but, nonetheless, the sequence (A"),>o does not con-
verge except in special cases.
The quantity
Limp—ool A"[IM"

is known as the spectral radius of A.
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We want to work with the geometric series

Y A

r=0

7.8.2 Lemma. The series ) ,-ot" A" converges if and only if t" A" — 0 as n — oo.
Ifit does converge, its limit is (I — tA)~".

Proof. We have
(I—tAT+tA+---+t" 1A = - A"

Suppose I — tA is not invertible. Then there is a non-zero vector u such that
(I-tA)u =0. Therefore tAu=u and t"A"u = u for all r. So t"" A" does not
converge to 0 and, since

I+ tA+-+ " TA" Yu=nu,

the series )_,~ot" A" does not converge.
Hence we may suppose that I — tA is invertible and consequently

T+tA+--+ 1" TAY = (T = tA) (T - A",

The lemma follows immediately. O

7.8.3 Corollary. Let p be the spectral radius of A. The series ), t" A" converges
(to (I-tA)~Y)if|t| < p~! and diverges if|t| > p~ .

Proof. We observe that " A" converges to 0 if and only if ||t” A"| does. By
Lemma we see that t" A" — 0 if |t| < p~! and that it does not converge
if [£] > p. O

This result shows that p~! is the radius of convergence of the series Y, t" A".

7.9 Contractions

We call a linear map T a contraction relative to the norm ||-|| if |T"| — 0 as n
increases. Our first result shows that being a contraction is independent of the
norm we use.

7.9.1 Lemma. The linear map T is a contraction if and only if its spectral radius
is less than 1.
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Proof. Let p be the spectral radius of T. Let ||-|| be an operator norm, and sup-
pose € > 0. By Lemma|7.8.1} for all sufficiently large values of n,

p" =T "< (p+e)".
The result follows at once. i

While this result has its uses, it does not provide an effective means of decid-
ing if a particular map is a contraction. But contractions are important, and so
we need effective ways of recognizing them. If there is an operator norm such
that || T'|| < 1, then since

1" <TN",
it follows that T is a contraction. Our work in this section shows that, if T is a
contraction, there is a norm ||-|| such that | T'|| < 1.
If B is a positive definite matrix then the bilinear form

(u,, v = u' B
is an inner product, and vV u” Bu is a norm. (See Lemma )

7.9.2 Lemma. A matrix A is a contraction if and only if there is a positive definite
matrix B such that B— AT BA is positive definite.

Proof. Suppose first that B is positive definite and B— AT BA is positive definite.
Then for any non-zero vector v,

o<v'B-ATBAv=v'BvT —vT ATBAV.

If |-l denotes the norm determined by B, this shows that, for any non-zero
vector v,
lAvlig < vl

and therefore ||Allp < 1.
To complete the proof, we show that if C is positive definite and the equa-
tion
x-ATxA=cC (7.9.1)

has a positive definite solution X, then A is a contraction. If X satisfies (7.9.1),
then

X=C+A'xA
ATxA= ATCA+ (AT X A?
(AT x A% = (ATY>cA? + (AT)3 X A3,
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which leads us to conjecture (and you to prove, by summing enough of these
equations) that

X—(C+ATCA+---+(ADHY"1cA™ ) = (aDH"cA™.
Since the right side of this identity goes to 0 as n increases, we conclude that

X=) (AT CA"

r=0

is a solution to (7.9.1). Because C is positive definite, v Cv > 0 for all non-zero
vectors v, and therefore

vIAD) CA'v>0
for all non-zero vectors v. Consequently X is positive definite. O

Equation is known as Stein’s equation. It is a system of linear equa-
tions in the entries of X, and so can readily be solved. Since all we need of C is
that it be positive definite, we may choose C = I. The proof of the lemma shows
that if A is a contraction, then Stein’s equation has a unique solution. There-
fore we could determine if A is a contraction by solving X — ATXA = I, and
then testing whether the solution X is positive definite. (This can be decided
by Cholesky factorization.)

(1) If C is symmetric and X — AT XA = C has a solution, show that it has sym-
metric solution.

(2) Read up on Kronecker products (in Corollary 22), and then show that, if A
does not have distinct eigenvalues whose product is equal to 1, then X —
AT X A = I has a solution.

7.10 Projections

We study subspaces and projections in R”; our results extend to any inner prod-
uct space. Suppose U is a k-dimensional subspace of R”, and let Y be an n x k
matrix whose columns form a basis for U. The Gram-Schmidt algorithm im-
plies that there is a k x k upper-triangular matrix P such that the columns of
Y P are orthogonal. As Y and Y P have the same column space, it follows that
the columns of Y P form an orthonormal basis for U.
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For our purposes we may as well assume that we chose Y so that Y'Y = I,
without further ado. If we define

P=v'y
then we see that P is symmetric and
PP=vTyy'y=v'v=pP

Hence P represents orthogonal projection onto its column space. As rkP =
rk Y = k and as the column space of P is contained in the column space of Y, it
follows that the column space of P equals U. So P represents orthogonal pro-
jection onto U. One consequence of this is that the properties of the collection
of k-dimensional subspaces of R" are mirrored by the properties of the n x n
orthogonal projections with rank k.

Our projections are symmetric and there is a natural inner product on the
space of symmetric matrices:

(A, B) = tr(AB).
IfP; = YiTYi where Y; is n x k and YI.TYZ» = I then
(P, Py =tr(1 Y Yo V1) = tr(Y,] V1 YT Ya)

=tr((Y,! o) T (] ¥2))
= 0.

Further

(Py — Py, Py — Py) = tr(P? — P1 P, — P, Py + P3)
=tr(P;+ Py, —-2P; Py)
=2k —2(P,, Py).

Thus the value of k — tr(P; P,) can be viewed as a measure of how close the sub-
spaces represented by Py and P, are.

If P and Q are projections defining two subspaces U and V of R” and x is a
unit vector in R” then || Px — Qx| is a measure of distance of U from V. Now

IPx - Qx|* = x* (P - Q)?x,
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whence all information of this sort is contained in the matrix (P — Q). The
maximum value over all unit vectors x of

IPx - QxlI* = x" (P - Q)*x

is the largest eigenvalue of the (real symmetric) matrix (P — Q)Z. Our next result
bounds this.

7.10.1 Lemma. Let P and Q be projections. Then || Px— Qx| < | x| and, if equal-
ity holds, x = Px + Qx and (Px,Qx) = 0.

Proof. The vectors Px and (I — P)x are orthogonal, so the points represented
by the vectors 0, Px and x are the vertices of a right-angled triangle with hy-
potenuse joining 0 to x. Thus (wWhy??) they lie on the circle with this hypotenuse
as a diameter. Similarly the vectors 0, Qx and x form a second right-angled tri-
angle, and also lie on a circle. Now, if two triangles in R” share a side then the
distance between their third vertices is maximal when they lie in the same plane
(and on opposite sides of their shared side). Hence [|Px — Qx| < || x]|; if equality
holds then the two triangles are coplanar, the two circles coincide and Px and
Qx must be diametrically opposed on the circle. Since the origin is on a circle
with the line segment from Px to Qx as a diameter, Px, 0 and Qx form a right
triangle and Px must be orthogonal to Qx. Further, 0, Px, x and Qx form the
vertices of a rectangle; by the parallelogram rule for addition of vectors in the
plane, x = Px+ Qx. O

(1) Show thatif P and Q are projections and rk P = rk Q, then tr(P — Q)3 =0.

(2) Show that (P — Q)? commutes with P and Q.

7.11 Contractions

In this section, we derive the characterization of contractions in terms of eigen-
values. If M is a square matrix, we use || M]|; to denote the induced ¢, norm of
M—this equals the maximum value of the ¢,-norms of the columns of M, as
we saw in ?2.

7.11.1 Theorem. Let A be a square matrix. If|0| < 1 for all eigenvalues 6 of A,
then A is a contraction.
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Proof. As afirst step, we prove the theorem when A is lower triangular. Suppose
Ais nxnandlet D; be the nxn diagonal matrix with (D;); ; = t'=1. Let A denote
the diagonal matrix with A; ; = A; ;. The i j-entry oth‘lADt is t/7' A; j and so

lim D;'AD, = A.

t—o00
In particular, given € > 0, we can choose ¢ large enough that IIDZIADtlll lies
within € of ||All;. Consequently, if |8] < 1 for each eigenvalue 6, then we can
choose t so that | D' AD,|l; < 1.

This implies that
ID;*A"Dll; — 0

as n — oo. Since
IA™|ly = |D;* D;Y A" D, DIl < |D; 11 1I1D; P A" D11 11 Dy |11,

it follows that || A”|l; — 0 as n — oo.
If Ais not triangular, then A= LTL™!, where T is triangular. Since

LA™ | < ILIL I T L7

and
1Ty = 1LY ALy < 1L LA™ 1 IL ],

we see that A is a contraction if and only if T is. To complete the proof, we recall
that A and T have the same eigenvalues. O

There is another proof of this result using root vectors.

7.11.2 Lemma. Let A be an n x n matrix over C, let 6 be an eigenvalue of A and
let v be a root vector for 6. If 10| < 1, then A™v — 0 as m — oo.

Proof. Since v is a root vector for 8, we have (A—61)"v =0. Then
A"=(A-0I+0D™
and so using the binomial theorem, we find that

m
n—1

Ay =gl (A—=0D" 20 +---+0" 1|0

(A—HI)”‘1+( m
n-—-2

Hence we have
ATy =0 p(m)y,
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where P(m) is a matrix whose entries are polynomials in m with degree at most
n—1. Since 0| < 1, it follows that

Hm—n+lp(m) _ 0

as m — oQ. O

Now suppose A is an n x n matrix with all eigenvalues inside the unit circle.
Since each vector in C” is a linear combination of root vectors, it follows that
for any vector v,

A" —0

as m — oo.

We have two methods now for determining if a square matrix A is a con-
traction. We can solve Stein’s equation, as discussed in Section 7.9} or we can
compute the spectral radius from the eigenvalues of A. This second alternative
is useful if A is symmetric, or if A is real and its entries are positive.

7.12 Perron

We say a real matrix M is non-negative if all its entries are non-negative. We
write M = N is M — N is non-negative. We say M is positive if all its entries are
positive. If M is a real matrix of any order, then we define | M| to be the matrix
we get by replacing each entry by its absolute value.

7.12.1 Lemma. Let A be an n x n matrix with spectral radius p, and suppose A
is real and all its entries are positive. Suppose that 0 is an eigenvalue such that
|0| = p and let x be an eigenvector wih eigenvalue 6. Then |x| is an eigenvector
for A with eigenvalue p.

Proof. We have
plxl =10x] =|Ax| < |Al|x|
and therefore
Alx| = plx|.

First, suppose there is a non-negative non-zero vector z such that Az>o0z
and o > p. Then
Alz=0"z
and therefore
A" = o™
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for all n. This implies that the spectral radius of A is atleast o, which contradicts

the fact that the spectral radius equals p.

Now suppose that z is a non-negative non-zero vector such that Az = pz

and, for some index k, we have
e,fAz > pe,{z.

Consider the vector z + tey, where t is small. Then

Alz+tey) = pz+ tAeg.
Since all entries of A are positive, it follows that, if i # k, then

T T__ T
e; A(z+tex) >pe; z=pe; (z+ teg).

On the other hand

e,fA(z +tey) = e,{Az + te,{Aek > pe,{z + te,{Aek

=pe; (z+tex) + t(Agr—1).

It follows that the are positive values of ¢ such that
el A(z+tey) > pel (z+ tey)
k k) > peg k
and, for these values of ¢, we have
Alz+teg) > pz+teg.

Since this is impossible, we are forced to conclude that Az = pz.

|

7.12.2 Theorem. Let A be a real square matrix with positive entries. Then the
spectral radius of A is an eigenvalue of A with algebraic multiplicity 1, and cor-
responding eigenspace is spanned by an eigenvector with all entries positive. If

0 is an eigenvalue of A not equal to p, then 0| < p.

Proof. We have seen that there is an eigenvector x with eigenvalue p and all its
entries non-negative. We show that the entries of any non-negative eigenvector

with eigenvalue p must all be positive. Suppose py = Ay and y = 0. Then

pely= eiTAy:ZAi,jyj.
j



118 CHAPTER 7. NORMS

However all entries of A are positive and y is non-negative and not zero, so the
above sum is positive. As p > 0, it follows that el.T y>0.

Next we show that p has geometric multiplicity 1. Assume Ay = py, where
y is not a scalar multiple of x. Then there is a real number ¢ such that x +
ty = 0 and some entry of x + ty equals 0. But x+ ¢y is an eigenvector for A
with eigenvalue p, and so we have a contradiction. We conclude that p has
geometric multiplicity 1.

Finally we show that p has algebraic multiplicity 1. Suppose that (A—pD)?w =
0 and w is not in ker(A — pI). Then, replacing w by —w if needed, we may as-
sume that x = (A— pI)w is a positive eigenvector for A with eigenvalue p. Note
now that A7 is a positive matrix with spectral radius p. (It has the same min-
imal polynomial as A, hence has the same eigenvalues.) Let y be a positive
eigenvector for A7 with eigenvalue p. Then y”(A— pI) =0, and consequently

yIx=yTA-phw=0.

But y and x are positive, and therefore y” x > 0. Thus we conclude that, if (A —
pD?w =0 then w = 0. Therefore the algebraic multiplicity of p is 1.

Now suppose that 6 is an eigenvalue of A distinct from p, and let x be an
eigenvector for . Then, using the triangle inequality,

161 1xil = 1(Ax)i1 = | 3 A jxj| < X 141 = (Al
J J

This implies that |0] < p. If equality holds, then
’ZA,-,]-xj‘ < Z|Aiij]'|.
J J
Thus we have n possibly complex numbers z; := A;, j such that
DA ENEN!
J J

which implies that there is a root of unity ¢ such that ¢ z; is real and positive for
all j. Therefore ¢ x is a positive eigenvector and 6 = p. |

If yT A= py” and Ax = 0x, where 6 # p, then y” x = 0. This implies that any
non-negative eigenvector for A must be an eigenvector for p.
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7.12.3 Lemma. Let A be a real square matrix with all entries positive, and let x
be a positive eigenvector for A with eigenvalue p, such that 17x =1. Ifu is a
non-zero non-negative vector, then

n

lim =X
n—oo 1T Ay

Proof. Let x be a positive eigenvector for A with eigenvalue p, and let y be a
positive eigenvector for AT with eigenvalue p. Let B be defined by

._ P T
B:=A- Txy .
yix
If Az=0zand 0 # p, then y' z=0and Bz = 0z. Also Bx = 0 and therefore if 6 is
an eigenvalue of B, then |0| < p. Consequently p~!B is a contraction. Let E be
given by
E:= ! xyT
=Ty y.

Then E? = E and AE = EA and BE = EB = 0. Accordingl
gly
(B+ pE)” =B"+p"E

and, for any vector u,
A'u—p"Eu=B"u.

Therefore, since p_lB is a contraction, p~""B"u — 0 as n — oo and, provided

yTu#o.
. A'u ) p "A"u 1 1
lim = lim = u= X.
n—oo 1T A%y  n—cop="1TA"y 1TEu 17x

(1) Let A be a positive square matrix. Show that there is a non-negative vector
x such (I — A)x is non-negative and not zero if and only if A is a contraction.
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Chapter 8

Geometry

We study some geometric questions.

8.1 Semilinear Forms

A semilinear form on a vector space V is a map from V x V to the underlying
field. It maps the pair (x, y) to (x, y), and saisfies the following:

(a) For each vector a, the map x — (a, x) is linear.
(b) For each vector b, the map x — (x, b) is semilinear.

It follows that for all vectors x and y and all scalars a,
(ax,y)=a’(x,y).

The standard inner product on C¢ is semilinear; in this case o is complex con-
jugation. For a wider class of examples, take a square matrix A and define

x, ) =T Ay.

(For a matrix or vector M, we use A? to denote the result of applying o to each
entry of M.)

Since the map vy, : x — (a, x) is a linear map from V to the 1-dimensional
space [ we see that either 1, is onto and its kernel has codimension 1 in V, or
Y, is the zero map and its kernel is V. We denote the kernel of v, by x*. The
radical of V (relative to our form) is the set of vectors a such that v, is the zero

121
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map. It is a subspace of V. We say that the form is non-degenerate if its radical
is zero. The radical of an inner product is zero.
If U <V, we define
U L= NueU uL .

This is again a subspace of V.

8.1.1 Lemma. IfU < V and our form is non-degenerate, then dim(U)+dim(U+) =
dim(V).

Let uy, ..., u; be a basis for U and define amap p: U — F* by
p(0) = ((u1, %) ... (ug,x)).

We see that p is linear and that ker(p) = U*. If p is not surjective, there are
scalars ay, ..., a; such that

k k
0= ar{u,x)=() aruy,x).
r=1 r=1

Since our form is non-degenerate, it follows that Z’le a,u, =0and, since uy,..., Ui
is a basis, a, = 0 for all r. We conclude that p is surjective, and the lemma fol-
lows from the rank-nullity theorem. O

We say that a subspace U of V is isotropic if U < U*. The the zero subspace
is the only isotropic subspace of an inner product space.

8.2 The Classification of Forms

There are three classes of semilinear forms.
For the first, the associated automorphism is not trivial, and

(y,x) = (x, ).

In this case we have a Hermitian form. For a Hermitian form there is a matrix
H such that (H°)T = H and

(x,yy=x""Hy.
Otherwise o is trivial. The next possibility is that

(y, x) =(x, ).
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In this case we have a symmetric form, for which there is always a symmetric
matrix A such that (x,y) = x’ Ay. Finally we may have an alternating form,
where

(x,x)=0

for all x. Here
0=(x+y,x+))=(x, %)+, ) +{¥, X))+, )

and since (x, x) = (y, ), it follows that

yx,=)—=L(x, )

For an alternating form there is a matrix S such that S = —S and all diagonal
entries are zero; then (x, y) = xTs y.

Alternating forms are also known as symplectic forms. In odd characteristic
it is reasonable to describe the matrix S as skew symmetric. In even character-
istic, S is symmetric with zero diagonal.

Under natural geometric assumptions it can be shown (with some effort)
that the above three families of semilinear forms are the only interesting possi-
biities.

We say two forms (,); and (, ), are equivalent if if there is an invertible matrix
M such that

(X, )2 =(Mx,My);.

This raises the problem of determining the equivalence classes of forms of a
given type on vector space.

Over finite fields it can be shown that there is only one class of non-degenerate
Hermitian forms, and only one class of non-degenerate alternating forms. It
cannot be shown that there is only one class of non-degenerate symmetric
forms—because this is false.

8.3 Gram Matrices

It is very useful to be able to compute the vector in U closest to a given vector x.
In the previous sections, we have seen how to do this if we are given an orthog-
onal basis for U, or if the inner product is the dot product. We now develop the
tools to solve this problem in general.
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The Gram matrix G of a subset x1,..., x,, of U is the matrix with entries given
by
Gi,j = (xi, Xj).

ifa’ =(ay,...,a,)7", then
a'Ga= <Z aix,-,z aixi>
i i

and therefore a” Ga > 0 for any non-zero vector a. We say a matrix G is positive
definite if it is self-adjoint and a’ Ga > 0 for any non-zero vector a; if it is self-
adjoint and a’ AGa = 0 for all a, then G is positive semidefinite. We have just
seen that Gram matrices are positive semidefinite.

8.3.1 Lemma. A set of vectors in an inner product space is linearly independent
if and only if their Gram matrix is invertible.

Proof. Suppose G is the Gram matrix for xi,..., x,;. Then the entries of Ga are
the inner products

<xr;zarxr>

Henceif U is the span of the vectors x;,..., x,, then Ga = 0ifand onlyif} , a, x, =
0. Thus ker(G) is zero if and only if x3, ..., x, are linearly independent. |

8.4 Equiangular Lines

We work in the vector space V, which is R? or C¢ with the usual Euclidean inner
product. If x and y are nonzero vectors, the cosine of the angle between the
lines spanned by x and y is

<%, )|

Ixlliyl”

We will often work with the squared cosine

(X, Yy, X)
(X, )y, ¥

A set of lines in V is equiangular is the cosine of the angle between any two
distinct lines is the same.
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8.4.1 Theorem. The maximum size of a set of equiangular lines in C? is d?; in
Rd .. (d+1
itis ().
Proof. Suppose we have lines spanned by unit vectors xi,..., X,;. Define matri-
ces Py,...,P, by
Py =x,x;.
Then P, represents orthogonal projection onto the line spanned by x,, and if

r#£sS,
(Pr, Ps) = tr(Pr Ps) = (X, X5, O, X5) %7 = |{Xr, X5)I%,

We assume that a = |{P;, Ps)|. We see also that (P,, P,) =1 for all r.

The projections P, lie in the space of Harmitian matrices. If G is their Gram
matrix, then

G=(-a*I+a*].

We can prove, in a number of ways, that G is invertible, which implies that the
matrices Py, ..., P, form a linearly independent set in the space of Hermitian
matrices. We complete the proof by noting that this space has dimension d?
(over €) and the dimension in the real case is (%} ). =

In R? it is easy to find three lines with pairwise cosine 1/2, and the diagonals
of the icosahedron give six lines with pairwise cosine 1/v/5. Examples of sets

of size (d'z”) are known in R? when d = 7 and d = 23. In the complex case,

examples of tight sets are known for d in {1,...,15,19, 24,35, 48}.

8.5 Tight Frames

Suppose we have a set of equiangular lines of maximum size. Then the asso-
ciated projections Py, ..., P,, form a basis for the space of Hermitian matrices.
Hence there are scalars ¢, such that

I = Z Crpr.
r
If we multiply both sides by Py and take traces, we get

1=(1 —az)ck+a220r.
r

It follows that ¢; = --- = ¢;; and hence that

d
I_E;Pr.
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In a slightly different format, we have established that if xy, ..., x,, are unit vec-
tors spanning a set of equiangular lines of maximum size, then

., m
;xrxr ==

Such a set of vectors is an example of a tight frame.

We will see that tight frames are more common than set of lines meeting the
absolute bound. Consider a set of projections Py, ..., P, corresponding to a set
of equiangular lines with squared cosine a?, and define

m
M=Y P, ——I.
2P

Then

2m d?
0<(M,M)= ) Pr,) Pr)=— Pr,D)+—tr(D
T ; d 7 m

2

:m+m(m—1)a2—ﬂ.
d

If equality holds we have
-~ md-d’
This yields the following, sometimes known as the relative bound.

8.5.1 Theorem. If there is a set of m lines in F¢ with squared cosine a?, where
da? <1, then

d-da?
< .
1-da?
If equality holds, then a set of unit vectors spanning the lines forms a tight
frame. -

Note that if we have d? lines in C?, then a? = (d +1)~', and for (%}') lines in
R%, then a? = (d+2)"L.

8.6 Another Gram Matrix

Suppose xi,..., X form a tight frame in dimension d. Then

. m
Xr:xrxr ==
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If U is the d x m matri with the vectors x1,..., x,; as its columns then we have
m
UU* =) xrxp=—1,
- d

which implies that the rows of U are orthogonal (and of the same length).
Set H=U"U. Then

w=vvvv="uvu="n
d d

and therefore the minimal polynomial of H divides

t(t—%).

(If the minimal polynomial is a proper divisor of this polynomial that H =0 or
H =1.) We can write H as I + aS, where S is Hermitian with diagonal entries
zero and all off-diagonal entries have absolute value 1. (In the real case, this
means the off-diagonal entries are +1.) The eigenvalues of S are

o,

with respective multiplicities d and m — d.

8.7 The Orthogonal Group

Let V be a vector space with a bilinear form. We say that an endomorphism
A of V preserves the form if (Ax, Ay) = (x,y), for all x and y. If the form is
symmetric and the characteristic of our field is odd, then

1
(x,y) = 5(<x+y,x+y>—<x,x>—<y,y>.

Hence A preserves the form if and only if (Ax, Ax) = (x, x) for all x.

Now assume V is R” and that our form is the dot product. A matrix which
preserves dot product is called orthogonal. If v and w are orthogonal vectors in
V and A is orthogonal, then Av and Aw are orthogonal.

8.7.1 Lemma. A matrix A is orthogonal if and only if AT A=1.
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Proof. 1If vy,...,v, is an orthogonal basis for V, then so is Avj,..., Av,. Since
the standard basis ey, ..., e, for V is orthogonal, it follows that Ae;,..., Ae;, is
an orthogonal set of vectors. Therefore the columns of an orthogonal matrix A
form an orthogonal basis. This also implies that

ATA=1.

Since A is square, we see that AT = A™! and AAT = I. Conversely, if AT = A7},
then
(Av, Aw) = (Av)T Aw = vT AT Aw = v' w = (v, w). ul

We see from this result that, if A is orthogonal, then it columns form an
orthonormal set. Also, if A is orthogonal, then AT = A™! and therefore AAT = I.
Hence the rows of A also form an orthonormal set.

We consider the complex version of orthogonal matrices. A complex matrix
is unitary if it preserves the complex dot-product. This means that

y'x=(Ay)"(Ax) = y" A" Ax

for all x and y, and hence that
A"A=1

A real matrix is unitary if and only if it is orthogonal.

We turn to examples of orthogonal matrices. Any permutation matrix is
orthogonal, and a diagonal matrix A is orthogonal if and only if A; ; = +1 for all
i. The matrices

cosf@ —sinf
(sin@ cos0 )

are orthogonal, for any value of 0. It is easy to verify that the product of two
orthogonal matrices is orthogonal, and that the inverse of an orthogonal matrix
is orthogonal. Therefore the set of all orthogonal matrices is an example of a
group, known as the orthogonal group.

8.8 Skew-Symmetric to Orthogonal

We define a matrix A to be skew symmetric if AT = —A and A;; =0 forall i.
(The last condition is only needed if our field has characteristic two.) The set of
n x n skew-symmetric matrices is a subspace of the space of square matrices.
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8.8.1 Lemma. If S is a real skew-symmetric matrix, then (I — S)"N(I+8) is or-
thogonal.

Proof. We first show that I — S is invertible for all real . Suppose x # 0 and
Ax =0x. Then

O0xTx=x"Ax=ATx)x= (—Ax)Tx =(-0x)Tx=-0x"x.

It follows that 0 is the only possible real eigenvalue for S. Therefore I — S is
invertible for all real f and we can define

M:=(I-S) " 'I+5S).

The matrices I + S and I — S commute, and from this it follows that I + S and
(I - S)~! commute. Hence we find that

M =a+SHu-sHtl=u-9u+97"
=I+S)7'u-9)
=ML
Therefore M is orthogonal. |

The matrix M above is sometimes known as the Cayley transform of S. Note
that, since ¢S is skew-symmetric if S is, the matrix

(I-tS) ' I+1S)
is orthogonal for real ¢.

(1) If His hermitian and S = i H, show that (I — S)"! (I + S) is unitary.

8.9 Reflections

Suppose a is a fixed non-zero vector in V. Define the map p, by
(a,v)
(a,a)

Note that p, is the sum of two linear mappings (the identity and a scalar multi-
ple of the orthogonal projection onto the line spanned by a) and therefore it is
linear. We check that

pav)=v-2 a.

pala)=—a
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and, using this, that
pa=1.
If v € a', then p,(v) = v. It follows that p, corresponds to the geometric opera-
tion of reflection in the hyperplane perpendicular to a.
We have
(a,v*)  (a,v)?

(Pa(V),pa(v)) =(v,V) -4 ipaa +4<a,a> (a,a) =(v,v).

Therefore p, is orthogonal. The matrix R, representing it is given by

2 T
R,=1- aa’ .
(a,a)

If v and w have the same length then
(v—w, v+ w)=0.
Therefore R,_,, fixes v+ w and maps v — w to w — v. Consequently
R,_,2v)=Ry_p(v+w)+(v—w)) =2w,

and so, after a very modest amount of extra work, we find that R,_,, swaps v
and w.

8.9.1 Theorem. Every non-identity orthogonal matrix is a product of at most n
matrices R,.

Proof. If Ais a matrix, let F(A) be the subspace
fveV:Av="v}.

We prove by induction that A is the product of at most dim(V) — dim(F(A)) ma-
trices R,.

Suppose A is orthogonal and dim(F(A)) = k. If k = dim V, then A = I. Sup-
pose k < dimV, and let v be a vector in V such that Av # v. If w:= Av and
Ax = x, then (v, x) = (w, x) and so (v — w, x) = 0. Therefore F(A) < (v—w)+, and
R,_, fixes each vector in F(A). Now R,_,, swaps v and W, whence the product
R, ,, Afixes each vector in F(A), and fixes v. As v ¢ F(A), we see that

dim(F(R,-,A)) > dim(F(A)).

The lemma follows. m



8.9. REFLECTIONS 131

A matrix A is an involution if A?> = I. Diagonal matrices with diagonal en-
tries equal to +1 provide a fairly trivial class of examples. If P is an idempotent
then

(I-2P)*=1-4P+4P =1,

and thus I — 2P is an involution.

8.9.2 Theorem. Every orthogonal matrix is the product of two involutions.

Proof. We actually prove a stronger result: A and A~! are similar if and only
if A is the product of two involutions. Since any square matrix is similar to its
transpose, orthogonal matrices satisfy this condition.

Suppose S$2=T2?2=Tand A= ST. Then (ST)(TS) = I and

STTAS=SAS=S(ST)S=TS.

Therefore a product of two involutions is similar to its inverse.
So assume now that A and A~! are similar and let F be the Frobenius normal
form of A. By 22, there is a permutation matrix T such that T2 = [ and

Fl'=TFT.

Then I = FTFT, whence FT and T are involutions whose product is F. As
any matrix that is similar to an involution is an involution, the general result
follows. |
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Chapter 9

Positive Semidefinite Matrices

9.1 Factorizing Positive Semidefinite Matrices

If H is a matrix with linearly independent columns, then the product H” H is
the Gram matrix for a basis of col(H) and therefore it is positive definite. Our
next result provides a converse to this.

9.1.1 Theorem. If G is a positive definite matrix, there is a lower triangular ma-
trix L with diagonal entries equal to 1 and a diagonal matrix D with positive
diagonal entries, such that LGLT = D.

Proof. If G is positive definite, then eiTGe,- > 0 for all i; hence the diagonal en-
tries of G are positive.

Since L and G are invertible, D = LGL" is necessarily invertible. We must
show that L exists. We write G in partitioned form:

a bT
G_(b Gl)'
If we also define
1 0
Ll:(—a_lb I)
then
a 0
LlGLlT:(o Gl—a‘lbbT)'

Note that a # 0, because G is positive definite. It follows from the exercises
below that G, —a~'bb! is positive definite. By induction, we have that there is

133
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a lower triangular matrix L, with diagonal entries equal to 1 such that
Ly(G—a'bb" L]
is diagonal. Taking L to be given by
1 0
=} 0
our result follows. ]

This result implies that G = L"'DL™T. Since the diagonal entries of D are
positive, there is a unique non-negative diagonal matrix D'/2 such that (D'/?)? =
D and therefore

G=(L"'DY} I 'DV})T.
A factorization of a positive-definite matrix G in the form MM’, where M is
lower triangular with positive diagonal entries, is known as a Cholesky factor-
ization. Any reasonable software package for linear algebra will have a com-
mand to compute the matrix M from G.
If G is presented as a matrix X' X and LGL” = D, then

xLH'xL" =D,
whence we see that the columns of XL are orthogonal (with respect to the dot
product). Thus they form an orthogonal basis for col(X), and so we may use

the Cholesky decomposition to find orthogonal bases. We illustrate this in the
next section.

We record an important property of positive definite matrices—it is basi-
cally a reformulation of the definition.

9.1.2 Lemma. If A is a positive definite matrix, the bilinear form
(x,y) = xTAy
is an inner product.

Proof. Exercise. a

(1) If Gis positive definite and the columns of L are linearly independent, show
that LGLT is positive definite.

(2) Show that a principal submatrix of a positive definite matrix is positive def-
inite.

(3) Prove that if G has Cholesky factorizations MM' and NNT, then M = N.
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9.2 Computing Cholesky

The Cholesky decomposition of a positive definite matrix can be useful, in par-
ticular it may be used to find orthogonal bases. In this section we describe an
algorithm for computing the Cholesky factorization using elementary row op-
erations. (But outside linear algebra courses, we recommend using methods
based on the QR-factorization, which we address later. Our point is that we can
carry out Gram-Schmidt by using Gaussian elimination.)

As a first step, we need to to note one consequence of Theorem[9.1.1] This
result shows that if G is positive definite, then by successively subracting mul-
tiples of higher rows from lower rows, we can convert G to an invertible upper
triangular matrix. The product of the elementary matrices corresponding to
these operations is the lower triangular matrix L. Our next result asserts that if
we use elementary operations as described to bring G to row echelon form, we
obtain the Cholesky factorization of G.

9.2.1 Lemma. Let G be a positive definite matrix. If K is lower triangular with
diagonal entries equal to 1 and KG is upper triangular, then KG = DK~ T, where
D is a diagonal matrix with positive diagonal entries.

Proof. Suppose that K is lower triangular with diagonal entries equal to 1, and
that KG = DM, where D is diagonal and M is upper triangular, with diagonal
entries 0 or 1. Then

KGK' =DMK".

Here the left side is a symmetric matrix, while the right side is the product of
three upper triangular matrices, and is therefore upper triangular. It follows
that MK is diagonal. Since KGK is invertible, both D and MK are invertible.
Therefore MK” = I. Finally KGK is positive definite and equal to D. So D is
positive definite, and therefore its diagonal entries are positive. O

Suppose we are given a Gram matrix G. If we bring the partitioned matrix
(
to row-echelon form, then the resulting matrix equals
(LG L).

As noted at the end of the previous section, if G = XX, then the columns
of XLT are orthogonal (with respect to the dot product). The i-th column of
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XL" is a linear combination of the first i columns of X and consequently the
columns of XL are the orthogonal set we would compute using the usual ap-
proach to Gram-Schmidt. (Using exact arithmetic—in fact we have developed
the so-called modified Gram-Schmidt method.)

We first illustrate this in R", with the dot product. The row echelon form of
the partitioned matrix

M=(xTx XxT)
is
(LxTx LXT)

and so the transposes of the rows of LX” are an orthogonal basis for the column
space of X. Suppose for example that

1 0 1
X1 = 1], X2 = , X3 = 0f.
0 1

Let X be the matrix with x;, x; and x3 as its columns. Then

211110

[E . —

M=|1 21 0 1 1
1 1 2101
has row echelon form
21 1 1 1 0
3 1 1 1
02 ?1 _2§ 52 %
003 35 -3 3

Hence

and its columns are an orthogonal basis for col(X).

9.3 Polynomial Examples

We consider the situation where we want to find an orthogonal basis for an
inner product space of polynomials. By way of example, we take V to be the
space of all polynomials, with inner product:

(p,q):= fo px)g(x)e *dx.
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Let U be the subspace consisting of the polynomials with degree at most n,
let py,..., pn be basis for U and let G be the Gram matrix of this basis. (Thus
the rows and columns of G are indexed by 0, 1,..., n, rather than 1, ..., n—good
news for C programmers anyway.)

If [g] denotes the coordinate vector of g in U relative to the given basis, then

[p1" Glgl = (p, ).
Suppose LGLT = D. Then
e] LGL'D=e] De;

whence the columns of LT are the coordinate vectors of an orthogonal basis for
U.

Turning to a concrete case, suppose U is the space of polynomials with de-
gree at most three. We start with the basis 1, x, x?, x3. It can be shown (by
integration by parts) that

o0
f x"e*dx=nl,
0

and therefore the Gram matrix of this set of polynomials is

1 1 2 6
G 1 2 6 24 .
2 6 24 120
6 24 120 720
Let M be given by
1 1 2 6 1 000
M= 1 2 6 24 0100
12 6 24 120 0 0 1 O
6 24 120 720 0 0 0 1

We convert the first four columns to an upper triangular matrix:

112 6 1 0 00
01418 -1 1 0 O
00436 2 -4 1 0
0 00 36 -6 18 -9 1

and thus obtain the following set of four orthogonal polynomials:

1, x—1, x*°—4x+2, x°—-9x*>+18x—6.
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9.4 Positive Semidefinite Matrices

We develop some further properties of positive semidefinite matrices.

9.4.1 Lemma. If A and B are positive semidefinite, so is A+ B. If A is positive
and B is positive definite, then A+ B is positive definite. ]

We leave the proof as an exercise. Note that it implies that if A is positive
semidefinite, then A+ I is positive definite.

9.4.2 Lemma. A self-adjoint matrix is positive semidefinite if and only if its
eigenvalues are non-negative. It is positive definite if and only if its eigenval-
ues are positive.

Proof. If x is an eigenvector of A with eigenvalue 6, then x” Ax = 6x” x, and
therefore if A is positive semidefinite, its eigenvalues are non-negative. If A is
positive definite then 0 is not an eigenvalue.

Suppose we have the spectral decomposition

A= ZHEQ.
0

Each projection Ej is positive semidefinite, because
xTng = xTESx = xTEQTng = ||E3x||2.

If each eigenvalue of A is non-negative, it follows that x” Ax is a sum of non-
negative terms 6 x” Egx, and therefore x” AX > 0.

If the eigenvalues of A are positive, we see that x” Ax = 0 if and only if
xT Egx = 0 for each eigenvalue 6. Hence

0=) x"Epx=x"
0

ZE@) x=x"Ix,
0

and therefore x = 0. Consequently A is positive definite. ]

Note that I,, has 2" distinct square roots, that is, there are 2" matrices S such
that S2 = I. However it has only one positive semidefinite square root. This is
typical:

9.4.3 Corollary. If A is positive semidefinite, there is a unique positive semidef-
inite matrix S such that §? = A.
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Proof. Using the spectral decomposition we have

A=) 0Ey,
0

where the sum is over all eigenvalues of A. If A is positive semidefinite, its eigen-
values are non-negative and we may define S by

S=Y VOE,.
0

Since the eigenvalues of S are non-negative, it is positive semidefinite.

We turn to uniqueness. Let T be a positive semidefinite square root of A
and suppose x is an eigenvector for A. If Ax =0 then T?x =0, s0 x' TTx =0
and therefore Tx = 0. Assume now that Ax = ¢®x, where o > 0, then

0=(T>-0’Dx=(T-oD(T+0oDx.

If the subspace spanned by x is T-invariant, it follows that Tx = +ox and x
is an eigenvector for 7. Otherwise x and Tx span a T-invariant subspace on
which T acts wih minimal polynomial 2 —g2. If (T —oI)x # 0 then y = (T —
ol)x is an eigenvector for T + oI with eigenvalue —o. Therefore if T is positive
semidefinite and Ax = 0%x, then Tx = ox.

Thus we have shown that, if Ax = 02x then Tx = ox. Since the eigenvectors
of A span, this shows that T is determined by A. i

The next result is known as the polar decomposition of a matrix. It is anal-
ogous to the fact that each complex number is the product of a positive real
number and a complex number with norm 1.

9.4.4 Theorem. If A is a square matrix, there is a positive semidefinite matrix M
and an orthogonal matrix Q such that A= MQ.

Proof. We use the singular value decomposition, which yields that
A=vzXT,
where X and Y are orthogonal and X is positive semidefinite. Hence
A=vzvTyx’,
where YXY T is positive semidefinite and Y X7 is orthogonal. O

Note that AAT = (MQ)(MQ)” = M?; hence the positive definite factor in the
above theorem is unique, and the orthogonal factor is unique if A is invertible.
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Chapter 10

Tensors

10.1 Tensor Products

The tensor product U ® V of two vector spaces U and V over [ is defined as
a quotient space. We start with the space of all finitely supported functions
FU*V | the tensor product is the quotient of this subspace modulo the subspace
spanned Z by vectors of the following forms:

(@) a(u,v)-—(au,v), alu,v)—(u,av)foraclFand (4, v)in U x V.
(b) (uy + u, v) — (U1, v) — (U, v) for uy, up, e U, v V.
© (u,v1+1v2)—(u,v1)—(u,vo)forucl, v, v V.

(Here we are using formal sum of finitely many terms to represent elements of
FU®V.)) We denote the image of (1, v) in U® V by u® v. The map that sends
(#, v) to u® v is bilinear.

For finite-dimensional vector spaces, there is no harm in identifying the ten-
sor product with Kronecker product.

The tensor product is not commutative, the spaces U® V and V ® U are
isomorphic but not equal. The tensor product is associative, in that

UeV)eW=U(VeW).

The vectors of the form u ® v are known as pure tensors; they span U® V
but do not form a basis. We note that a scalar times a pure tensor is a pure
tensor, and so any element of U ® V can be expressed as a sum of pure tensors.
If « € U ® V, we define the tensor rank of a to be the least integer r such that «

141
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can be expressed as the sum of r pure tensors, that is, the least integer r such
that
-
a= Z u; ;.
i=1
The key property of the tensor product is that it allows us to deal with linear
maps in place of multilinear maps (at the cost of increasing dimensions). Thus

if we have a bilinear map
p:UxV—=W,

then there is a linear map f from U ® V to W such that
Buev) = Pu,v).

If A and B are linear maps defined on U and V respectively, we define their
tensor product A® B by

(A®B)(u®v) = Au® Bv.
If we have inner products defined on U and V, we can define
((uy ® v1), (U2 ® V2)) = (Uy, Up){v1, U2).

This is a consequence of our definition of the tensor products of maps, because
the maps (u,?) and (uy, ?) are elements of U*.

The field F is a 1-dimensional vector space and so the tensor product F® V
is defined. The map that sends 1 ® v to v is an isomorphism. If v € U*, then
w x I is alinear map from U ® V to F® V, and hence it determines a linear map
from U ® V to V. We will usually identify these two maps.

10.2 Quadratic Tensors
We investigate properties of elements of the tensor product U® V.

10.2.1 Lemma. If « € U ® V has tensor rank r and a = Z;zl u; ® v; for some
vectors uy,...,u, and vy,..., vy, then both of these sets of vectors are linearly
independent.

We leave the proof of this as an exercise.
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10.2.2 Lemma. If ¢ € U ® V has tensor rank r and
r r
A=) ui®vi=)y Xx;®y;
i=1 i=1
then

span{uy,..., Uy} = span{xy,..., X}, span{vy,..., v} =span{yy,..., yr}.

Proof. There are vectors y/1,...,%, in U* such that w;(u;) = §; ;. So the image
of a under the map v ® 1 is vk, according to the first expression for a, and its
image is

vi(x)yi.
1

r
1=

This shows that vy € span{y;, ..., yr}, and now everything follows. i

The previous results are analagous to properties of the usual rank of a ma-
trix. This is no accident:

10.2.3 Theorem. For any two vector spaces U and V, the spaces Lin(U, V) and
U*®V are isomorphic. Under this isomorphism elements of U* ® V with tensor
rank r map to operators with rank r.

Proof. If w € U* and v € V, let the map A, be given by
Ay,v(W) =y (u)v.

This assigns a linear map to each pure tensor in U* ® V and hence gives us a
linear map from U* ® V to Lin(U, V). Denote this map by A.

We show that A is onto. The first step is to show that each linear map in
Lin(U, V) with rank one is the image of a pure tensor. We leave this as an exer-
cise.

The second step is to show that any m x n matrix can be written as a sum of
rank-one matrices. Suppose A is m x n. If A # 0, there are vectors x and y such
that xTAy # 0, and so we may assume that we have vectors x and y such that
xT Ay = 1. Define

B=A-AxyTAT.

Each column of Ax yTAT is a scalar multiple of Ax, and it follows that the col-
umn space of B is contained in the column space of A. Next, Ax # 0 but

Bx=Ax—AxyTATx = Ax— (xT Ay)Ax = 0.
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Therefore the column space of B is a proper subspace of the column space of A
and so rk(B) < rk(A). On the other hand

1k(A) = k(B + AxyT A) < tk(B) + tk(AxyT AT) <1k(B) + 1
and we conclude that rk(B) = rk(A) — 1. It follows by induction that A can be

expressed as the sum of r rank-one matrices. ]

Note that it is imediate that a matrix with m rows is the sum of m rank-one
matrices, and we can use this to provide a simple proof of the isomorphism in
the above theorem. However the relation between tensor rank and the usual
rank is inmportant.

10.2.4 Theorem. We have
dim(U ® V) =dim(U) dim(V).

Proof. If uy,...,uy and vy,..., v, are basis for U and V respectively, then the
pure tensors u; ® v; span U ® V. This shows that

dim(U ® V) < dim)(U) dim(V).

Proof. Suppose that the pure tensors u; ® v; are linearly dependent. Then there
linearly independent vectors u;,...,u, in U and vectors wy,...,w, in V such
that

r
0= Zuicbwi.
i=1

As before, choose elements fi,..., fr in U* such that y;(u;) = 6; ;. If we apply
¥ ® 1 to each side of the above expression, we get

0=w. O

10.3 Cubic Tensors
Consider a tensor a in U ® V ® W given by
r
a = Z Uu; ® ,Bl'
i=1

where f1,..., 8, € V® W. The subspace €6 (a) of V ® W spanned by the tensors
B1,...,Br is an invariant of a. Define the order of a subspace of V ® W to be the
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least integer s such that it is contained in the span of s pure tensors. If € (a) has
order s, then there are vectors vy, ..., vs in V and pure tensors yy,...,ysin Ve W
such that

s
a= in®)/i
i=1

Hence the tensor rank of a is at most s. Since no proper subset of y1,...,7s
spans % (a), it follows that s is the tensor rank of a.

We give one example of the order of a subspace. Identify V ® W with the
vector space of matrices of order dim(V) times dim(W). If € is the space of
upper-triangular 2 x 2 matrices then ¥ has dimension three and order four.

For quadratic tensors, we have the following theorem.

10.3.1 Theorem. For vector spaces V and W, the set
Sk ={TeVeW|rk(T) <k}
is closed; i.e., iflim; .o, T; = T and rk(T;) < k, then rk(T) < k.

Proof. Each T € V ® W is associated with a matrix A whose rank is equal to the
tensor rank of T. Hence the sets Sy are determined by algebraic equations and
are closed. |

The set of matrix of rank at most r is a closed set, and so the limit of any
sequence of matrices with rank at most r is a matrix with rank at most r. Tensor
rank is in general less well behaved. Let V be R? with the standard basis e;, e;.

10.3.2 Lemma. The element
T:=e1®e1®e1+e1®@ex®ex+ex®e; e

of R? ® R? ® R? has tensor rank three, but is the limit of a sequence of tensors
with rank at most two.

Proof. Define
Ty :=A"' e ®e; ®(—ex+Aey) + (1 + Aen) ® (1 + Aeo) ® e2)].

Then
Ty — T=Ae;®e,® ey,

whence T convergesto T as A — 0.
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The only difficulty is to verify that T has tensor rank three. Suppose by way
of contradiction that

T= (a1e1+ageg)®b®c+(u1e1+ugeg)®v® w.
Then
T=e1®(@bec+mvew)+e@(abc+ v w).

Comparing this with the definition of T, we deduce that

e1®e+e®ey=a1boc+uvew
e1®e=ab@c+ v w.

The two vectors on the left in these expressions are linearly independent, and
therefore these equations imply that b ® ¢ and v ® w are linearly independent
and that they are linear combinations of the vectors on the left

Now we use the isomorphism between R2 ® R? and Mats»(R). The image of
the span of the vectors on the left consists of all matrices of the form

Xy

0 x
All rank-one matrices of this form must have x equal to 0, and so the rank-one
matrices of this form span a 1-dimensional space. It follows that b® cand ve w

are linearly dependent. This the contradiction we wanted—we conclude that
the tensor rank of T is three. O

10.4 Multiplication

Let M be the space of n x n matrices over some field. Matrix multiplication
defines a linear map from V ® V to V. By Theorem|[10.2.3|we have

LVV,V)ZEM @M ®M,

and so matrix multiplication can be viewed as a particular element of this space.
More concretely, if the elements E; ; form a basis for M and ¢; ; denotes the
element of M* that sends a matrix to its i j-entry, then

AB= ) ¢€;j(A)ejr(B)E;
i,jk
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and so matrix multiplication corresponds to the tensor

Z €i,j®€jk ® Ej k.
i,j,k

This is a sum of 73 terms, which reflects the fact that the implies algorithm for
the product of two n x n matrices requires 73 multiplications of scalars. It is
surprising and significant that the rank of this tensor is less than n3. Strassen
proved that when n = 2, its rank is at most seven, and this has lead to algorithms
for matrix multiplication that, for large values of n, are substantially faster than
the natural one.

For further information, start with Prasolov.

In the most general sense, an algebra is a vector space V with a bilinear
multiplication p defined on it. As above we can identify p with a cubic tensor.
Foris vy,...,v4 is a basis for V and y; is the element of V* that maps a vector v
to its i-th coordinate, then for x and y in V, we have

d
pxy) = Y viy()pw;, v)).
ij=1

and so we can identify p with the element

Z%®Yj®ﬂ(vi,vj)
ij

of V*® V* ® V or, if we willing to be flexible, with an element of V3,

10.5 Semifields

We consider the problem of deciding which cubic tensors determine something
like a field.

(1) Suppose T € End(V) and rk(T) = 1. Prove that thereis f in V* and v in V
such that Tx = f(x)v.
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Chapter 11

Control

We think a linear system as a kind of ‘black box’. At time intervals ¢ = 1,... it
receives an input, returns an output and moves to a new state. The states are el-
ements of its state space, the inputs come from an input space and the outputs
belong to the output space. If these elements are represented by vectors x(i),
u(i) and y(i) respectively, then they are related by the system of equations

x(n+1)=Ax(n)+ Bu(n),
y(n) =Cx(n) + Du(n),

for all non-negative integers n. Thus the behaviour of the system is governed
by the four matrices A, B, C and D, which we often write as a 2 x 2 matrix:

A B
C D)
We will call this the state-space description of our system. The state-space ma-
trix need not be square, but A must be.
What we have just described is more usually known as a discrete linear sys-

tem. Since we will not consider continuous systems at any length, dropping the
adjective should not cause problems.

11.1 Buffalos

By way of a first example, we consider a model for the US buffalo population,
from J. J. Truxal “Introductory System Engineering”, (McGraw-Hill, New York)
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1972. In this section we describe the underlying uncontrolled system; in the
next section we consider the controlled version.

Let ¢; and b; respectively denote the number of female and male buffalo
at the start of year i. We assume that buffalo are mature at age 2, and that
each year five percent of the adults die. Female buffalo start breeding at age 2;
the number of female calves born in year i is 0.12¢;_», the number of males is
0.14c¢;_,. Thus the population is governed by the two recurrences:

Cn = 0.95071_1 + 0.12(/‘”_2
bn = 0.95bn_1 + 0.14Cn_2

We analyse the female population. If we define

n-— )
Cn-1

0.95 0.12

then
Cn+1 = (

Suppose

0.95 0.12
05 022)

Then the minimal polynomial of A is
*—0.95¢-0.12,

which has distinct roots. Hence we can compute the spectral decomposition of
A, with the result that

A" =(1.0629)"E; + (-0.1122)"E,,

where
0.9040 0.1021 0.0960 -0.1021
E, = , E; =

0.8505 0.0960 —-0.8505 0.9040 )°

(The matrices E; and E, are idempotent and E; E» = E>E; = 0.) From this we
learn that, in the long term, the number of female buffalo will increase annually
by 6.29%. The actual numbers at the end of year n will be closely approximated
by the vector

(1.0629)""71(0.9040¢; +0.1021¢y).



11.2. BURGERS 151

This shows that even though the size of the population is sensitive to the initial
conditions, even though the growth rate is not.
We now consider the males too. Suppose

Cn
Dn = Cn_l .
by
Then
095 0.12 0
Dy=11 0 0 |D,.
0 0.14 095

Here the coefficient matrix is block-triangular, and its minimal polynomial is

(t—0.95)(t> —0.95¢ —0.12).

(1) Show that the male population grows as a power of 1.0629.

(2) What is the asymptotic ratio of males to females? (It can be determined
from an idempotent.)

11.2 Burgers

We continue with the model of the previous section, but we assume that each
year a certain number h,, of the adult females are harvested. The equations
describing the female population become

Cn - 0.95671_1 + 0.126}1_2 - hn
b;, =0.95b,,_1 +0.14¢;,_»

which we write in matrix form as
1
Cn+1 = ACn - hn 0 .
Let us assume that h,, = hc,, for some constant &. Then we can write the result-

ing system as
Cn+1 = A(h)Cny
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where
0.95-h 0.12
A(h) = ( 1 0 )
The minimal polynomial of Ay, is
t*—(0.95- h)t—0.12. (11.2.1)

Given our model, we must have 0 < h < 0.95. Let 8 and 7, denote the eigenval-
ues of A(h). Then 0,7, = —0.12, since this is the constant term of the minimal
polynomial. It follows that 8, and 7}, are distinct. Therefore A(h) is diagonaliz-
able, for all 4. For small values of h, we see that the minimal polynomial of A(h)
we may assume 0 = 1 and 7, is small and negative. The population will grow
as a power in 6, and will be asymptotically constant if and only if 85, = 1. If this
happens, then
1-(0.95—-h)—-0.12=0,

implying that & = 0.07. In this case the eigenvalues are 1 and —0.12, and idem-
potent corresponding to 1 is

0.8929 0.1071
0.8929 0.1071)°

(1) Explain why the female population can stay constant when we harvest 7%
of the animals annually, even though the uncontrolled growth rate is only
6.3%.

11.3 Controllability
Consider the linear system given by
A B
C D)
where Ais n x nand B is n x k. If the initial state of the system is x(0), then we
have the equations

x(1) = Ax(0) + Bu(0)
x(2) = A%x(0) + ABu(0) + Bu(1)
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which leads us to the general formula

n .
x(n) =A"x(0)+ Y A" 'Bu(i-1).
i=1
Thus the state at time 7 is the sum of two terms, namely the state of the uncon-
trolled system at time n and the state of the controlled system with zero initial
state. (This decomposition is an important property of linear systems.)
Define the controllability matrix to be

#=(B AB --- A"!B).

Since A is n x n, its minimal polynomial has degree at most n, and so if i = 0,
then A"*! is a linear combination of

LA.. AL

Therefore the column space of £ is the sum of the subspaces A" col(B), where
0 < r < n. It follows that if our initial state is zero, then the state of the system is
always an element of col(CM).

We say the pair (A, B) is controllable if, given any vector v in F” and starting
with x(0) = 0, we can choose inputs u(0), u(1),..., u(n—1) so that x(n) = v. We
will call the system itself controllable if (A, B) is.

11.3.1 Theorem. For a linear system, the following are equivalent:

(a) The pair (A, B) is controllable.
(b) The rows of the controllability matrix are linearly independent.
(c) The only A-invariant subspace that contains col(B) is R".

(d) No non-zero subspace ofker(B') is AT -invariant.

Proof. By the previous lemma, (a) and (b) are equivalent. The column space of
the controllability matrix is the smallest A-invariant subspace that contains the
columns of B, hence (b) holds if and only if (c) holds. We show that (c) and (d)
are equivalent too.

Suppose rk(%) < n. Then there is a non-zero vector f such that f7% =0,
and so

ffa'™B=0, r=0,1,...,n-1.

Consequently fT A" B = 0 for all non-negative r, and therefore the A” -invariant
subspace generated by f lies in ker(B7).

Conversely, if the A -invariant subspace generated by the non-zero vector
f inker(B”) is contained in ker(B7), that fTA"B=0forall r, and k(%) < n. o
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11.3.2 Corollary. If B is n x 1 and (A, B) is controllable, then the minimal poly-
nomial of A has degree n. O

There is another concept related to controllability, sometimes called con-
trollability to the origin. Suppose our system starts in some state x(0) and we
wish to know if there is a sequence of inputs which will drive it to the zero state.

Now the state at time r will be

n .
A"x(0)+ Y A"'Buli).
i=1
Since
n .

Y A"'Bul(i) € col(®),

i=1
we see that if there is a sequence of inputs that takes the state to zero in r steps,
then A" x(0) must lie in col(%). If r = n and A" x(0) € co) %), then there is a
sequence of inputs of length r that sends the system to zero.

Thus we see, for example, that if tk % = n, then we can bring the system to

rest in 7 steps. To be more precise, we investigate the range of A. We note that

col(A")

is a nested sequence of A-invariant subspaces which is first strictly deceasing,
then constant. Since dim(col(A)) < n, it follows that when r = n,

col(A") =col(A™).

We conclude that our system can be brought to rest in n steps if and only if
A"x(0) € col(Z). Further it can be brought to rest in n steps no matter what the
initial state is, if and only if

col(A™) C col %.

We conclude that any controllable system is controllable to the origin, but
the latter condition is weaker.

(1) Show that (A, B) is controllable if and only if % has a right inverse.

(2) Show that the column space of Z is the smallest A-invariant subspace of
F” that contains the columns of B.

(3) If Aisinvertible, show that (A, B) is controllable to the origin if and only if
it is controllable.
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11.4 Observability

Consider the linear system given by the matrix
(A BzC D).

We consider the problem of determining the initial state from the observed val-
ues of y. We have

x(r+1)=Ax(r)+ Bu(r), y(r) =Cx(r)+ Du(r).

Since we know the values of the input vectors u(r), our problem reduces to that
of reconstructing x(0) from the vectors Cx(r). Now

r .
x(r+1)=A"x(0)+ ) A"'Bu(i);
i=1
since the vectors A’/ Bu(i) are known, the final form of our problem is to re-
construct x(0) from the sequence CA" x(0) for r = 0,1,.... Since Ais n x n, it
follows that the first n values of this sequence determine the rest.
We say that the pair (C, A) is observable if the sequence

Cx,CAx,...,CA" 'x

determines x (in all cases). The system itself is observable if (C, A) is. Define
the observability matrix C by

C

CA
0=

CA.n—l

11.4.1 Theorem. The pair (C, A) is observable if and only if the columns of the
observability matrix are linearly independent.

Proof. If the columns of @ are linearly independent, then it has a left inverse V.
So NGO x = x, and thus we recover x. i

11.4.2 Corollary. The pair (C, A) is observable if and only if (AT, CT) is control-
lable. H

This implies for example, that (C, A) is observable if and only if no subspace
of ker(C) is A-invariant.
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11.5 Feedback and Controllability

Consider the system
x(n+1) = Ax(n)+ Bu(n).

If we take u to be given by
u(n) = Kx(n)+v(n),
then our system becomes
x(n+1)=(A+ BK)x(n)+ Bv(n).

The Kx(n) term is called feedback; the behaviour of the original system is gov-
erned by A, the behaviour of the system with feedback is governed by the matrix
A+ BK. We show that feedback does not effect controllability.

11.5.1 Lemma. Suppose A is n x n and B is n x k. Then for any k x n matrix K,
the pair (A, B) is controllable if and only if (A+ BK, B) is.

Proof. We show that col(%(A + BK, B) < col(Z%(A, B). Since
A=(A+BK)+ B(—K),

it follows that these two column spaces are equal.
If v € col(£), then Av € col(#) and

BKv € col(B) < col(%),

whence (A+ BK)v € col(%). It follows that col(%) is an (A + BK)-invariant
subspace that contains col(B), and therefore it contains the column space of
R(A+ BK,B). O

11.5.2 Lemma. If (A, B) is controllable and b is a non-zero column of B, then
there is a matrix K such that (A+ BK, b) is controllable.

Proof. Assume A is n x n and that (A, B) is controllable. We aim first to find
columns by,..., by of B and integers ry, ..., 'y, such that the union of the sets

S(b;, r;) :={b;, Ab;,..., A" b}
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is a basis for F”. This is straightforward. Choose b, equal to b and choose r; to
be the greatest integer such that the vectors

by, Aby,..., A"y

are linearly independent. Next, assume inductively that we have found by, ..., bj,
and ry,...,rj-1 such that

U S, i)

i<j
is linearly independent. The span of this set of vectors in A-invariant and so,
if this set contains fewer than » vectors, there must be a column of B which it
does not contain. Take b; to be such a vector, and let r; be the greatest integer
such that the span of S(bj, r;) contains no non-zero vectors from the span of
the above union.

There is a unique linear mapping £ such that

PL(AID;) = biy, ifj= ri_—l;
0, otherwise.

Let L be the matrix representing . We claim that the vectors
b,(A+L)b,...,(A+L)"'b

are linearly independent.
Since LA'b; =0ifi <r; —1and LA"~'b; = by, we see thatif i > 1, then

(A+L)""ihb=A""p=A""ip,

and
(A+ L)rlb =A" by + bs.

Starting from this, a reasonably easy induction argument, which we omit, shows
that the span of the m vectors

(A+D)'b, i=0,1,....m~-1
is equal to the span of the first m vectors from
S(by, 1) U---US(bg, ).

This proves our claim.
To complete the proof, we note that the image of £ is spanned by columns
of B, and therefore there is a matrix K such that L = BK. |
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11.5.3 Corollary. Let b be a non-zero column of B. The pair (A, B) is control-
lable if and only if there is a matrix K such that (A+ BK, b) is controllable.

Proof. The previous lemma shows that if (A, B) is controllable and b is a non-
zero column of B, then there is a matrix K such that (A + BK, b) is control-
lable. For the converse we note that if (A+ BK, b) is controllable, then certainly
(A+ BK, B) is controllable. By Lemma[11.5.1} this implies that (A, B) is control-
lable. O

(1) Let b be anon-zero element of col B. Show that (A, B) is controllable if and
only if there is a matrix K such that (A+ BK, b) is controllable.

11.6 Canonical Forms
We consider first the general system

x(n+1)=Ax(n)+ Bu(n),
y(n) = Cx(n) + Du(n).

Suppose M is invertible and x(n) = Mz(n) for all non-negative n. Then we
rewrite our system as

z(n+1)=M'AMz(n)+ M~ Bu(n),
y(n)=MCz(n)+ Du(n).

These two systems correspond respectively to the block matrices

A B M1AM M™'B
C D) MC D

We say two systems related in this way are equivalent. We will also say that the
pairs (A, B) and (M~' AM, M~!B) are equivalent.

We now confine ourselves to the single-input case, where B is nx 1. Suppose
Ais nx nandset M =2(A,b). Then

AM=(Ab A®b ---A"b)=MP,

where F is the companion matrix of ¥, the minimal polynomial of A relative to
b. If (A, b) is controllable, then rk(M) = n, and so M is invertible. It follows that
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M~'AM = F. Since %(A, b)e; = b, we also find that M~'B = e;. We conclude
that if a pair (A4, b) is controllable, then our original system is equivalent to the

system
F el
CM D)
where F is the companion matrix of the minimal polynomial of A. If we also
have a single output, that is, if Cis 1 x i, then C = cl and

cTM:(ch clab - CTA”_lb).

It follows that our system is determined by the minimal polynomial of A and
the entries of this vector.

From 2?2, we know that if F is a companion matrix of order n x n, there is
an symmetric invertible matrix Q such that Q"'FQ =F T We see that Qe,, = ey,
and therefore the pair (F, e;) is equivalent to the pair (F',e,). The pairs (C, e;)
and (C7T,e,) are called the controllability canonical forms of the pair (A, b).

There are analogous canonical forms for observable pairs (cT, A), but these
can be deduced from our work above, applied to the controllable pair (A7, c).

11.7 Eigenvalues and Controllability

In this section our matrices are real matrices, but our subspaces may be com-
plex. (For example, eigenspaces.)

11.7.1 Lemma. The pair (A, B) is controllable if and only if the rows of (A— AI B)
are linearly independent for all complex numbers A.

Proof. First suppose z # 0 and
z*(A-AI B)=0. (11.7.1)

Then z* A" =A"z* and z*B =0, so z*Z = 0. Hence the rows of the controllabil-
ity matrix are linearly dependent, and therefore (A, B) is not controllable.

On the other hand if (A, B) is not controllable, then by Theoremthere
is an AT-invariant subspace of ker(BT), and this subspace must contain an
eigenvector z of AT, If the eigenvalue belonging to z is A, then is sat-
isfied. O
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The spectrum of a matrix is the multiset formed by its eigenvalues, and their
algebraic multiplicities. The spectrum of a real-matrix is conjugate closed—if
0 is an eigenvalue, then its complex conjugate 6 is an eigenvalue with the same
algebraic multiplicity.

11.7.2 Theorem. Let A be an n x n real matrix. The pair (A, B) is controllable
if and only each conjugate-closed multiset of complex numbers with size n oc-
curs as the spectrum of some matrix A+ BK.

Proof. Assume first that we can choose K so that A+ BK has any given conjugate-
closed set of complex numbers as its eigenvalues.
Suppose there is a vector z such that

zZ'(B AB -+ A™lB)=0.
Then, for all r and any K,
zl(A+BK) =zT A"

and therefore
z'[(A+ BKy) - (A+BKy)']1=0.

Choose Kj so that all eigenvalues of A+ BKj lie inside the unit circle, and choose
Kj so that the eigenvalues of A+ BK] are the distinct n-th roots of unity. Then

(A+BK)™" =1
for all non-negative integers s, while
(A+ BKp)"™" —0

as s — oo. It follows that z = 0, whence the rows of Z(A, B) are linearly indepen-
dent, and (A, B) is controllable.

We turn to the converse. We first prove the result holds in the single-input
case. Suppose (A4, b) is a controllable pair. We work with the equivalent canon-
ical form (FT,e,), where FT is the transpose of the companion matrix of the
minimal polynomial of A. If K is a 1 x n matrix, then e,K is an n x n matrix
with its first n — 1 rows zero, and with last row equal to K. Therefore F T+e,K
is also the transpose of a companion matrix. By varying our choice of K, we
can arrange to the last row of F! + e, K to be any desired vector, and so force
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FT + e,K to have any desired conjugate-closed set of complex numbers as its
eigenvalues.

We consider the general case. Suppose (A, B) is controllable and b is a non-
zero column of B. Then by Lemma there is a matrix K such that (A +
BK, b) is controllable. By what we have just proved, for each conjugate-closed
set of complex numbers, there is a 1 x n matrix K; such that

A+ BK+ bK;
has this set as its eigenvalues. But b = Be, for some r, and so
BK + bKy = BK + Be;K; = B(K + ¢;K3),

and so our result is proved. ]

11.8 Observers

Consider the discrete dynamical system given by the equations

x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n).

We want to construct a second system which will accept both the input and the
output of the first system as its inputs, and as produce as its own output at least
an approximation to the state of our first system. To construct such a system,
we consider a second system based on the one above:

X(n+1)=Ax(n)+ Bu(n)+ L(y(n) — y(n))
y(n) = Cx(n)+ Du(n).

If this system has the property that x(n) — X(n) — 0 as n — oo, we call it an
asymptotic observer. If Ais m x m and x(n) = X(n) when n > m, we call it an
exact observer. The choice of L is up to us. We calculate

x(n+1)-x(n+1) = A(x(n)— x(n)) — L(y(n) — y(n))
= A(x(n)—x(n)) — L(Cx(n) — Cx(n))
= (A-LC)(x(n) — X(n)).
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Now the initial difference x(0) — X(0) can be any vector, so we conclude that we
have an asymptotic observer if and only if A— LC is a contraction, and an exact
observer if and only if A— LC is nilpotent.

If Ais nx n and B is n x m, we say that the pair (A, B) is stabilizable if there is
an mxn matrix K such that all eigenvalues of A+ BK lie inside the unit circle. (In
other terms, A+ BK is a contraction.) Every controllable pair is stabilizable. If C
is £ x n, we say that (C, A) is detectableif (AT, C7) is stabilizable or, equivalently,
if there is a matrix L such that A+ LC is a contraction.

11.8.1 Theorem. An asymptotic observer exists if and only if (C, A) is detectable.
An observer exists if and only if (C, A) is observable. O

11.9 Transfer Matrices

We introduce a very important tool in the study of discrete dynamical system:s:
transfer matrices.

We first present this in a special case, coming from coding theory. We sup-
pose that a sequence (u;);>o of binary vectors is encoded by a device as a sec-
ond sequence (y;);>o of binary vectors. In the simplest case, we have a matrix D
and u; is mapped to Du;. But we are going to assume that our device has a state
x; (another binary vector) and that y; is computed according to the system

Xi+1 = Ax; + Bu; (11.9.1)
yi = Cx;+ Du;. (11.9.2)

Here A, B, C and D are binary matrices and A is square. (For a coding theorist it
might be natural to assume D is n x k; the matrix A is square.) The first problem
that arises is to reconstruct the inputs u; given the outputs y; (and the four
matrices A, B, C, D. In the real applications, the vectors y; are corrupted by
noise, and we also have the harder task of first determining the uncorrupted
values of the outputs.

We say that the system described by the four matrices is a convolutional
encoder. The space of possible output sequences is a convolutional code. Con-
volutional codes are important in practice.

To make further progress, we introduce generating functions. A convolu-
tional encoder takes an input sequence

Ug, U1, U2, ...
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and converts it to an output sequence

Yo, Y1, Y2,

In any practical situation, the vectors u; will be zero for all sufficiently large i,
but we defer imposing this as a requirement. One standard way to deal with
infinite sequences is to encode them as formal power series, and so we define

U(z):= Z z_iui, Y (1) := Z z_iyi.

i=0 i=0

These can be viewed as formal power series in the variable z~! with vectors

as coefficients, or as vectors whose entries are formal power series of F. (We
tend to prefer the latter view.) We say that U(z) is a generating function for the
sequence (i;);>o.

Next we assume that xy = 0 and introduce the generating function X (). The
defining equations for our encoder give us

zX(2)=AX({®)+BU(1), Y()=CX(®)+DU(),

and consequently
Y(2)=(D+C(zI- A 'B)U(2).

It follows that our encoder is completely specified by the proper rational matrix

G(z):=D+C(zI- A~ 'B.

If we have a discrete dynamical system over a field [, given by the matrix

A B
(C D) (11.9.3)

we define the transfer matrix of the system to be
D+C(zI-A)"'B.

The transfer matrix completely determines the response of our system to a
given input sequence (given that xy = 0). If e¢; denotes the i-th standard ba-
sis vector, then the generating function of the output sequence corresponding
to the input sequence

e;,0,0,...
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is the i-th column of G(z). This provides a very natural interpretation of the
columns of G(z), and shows that we can find the transfer matrix of a system by
determining its response to each of the above input sequences. In particular
it is not unusual to be given the transfer matrix of a system, rather than the
state-space description.

It may seem more natural to use formal power series in z rather than z L
but the above choice is standard in control theory.



Chapter 12

The Smith Normal Form

In this chapter we study some linear algebra over rings. The most important
rings we use are Z and [F|[x].

12.1 Domains

Let R be a commutative ring. We say that an element a of R divides an element
b if b = ax for some x. We call R a domain if it has no divisors of zero, that is,
ifa,be R and ab =0 then a =0 or b = 0. Clearly any field is a domain. Further
examples are provided by the integers Z and F[x], the ring of polynomials in x
with coefficients from F.

An ideal of R is a non-empty subset I such that if a € I and r € R, then
ra € I. The even integers form an ideal in Z. The polynomials p in F[x] such
that p(1) = 0 provide a second example. If I and J are subsets of R, then I] is
given by

IJ:={ab:acl, be J}.

Thus the subset I of R is an ideal if RI < I. The only ideal of R that contains 1
is R itself. It follows that a proper ideal cannot contain an invertible element
of R. If S € R, then the set SR is an ideal; we call it the ideal generated by S. It
consists of all R-linear combinations of the elements of S. An ideal generated
by a single element is called a principal ideal. For example, the even integers
27 form a principal ideal in Z. If I is the principal ideal generated by d, then I
consists of the elements of R that are divisible by d. A principal ideal domain is
aring in which every ideal is principal. Both Z and F[x] are examples.

165
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An ideal I is prime if it is a proper ideal and, whenever ab € I, either a or b
liesin I. If m € Z, then mZ is a prime ideal if and only if m is a prime. A ring is
a domain if and only if the sero ideal is prime.

Suppose R is a principal ideal domain and a, b € R. The ideal generated by
a and b is generated by some element d, which divides both a and b. Since this
ideal consists of the R-linear combinations of a and b, there are elements r and
s of R such that

d=ra+sb.

It follows that if ¢ divides a and b, then ¢ divides d and therefore d is a greatest
common divisor of a and b.
If d divides e and e divides d, we have

d=dje, e=ed
whence d = dje;d. Therefore
(1 — dlel)d =0

and so d;e; = 1; hence both d; and e; are units of R. It follows that, in a princi-
pal ideal domain, any two non-zero elements have a greatest common divisor,
which is unique up to multiplication by a unit.

It can be difficult to verify that a given ring is a principal ideal domain. There
is one case where it is easy. We say R is a Euclidean domain if there is a function
p from R\0 to N such that

(@) Ifa,b e R then p(ab) = p(a).
(b) If a, b€ R, there are elements g and r such that b= qga+ r and p(r) < p(a).

The advantage of Euclidean domains is that we can compute the greatest com-
mon divisor of any two elements using the usual Euclidean algorithm. Also, a
Euclidean domain is a principal ideal domain.

We consider examples. If R = Z, take p(a) to be |x|. If R = F[x], use p(p) =
deg(p). If p, g € Flx], we say the rational function p/gq is proper if deg(p) <
deg(q). If we define p by

P (g) := deg(q) —deg(p).

The set of proper rational functions over F, with this function p, forms a Eu-
clidean domain. If F = C, the strictly proper rational functions are the rational
functions that are bounded at infinity.
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1. Prove that a finite domain is a field.

2. If (R, p) is a Euclidean domain and x is a unit in R, show that p(ax) = p(a)
for all ain R.

12.2 Localization

Let R be a domain. A subset S of R is multiplicatively closed if
(@ 0¢Sand1leS,
(b) Ifa,be S, then abe S.

In Z, the set of integers not divisible by a given prime is multiplicatively closed.
The set of non-zero elements of R is also multiplicatively closed.

Using S, we can construct a new ring, denoted R[S71]. It elements are equiv-
alence classes of ordered pairs from R x S. We define (a, s) and (b, t) to be equiv-
alent if there is an element x of R such that b = ax and ¢ = sx. The product of
the pairs (a, s) and (b, t) is (ab, st); their sum is

(at + bs, st).

These definitions will seem more familiar if we write our pairs as ratios a/s. We
then see that if R = Z and S consists of the non-zero integers, R[S™!] = Q. If
R =F[x] and S consists of all powers of x, then R[S™!] is known as the ring of
Laurent polynomials. It consists of the rational functions of the form x*p(x),
where p e F[x] and k € Z.

If S = R\0, then the ring R[S7!]is called the quotient field of R. The quotient
field of Z is Q, as we have just noted. The quotient field of F[x] is ring of rational
functions in x, denoted F(x).

We can view R[S™!] as being constructed by adjoining the multiplicative
inverse of each element of S to R. The element of R[S™1] of the form a/1 form
a subring isomorphic to R. If a € R and s € S, then a/1 and a/s generate the
same ideal. It follows from this that ideals of R[S™!] correspond to the ideals I
of R such that In S = @. An important consequence is that R[S™!] is a principal
ideal domain if R is.

We consider some examples. Let R = C[x] and let C be a subset of C, for
example, the unit disc. Then the polynomials p(x) with no zeros in C form a
multiplicatively closed subset S. The ring R[S™!] consists of the rational func-
tions with no pole in the unit disc.
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1. Prove that if I is an ideal of R, then R\ I is multiplicatively closed if and
only if I is prime.

2. Let S be a multiplicatively closed subset of the domain R. Prove that each
ideal of R[S™!] consists of the elements a/s, where a comes from a given
ideal I of R, and s € S.

12.3 Fitting

Fitting Invariants

Let Abe an m x n matrix over a ring R. We define the Fitting invariant Fi.(A)
to be the ideal generated by the k x k minors of A, where 1 < k < min{m, n}.
Thus

Fi(A) = F1 (A (A)).

If R is a principal ideal domain, then the ideal Fj(A) is generated by an element
fx and so we may use the sequence of elements fi,..., fiuan, rather than the
ideals Fj.(A).

12.3.1 Lemma. Let A be an m x n matrix over R, where m < n. Then the follow-
ing are equivalent:

(a) A has aright inverse.
(b) Fr(A)=Rfork=1,...,m.
(c) F,(A)=R.

Proof. First suppose that B is a right inverse for A over R. Then B is m x n and,
since AB = I,,, we have

AK(A)Ag(B) = I(my.

From this we see that 1 is an R-linear combination of elements of each row of
A (A), and consequently Fi(A) = R.

Now assume that F,;;(A) = R. Let S be a set of m columns of A and set ds
equal to det Ag. Let M be the n x m matrix such that Mg = adj(As) and Me; =0
ifi ¢ S. Then

AM =dgsl.
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If T is a second subset of m columns of A and N is constructed analogously to
M, then AN = drI and therefore

A(xM+ yN) = (xds + ydr) 1.

It follows that if the minors dg generate R, then there is a right inverse for A. O

One consequence of this lemma is that if A is m x n and F;,(A) = R, then
Fr(A) = Rfor k=1,...,m. We recall that two matrices A and B are equivalent
over R if there are invertible matrices P and Q over R such that B = PAQ.

12.3.2 Lemma. Let A and B be two m x n matrices over R. If A and B are similar,
they have the same Fitting invariants.

Proof. By Lemma(12.3.1]it follows that F;.(P) = R for all k. Now
Ar(PA) = Ag(P)Ar(A)

and it follows that Fy(PA) < Fi(A). Applying the same argument to the pair of
matrices P~! and PA, we get

Fr(A) = F (P71 (PA)) € Fi(PA).

Accordingly Fy(PA) = Fi(A), as claimed.

In Section[12.5} we will see that if R is a principal ideal domain, then two ma-
trices of the same order are equivalent if and only if they have the same Fitting
invariants. Note that A and AT have the same Fitting invariants.

1. Let Abe a m x n matrix over Z. Show that if, for each prime p, the rank of
A modulo p equals its rank over @, then the greatest common divisor of
the m x m minors of Ais 1.

12.4 Hermite

Suppose A is a matrix over a ring R. There are three elementary row operations
we can apply to A:

(1) Multiply a row by a unit.

(2) Swap two rows.
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(3) Add a multiple of one row to another.

Similarly we have three types of elementary column operations. An elemen-
tary matrix is a matrix we get by applying an elementary row operation to the
identity. (It makes no difference if we use elementary column operations.) An
elementary matrix is invertible, and its inverse is elementary. Over a field, every
invertible matrix is a product of elementary matrices. Over rings the situation
is much more complicated, but we can deal with Euclidean domains.

The main tool is an analog of reduced row echelon form. The key observa-
tion is the following. Suppose a, b € R and that d is a greatest common divisor
of a and b. Then there are elements s and ¢ in R such that sa+ tb = d. Suppose

a=a;dand b= b;d. Then
S t\(a\ (d
—b1 a) b - 0)°

Note the determinant of the 2 x 2 matrix on the left is 1, and so it is invertible.
We can use this to show that if A is a matrix over R, then there is an invertible
matrix F such that FA is in row echelon form.

If we are working over a Euclidean domain, there are two refinements. Sup-
pose R is Euclidean relative to the function p. Then by applying elementary row
operations to the row echelon form of A, we may convert it to a matrix B in row
echelon form such that, if the first non-zero element of row j is in column k,
then

P(Bix) <p(Bj k).

We say that B is in Hermite normal form.
The second refinement is the following result.

12.4.1 Lemma. Suppose that R is a Euclidean domain. If a and b are elements
of R with a greatest common divisor d, there is a product E of elementary ma-

trices such that
a d
5(5)=(o)

Proof. We prove this by using the Euclidean algorithm. First, premultiplying by
a permutation matrix if needed, we may assume that p(a) = p(b). Then

a= q1b+ I,
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where p(r}) < p(b). We have
0 1 \(a) (b
1 —q1 b) rn )
0 1) (0 1\(1 —-q
1 -q) (1 oJlo 1

and so we have converted (£) to (°) by premultiplying it by two elementary ma-
trices. If r; = 0, we are done. If r; # 0, there is an element ¢g» in R such that

bl ()
1 —g2)J\n r
and p(ry) < p(r1). Thus each step of the Euclidean algorithm is equivalent to

multiplying an element of R? by two elementary matrices, and the lemma fol-
lows. O

Now

We summarise our conclusions.

12.4.2 Theorem. If A is a matrix over a Euclidean domain R, it can be converted
to Hermite normal form by elementary column operations. |

1. Show that over a Euclidean domain, each invertible matrix is a product of
elementary matrices.

2. Suppose B and C are m x n matrices over a Eucliean domain in Hermite
normal form, with linearly independent columns. If B = CG, show that G
is diagonal. (Hint: first show that G is lower triangular.)

12.5 Smith Normal Form

Let A and B be two m x n matrices over a commutative ring R. (Think Z[x].) We
say that A and B are equivalent over R if there are invertible matrices P and Q
such that PAQ = B. We want to decide if two given matrices are equivalent.

12.5.1 Theorem. Let A be a matrix over a principal ideal domain R. Then there
is a unique matrix D over R which is equivalent to A such that D;; = 0 if i # j
and D; ; divides Djy ;41 fori=1,...,n—1.
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Proof. Although it is not strictly necessary, we first show that A is equivalent to
amatrix D such that D;; =0if i # j, and only then show that D can be arranged
to have the form stated.

Suppose a and b are two elements of R, and suppose that the ideal they
generate is generated by d. Then there must be elements s and ¢ of R such that
sa+tb = d. Further, there are elements a; and b; suchthat a = a;d and b = by d.

2o

As saj + tb; = 1 the determinant of

S t
—bl a

is 1 and therefore this matrix is invertible.

If the i-th of Ais x and the j-th row is y and we may replace x be sx+ ¢y and
y by —=b1 x + a, y, the resulting matrix is equivalent to A.

We may permute the columns of A so that any zero columns are last. Having
done this, we may convert A to an equivalent matrix where A;; = a # 0 and
A;1=0if i > 1. If a divides each entry of the first row of A then A is equivalent
to a matrix of the form

a 0
(0 Al)

and we can prove our claim by induction.

If a does not divide each entry in the first row, then we may operate on the
columns of A, converting it to an equivalent matrix with A; ; = @’ and A;, i=0
if j > 1. Further the ideal generated by a is properly contained in the ideal
generated by a’. We hope now that a’ divides each entry in the first column
of A. If so then we reduce to the previous induction. If not, we operate on
the rows again. Since at each stage the ideal generated by A; 1, and since R
does not contain an infinite increasing sequence of ideals, we conclude that A
is equivalent to a matrix with A; ; =0 when i > 1 and A, ; = 0 when j > 1. This
proves our claim.

To reduce R to the required form, we observe that the two matrices

a 0 a 0

0 b)’ sa+tb b
are equivalent; given this it is easy to see R is equivalent to a matrix satisfying
the divisibility condition we gave.
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The problem left is to prove that R is unique. This follows because A and D
have the same Fitting ideals, and because a diagonal matrix which satisfies our
divisibility condition is determined by its Fitting ideals. O

If R is a Euclidean domain, then we can use elementary row and column
operations rather than the 2 x 2 matrices we described.

The matrix R whose existence is guaranteed by the theorem is called the
Smith normal form of A. If A is square then det(A) is a unit times det(R). Com-
puting the Smith normal form, even over Z, is one of the more difficult prob-
lems in linear algebra. If implemented as described then the number of digits
in an entry can double at each step.

Generally one only meets the Smith normal form for matrices over Z and
over [F[z]; there are a number of interesting Euclidean domains that arise in
control theory, related to rational functions. Call a rational function p/q in F(z)
bounded if degp < deggq. If we define

p1(p/q) =degqg—degp,

the bounded rational functions form a Euclidean domain relative to the func-
tion p;.

For a second example, let S be a subset of the complex plane, and call a
polynomial stable if its zeros all lie in S. The set of stable polynomials is mul-
tiplicatively closed, and so the rational functions p/q where q is stable form a
ring. If we define p»(p/qg) to be the number of zeros of p not in S then this ring
is a Euclidean domain relative to p.

The intersection of these two rings has the baroque denotation RHS°. If,
as is standard, S is the open left half-plane, this ring consists of the rational
functions that are uniformly bounded on the closed right half-plane. It is a
Euclidean domain relative to the function p; + p.
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Chapter 13

Polynomial and Rational Matrices

A polynomial matrix is a matrix whose entries come from the ring F[z]. A ratio-
nal matrix is a matrix whose entries come from the field of rational functions
[F(z). We will also have occasion to consider matrices whose entries are formal
power series or Laurent series, but we will not assign names to these. Any ma-
trix polynomial A(z) can be written as a polynomial in z with coefficients A;
from Mat,;,x, (F):
Az) =) Az
1

(This encodes an isomorphism between the ring of polynomial matrices, and
the ring of polynomials with matrix coefficients, which goes beyond the level
of sophistication to which we aspire.) The degree of a matrix polynomial is the
maximum degree of an entry. We will also be concerned with the degrees of
the rows and/or columns of polynomial matrices. The key here is to note that
each column of a polynomial matrix is a polynomial matrix, and so has a well-
defined degree.

We consider one pertinent example. If Ais nx n, then 11— Ais a polynomial
matrix with degree one. We have

(zI - A)adj(zI — A) =det(z] - A)I.

Here adj(zI — A) is also a matrix polynomial, with degree n—1, and

(zI-A)7'= ;adj(A).
det(zI - A)

In this chapter, we will study the basic properties of polynomial and rational
matrices.

175
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13.1 Series

A rational function is proper if its numerator and denominator have the same
degree, and strictly proper if the degree of its numerator is less than the degree
of its denominator. A rational matrix is proper if its elements are proper and
strictly proper if they are strictly proper. The proper rational matrices form a
ring, and the strictly proper rational matrices form a proper ideal in this ring.

We can view the ring of polynomials [[z] as a subring of the ring of formal
power series F[[z]]. This has some use, for example if p(z) is a polynomial and
p(0) # 0, then p(z) has a multiplicative inverse in F[[z]]. In a similar way, we
can represent rational functions by formal Laurent series.

Suppose
p(2)=z"+p1z" -+ pp.
Then .
(g P Py
plz) =z (1+Z+ +z”)

Hence p(z)_1 has a formal power series expansion in z~1, and it follows that
any rational function has an expansion as a formal Laurent series in z7!. If
p(z)/ q(z) is a rational function then

o0

PE _ S gz,

71€ I —
where k = deg(p) —deg(k). Hence the ring of rational functions in z is isomor-
phic to a subring of the ring of Laurent series in z!, and the image of the proper
rational functions under this isomorphism is the ring of formal power series in
z. The strictly proper rational functions map to the formal power series with
contstant term equal to 0.

Since we have used nothing more than the geometric series expansion, ev-
erything goes over to matrix rational functions: these are isomorphic to a sub-
ring of the ring of Laurent series in z~! with matrix coefficients, proper rational
matrices correspond to formal power series and strictly proper rational matri-
ces to formal power series with constant term equal to 0. From this we see, for
example, that the proper rational matrices form a ring, and the strictly proper
rational functions form an ideal in this ring. We note one other property we will
need.

13.1.1 Lemma. If M(z) is a strictly proper rational matrix, then I + M(z) is in-
vertible, and its inverse is a proper rational matrix.
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Proof. Since M(z) is strictly proper it has a series expansion

M(z)=) Mz
i=0
Hence I + M(z) is a formal power series with constant term I, and therefore it
has a multiplicative inverse, which is again a formal power series with constant
term I. O

13.2 Polynomial Matrices

We develop some of the basic properties of polynomial matrices.
Every polynomial matrix is a rational matrix. Since

A(z)adj(A(z)) = det(A(z)]

we see that if det(A(z)) # 0, then

det(A(z) “VAE)

is the inverse of A(z) in the ring of rational matrices. Thus a polynomial matrix
A(z) has a rational inverse if and only if its determinant is not zero, although
A(z) may not be invertible for certain values of z in F. A polynomial matrix
has a polynomial inverse if and only if its determinant is a non-zero constant.
We say that a square matrix over a ring is unimodular if its determinant is a
unit. Since the units in F[x] are the non-zero constants, a polynomial matrix is
unimodular if and only if it has a polynomial inverse. More generally, we recall
from Section[12.3]that an m x n matrix A over aring R has a right inverse if and
only if the ideal generated by the m x m minors of A is equal to R.

Suppose A(z) is an m x n polynomial matrix with linearly independent rows
that is not right invertible. Then the greatest common divisor of the m x m
minors of A(z) is a polynomial of positive degree. It follows that there are values
of z in the algebraic closure of F such that rk(A(z)) < m.

We may write any m x n polynomial matrix A(z) in the form
A(z) = HS(2) + L(2),

where S(z) is diagonal with i-th diagonal entry equal to z% and L(z) is a matrix
whose column degrees are each less than the column degrees of A(z). We call H
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the leading coefficient matrix of A(z), and we define A(z) to be column reduced
if the columns of H are linearly independent.

By way of example, if A is square matrix over [, then zI — A is column re-
duced. If A(z) is invertible and in Hermite normal form, then H = I and so A(z)
is column reduced. A square polynomial matrix

d .
Z AiZl
i=0

is said to be regular if A, is invertible. A regular polynomial matrix is column
reduced, but the converse fails. (Find an example.)

13.2.1 Lemma. Let A(z) be a polynomial matrix with linearly independent columns.
Then there is a product of elementary matrices E(z) such that A(z)E(z) is col-
umn reduced, and the degree of each column of A(z) E(z) is no greater than that

of the corresponding column of A(z).

Proof. Suppose some set of columns of H is linearly dependent. Choose a min-
imal such subset C, and from this choose a column, i say, with largest possible
degree. Then the i-th column is alinear combination of the remaining columns
in C, and so there is a product E(z) of elementary matrices with determinant 1
such that the degree of the i-th column of A(z)E(z) is less than the degree of
the i-th column of A(z), and all other columns have the same degree in both
mstrices. We may continue reducing the degrees of columns in this way, until
we reach a matrix whose leading coefficient matrix has full rank. O

13.2.2 Lemma. Let A(z) be an n x k polynomial matrix, where n = k, and let d;
be the degree of its i-th column. Then the degree of a k x k minor of A(z) is at
most ) ; d; and equality holds if and only if A(z) is column reduced. O

We follow the common convention that the degree of the zero polynomial
is —oo.

13.2.3 Lemma. Let A(z) be a column-reduced m x n polynomial matrix and let
d; be the degree of its i -th column. Let p(z) be a vector of polynomials of length
n, with i-th component p;(z). Then

deg(A(2)p(z)) = mlax{di +deg(p;(2))}.
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Proof. We write
A(z) = HS(z) + L(2),

where H is the leading coefficient matrix of A(z) and S(z) is diagonal with i-th
entry z%. Then
A(2)p(2) = HS(2) p(2) + L(2) p(2).

The i-th entry of S(z) p(z) is Z4i pi(z), and consequently

deg HS(2)p(2) < deg(S(z)p(2)) = miax{d,' +deg(p;(2)}. (13.2.1)

The degree of the i-th entry of L(z) p(z) is less than d; +deg(p;(z)), which proves
that the right side of is an upper bound on the degree of A(z) p(z). Since
the columns of H are linearly independent, it has a left inverse, K say. Then

KHS(z2)p(z) = S(2)p(2),
from which we see that
deg(HS(z) p(2)) = deg(S(z)p(2)).

Hence deg(HS(z)p(z)) = deg(S(z) p(z)), and the theorem follows. |

13.2.4 Theorem. Suppose A(z) and B(z) are column-reduced polynomial ma-
trices, with columns arranged in increasing order of degree. If C(z) is unimodu-
lar and A(z) = B(x)C(z), then A(z) and B(z) have the same column degrees and
C(z) is upper triangular.

Proof. Assume A(z) and B(z) are m x n and suppose that A(z) has column de-
grees dj,...,d, and B(z) has column degrees ey, ...,e,. If p(2) is the r-th col-
umn of C(z), then the degree of B(z) p(z) is at least the maximum of the degrees
d; such that p;(z) # 0. It follows that d; = e;. Since C(z) is unimodular, C (z)7Lis
polynomial and since B(z) = A(z)C(z)~!, we also see that e; = d;. Hence d; = e;
and C(z);; =0ifi>1.

Now let A;(z) and B;(z) be the matrices we get by deleting the first column
from A(z) and B(z) respectively, and let C;(z) be the matrix we get by deleting
the first row and column from C(z). Then A; and B; are reduced and C; is
unimodular, and the theorem follows by induction on m. |

(1) Prove that a column-reduced matrix has a rational left inverse.
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13.3 Paraunitary Matrices

Suppose
m
AlR) =) A7,
r=0

where A, € Mat,,,,(C) and let A*(z™!) be given by
m
A'(z)=) Arz™".
r=0

We say that A(z) is paraunitary if
AlR)A*(zhH=1.

One consequence of this definition is that if A(z) is paraunitary, then A(z) is
unitary when | z|| = 1. The product of paraunitary matrices is paraunitary.
By way of example if v € C" and ||v] = 1, then an easy computation shows
that
V(z):=I-vv*+zvv*

is paraunitary. We also see that V(1) = I and, with some effort, that
detV(z) =1.

Paraunitary matrices of this type are called primitive. Note that V*(z) = V(=z),
soV(a)V(zHh =1

13.3.1 Lemma. 3.1 If A(z) is paraunitary, then det A(z) = z"" for some non-negative
integer m.

Proof. Suppose p(z) := det A(z), and let p(z) be the polynomial whose coeffi-
cients are the complex conjugates of those of p(z). Then p(z™!) = det A*(z™})
and since A(z) A*(z™!) = I, we have

p(2)p(z™1) = det(A(z)) det(A* (z71) = 1.

Suppose p(z) has degree d and that z° is the highest power of z that divides
p(z) Then

pape = LEIE

)

where g(z) is a polynomial of degree d — e. Therefore p(z)q(z) has degree d — e,
and the lemma follows at once. |
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13.3.2 Lemma. Let A(z) be a paraunitary matrix. Then A(z) is constant if and
only ifdet A(z) = 1.

Proof. Suppose
m
Alz)=) z"A,
r=0
and A,, #0. If m =0 then A(z) is constant and det A(z) = 1.

If m > 0, then the coefficient of z™ in the product A(z) A*(z™!) is AgA¥,,
whence ApAj, = 0and Ay is singular. Then

det A(z) det(Ag + zB(2)),

where B(z) is a polynomial matrix. Therefore the constant term of det A(z) is
det A(0), which is zero. We conclude that det A(z) is a positive power of z. O

13.3.3 Theorem. If A(z) is a paraunitary matrix and det A(z) = z4%, then A(z) =
A(1)W (z), where W (z) is the product of d primitive paraunitary matrices.

Proof. If d = 0 then A(z) = A(1) and there is nothing to prove, so we assume

d > 0. As in the proof of the previous lemma, it follows that the constant term

Ap in A(z) is singular and therefore there is a unit vector v such that v* Ay = 0.
Suppose A(z) =-Y " A,z" and

V(z):=I-vv*+zvv*
and consider the product
B()=V(z DA =(I-vv* +z ' vv") (Ao + A1z + -+ + Ap2™).

Since v* Ay = 0, we see that B(z) is a polynomial matrix and hence that is is
paraunitary.
Since V(z)B(z) = A(z) we have

zdetB(z) = z4
and consequently detB(z) = z%1. The theorem follows now by induction on

the degree of det A(z). |

Paraunitary matrices play a significant role in the theory of filter banks and
in some treatments of wavelets. For the latter, see Resnikoff and Wells “Wavelet
Analysis” (Springer, New York) 1998.
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13.4 Division

If a(z) and d(z) are polynomials over a field, there are unique polynomials g(z)
and r(z) such that degr < degd and

a(z) = q(z)d(z) +r(z).
We establish a matrix version of this.

13.4.1 Theorem. Suppose D(z) and N(z) are polynomial matrices of orders n x
n and m x n respectively, and that D(z) is column reduced. Then N(z)D(z)™!
is strictly proper if and only if each column of N(z) has degree less than the
degree of the corresponding column of D(z).

Proof. Suppose first that G(z) = N(z) D(z) ! is strictly proper. We have
N(z) = G(2)D(2)
and if N;j(z) and D;(z) denote the i-th columns of N(z) and D(z) respectively,
N;(z) = G(2)D;(=2).

Since G(z) is strictly proper, the degree of an element of N;(z) is less than the
degree of the corresponding element of D;(z). (Note that for this part of the
argument we did not need D(z) to be column reduced.)

Assume now that D(z) is column reduced and that the degree of each col-
umn of N(z) is less than the degree of the corresponding column of D(z). We
may write

D(z) = HS(z) + L(2),

where H is the leading coefficient matrix of D(z). Then
D@2 =S '"H'U+L()S(z) tH !
Therefore
N(z2)D(2)"' =(N(2)S(z) WYH 'I+L(2)S(z) 'H 1™

is the product of two rational matrices. The factor N(z)S(z) ! is strictly proper
by hypothesis. Regarding the second factor, L(2)S(z) YH™! is strictly proper
and so by Lemmal13.1.1} we see that (I + L(2)S(z) "' H~!)~! is a proper rational
matrix. It follows that N(z)D(z) ! is strictly proper, as required. |
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13.4.2 Theorem. Suppose D(z) and A(z) are polynomial matrices and D(z) is
invertible and column-reduced. Then there are unique polynomial matrices
Q(z) and R(z) such that for each i, the degree of the i-th column of P, is less
than the degree of the i-th column of D, and

A(z) = Q(z2)D(2) + R(2).
Proof. The matrix A(z)D(z)~! is rational and so
A(2)D(2)™' = Q(2) + P(2),
where P(z) is polynomial and R(z) is a strictly proper rational matrix. Hence
A(2) = Q(2)D(2) + P(Z) D(2)

and, since A(z) and Q(z)D(Z) are polynomial matrices, so is P(z)D(z). Let
R(2) := P(2)D(2). Then R(Z)D(z)"! is strictly proper and so by Theorem 13.4.1]
the degree of each column of R(z) has degree less than the degree of the corre-
sponding column of R(z).
Now suppose
A(2) = Q1(2)D(2) + R1(2)

where P; and Q; are polynomial and for each i, the degree of the i-th column
of P; is less than the degree of the i-th column of D. Then

(Q-QI)D+(R-R)=0
and therefore
Q-Qi=(R-RD.
Here the left side is a polynomial matrix, while by Theorem([13.4.1} the right side

is a strictly proper rational matrix. Therefore both sides are zero, and therefore
Q(z) and R(z) are unique. ]

Note that we do not get a version of the Euclidean algorithm, because there
is no guarantee that the remainder R(z) is not a zero divisor or, if not, that it is
reduced. So we cannot expect to be able to divide Q(z) by R(z).

13.5 Cayley-Hamilton

Suppose A is square. The matrix zI — A is column reduced and linear so if we
divide by it, the remainder must be a constant matrix. We can give an explicit
formula for it.
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13.5.1 Lemma. Suppose F(z) = ¥} _, F;Z'. Then remainder of F(z) on right di-
visionby zI — Ais) ; F; A’
Proof. We can write o
(zI-A)'=z"Y Az
i=0

the coefficient of z7'7/ in F(z)(zI — A)~! is then
FoAl + AT 4. .+ FFLAJY = (Fy+ FyA+---+ F, A, A’
Therefore the strictly proper part of F(z)(zI — A)~!is
(z]— A) Y (Fo+ AF +---+ A"F,)

and the remainder on right division by (zI — A)~!is Fg+ F{A+---+ F, A", as
claimed. o

This last result is an extension of the result that the remainder of p(z) on
division by z — a is p(a). It also implies the Cayley-Hamilton theorem. For sup-
pose that ¢(z) is the characteristic polynomial of A, and consider the remainder
on left division of ¢p(z) I by zI — A. By the lemma, this remainder is ¢(A). On the
other hand

(z - A7 p(2)] = p(2) tadj(z] — A) ¢p(z) = adj(z] — A).

As adj(zI — A) is a matrix polynomial, it follows that ¢(A) is zero.

We write F(A) to denote the remainder of F(z) on right division by zI — A.
It follows from our results that a polynomial f(z) is satisfied by A if and only if
there is a matrix polynomial Q(z) such that

f(RDI=0Q(2)(z] - A).
If ¢(z) is the characteristic polynomial of A then
¢(2)I =adj(zI - A)(z] - A), (13.5.1)

which implies that ¢(A) = 0. This is the Cayley-Hamilton theorem.
Let d(z) denote the greatest common divisor of the entries of adj(z/—A) and
let C(z) be the matrix polynomial

C(2) = d(z) ' adj(zI - A).
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If p(z) is the polynomial ¢(z)/d(z) then, since
d(2)1 = adj(zI - A) (z] — A)

we see that p(A) = 0. Let w(z) be the minimal polynomial of A and let ¥(z) be
the matrix polynomial satisfying

v(2) =Y (2)(z] - A).
If c(2) := p(2)/w(z), then
CR)(zl-A)=p@)I=c@y(2)]=c(2)¥(2)(z] - A).

As zI — Ais invertible, this implies that C(z) = c(z)¥ (z). Since the greatest com-
mon divisor of the entries if C(z) is 1, it follows that c¢(z) = 1. Thus we have
shown that ¢ (z) = ¢(2)/d(2).

13.6 Greatest Common Divisors

We say polynomial matrices A(z) and B(z) are right equivalent if there is a uni-
modular matrix C(z) such that A(z)C(z) = B(=z).

If A(z), B(z) and C(z) are polynomial matrices and A(z)B(z) = C(z), we say
that A(z) is a left divisor and B(z) a right divisor of C(z). We do not insist that
divisors be square, although this will be the most important case. We will only
be interested in left divisors whose columns are linearly independent; equiva-
lently those that have a rational left inverse. If the columns of A are linearly
independent and AX = Band BY = A, then AXY = A, and therefore XY is uni-
modular. Hence if A is a left divisor of B and B is a left divisor of A, then B and
A are right equivalent.

We say that D(z) is a greatest common right divisor of A(z) and B(z) if D(z)
is a right divisor of any right divisor of A(z) and B(z). If D and D, are two great-
est common right divisors of A and B then

Dy=XD, D=YD

and therefore D = Y XD. If the rows of D are linearly independent, it follows
that Y X = I and therefore Y and X are unimodular. Consequently D and D,
are left equivalent. Two polynomial matrices are right coprime if and only if all
their greatest common right divisors are unimodular.
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We show how to construct greatest common divisors. Let D(z) and N(z) be
respectively n x n and m x n polynomial matrices. The Hermite normal form of

[ve)

N(z)

)
0 )

where R is m x m (and upper triangular). It follows that there is a unimodular
2 x 2 partitioned matrix such that

Uin Uzp\ (D) (R
U2,1 U2,2 N \o]°

U1,1D(2) + U1 N(z) = R(2). (13.6.1)

is then

It follows that

On the other hand our 2 x 2 partitioned matrix is invertible, and so we have
D) (Vip Vo1)(R
N) Vop Voo)\0)°

D(z) =V1,1R(2),  N(2) =V21R(2),

This implies that

and therefore R(z) is a common right divisor of D(z) and N(z). If S(z) is a com-
mon right divisor of D(z) and N(z), then it follows from that S(z) is a
right divisor of R(z). Therefore R(z) is a greatest common divisor of D(z) and
N(z).

Suppose A is and n x n matrix and B an n x m matrix over F. The pair (A, B)
is controllable if and only
tk(A-AI B)=n

for all complex numbers A. It follows from the exercise*** below that this con-
dition is satisfied if and only if A and B are left coprime. Similarly (C, A) is ob-
servable if and only if A and C are right coprime.

This section is one place where the module approach is very useful. Let us
work with matrices over a ring R. If A and B are such matrices then AX = B
if and only if each column of B is an R-linear combination of the columns of
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A. Thus A is a left divisor of B if and only if the R-module generated by the
columns of B is contained in the R-module generated by the columns of A. If
the columns of B and C lie in R", they are left coprime if and only if the columns
of B and C together generate R".

(1) Prove that D(z) and N(z) are right coprime if and only if
D(z)
N(z)
has a rational left inverse.

13.7 AnIdentity

We will need the following result.
13.7.1 Lemma. Let C = (¢;,j) be a square matrix. Then

0
50,',]'

(z[-C) V= (z] - C)_leiejT(zI— oL

Proof. This is an easy consequence of the following identity, which itselfis easily
verified.
(zI-O)'=(zI-D) ' =(zI-CO)~(C-D)(zI-D)". O

The matrix ¥ in the proof of the next result is defined in ?2.

13.7.2 Theorem. Let y be a polynomial of degree d, let Cy be its companion
matrix and let Ey (z) denote the d x d matrix with i j-entry equal toy;(z) ZJ1 Iy (2).
Let N be the companion matrix of z%. Then
-1 2 d-2 ard-1 T
(21-Cy) ' = By (D) = (N + 2N? o4 242N
Proof. The right side of this identity is independent of ¢ (apart from its degree).
By 72,
Y(2) "W (2) = (zI-Cy) ey

and therefore
Ey(2)=(@I-Cyp e (1 z -+ z471).
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Our strategy is to show that (zI — Cu/)_l — Ey(z) is independent of v, and
then evaluate it when v = z¢.

Assume

v(z) = 4+ a -1

+- +ag;

then C; 4 = —a; and, by the previous lemma

O (2l=Cyp) = —(2l - Cy) Lesel (21— Cy)~!
a—ai(z —Cy)  =—(2l-Cy) "eje, (zI-Cy) .

From 22 we have

eg(zl—cw)—lzw(z)_1ei(1 P Zd—l)
and therefore
a%l.(d‘cw)_l:—W(Z)_l(zl—cw)‘le,-(l Z e zd—l)_
We have 5 S
a—aiEw(z)=a—ai(zI—Cw)—lel(1 - Zd—l)
Since
ei(l z - 29 Yei(1 z - 2% )=e;(1 2z --- 2971,
it follows that

i(zI—C )‘1—115 (2)
Gai v B dai v .

We conclude that (zI — Cy) ™' — Ey,(2) is independent of y.
Now suppose ¥ (z) = z% and N = Cy. Then N4 =0,

d-1
zZI-N)'=z'U-z'"N)7'=) z'N,
i=0
and o
(EW(Z))ij Y

The theorem follows at once. O

(1) Bysetting z=0in Theorem|13.7.2} deduce the expression for the inverse of
an invertible companion matrix in Theorem|3.4.1



13.8. RESOLVENTS 189

13.8 Resolvents

Let A be an n x n matrix. In this section we generally work over any field that
contains all the eigenvalues of A. The resolvent R(z) of Aisthe matrix (z1—A) -1
As

1 .
R(Z) = madj(ZI—A),

each entry of R(z) is a rational function. Let 6 be an eigenvalue of A with multi-
plicity m. Then there are matrices A; such that

R = ) A(z-0);

r=—m

we wish to determine these matrices.
The key to this is the following identity.

13.8.1 Theorem. If R(z) is the resolvent of some matrix then
R(z)— R(w) =—(z— w)R(z)R(w).
Proof. Let R(z) be the resolvent of A. Then
(zI - A)(RZ)—R(w)(wlI-A)=(wl-A)—(zI-A)=(w-2)1,
whence the result follows. |
We note a simple consequence of this.
13.8.2 Lemma. If A is symmetric then all poles of the entries of R(z) are simple.

Proof. Suppose that 0 is an eigenvalue of A and

R(z)= ) Arz—0).
r=—m
Here m = 1 and we may assume without loss that A_,, # 0. Then R(z)"R(z) is

equal to AImA_ m(z—0)2", plus terms of higher order and, as A is symmetric,
R(2)TR(2) = R(z)?. On the other hand, from Theorem|13.8.1we have that

iR()——R( )?
dZ Z) = <) .

The term of least order in R(z)" is —mA_,,(z — 0)™*}; consequently we must
have m+1=2m,i.e, m=1. |
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13.8.3 Lemma. Suppose that R(z) is the resolvent of A and that 0 is an eigen-
value of A with multiplicity m. If R(z) =Y., A,(z—0)" then

_Ar+s+1» 1,s=0;
ArAs =1 Aristl, ns<-1;

0, otherwise.

Proof. We assume that 0 is an eigenvalue of A, and seek to determine the coef-
ficients A, in the expansion R(z) =) ,~_,, Arz". From Theorem|13.8.1|we have

- > ArAszrwS:—R(z)R(w):w Y A

rs=—m —w r>—m zZ—w

zZi-w'"

The lemma follows for 8 = 0 by comparing coefficients of z* w/ in the two series

above, and the general result is an easy consequence of this. O
From this result we see that the matrices A;, i = —m,—m+1,... commute.
We also find that:

Ar=(=D"ALTY, ifr=o0,
A, =(Ap) Y ifr=2,
A_lA_r:A_r, ifrZO.

Therefore the coefficients in our Laurent series for R(z) are determined by A,
A_y and A_,, where (A_1)?> = A_; and (A»)™ = 0. Thus A_; is idempotent and
A_, is nilpotent, let us denote them respectively by Ey and Ny. Now note that

(tI-AR()=(t-2)[+zI-AR(2)=(t-2)R(2) + I;
Putting ¢ = 0 in this yields
OI-AA =A, 1#0, (OI-AA=A-1. (OI-AA_,=0.

Hence
Ny = (01— A)Ey.

Define the principal part Py(z) of R(z) by

Py(z):=) A (z—0)".

r=1
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Thus

m-—1
Py(2)=(z—0)'Eg+ Y Nj(z—0)"
r=1
m-—1
=(z-0)"" Y (OI-A) Eg(z—0)"
r=0
We note that, if § and 7 are distinct eigenvalues of A, then PyP; = 0 and so
EgpE; = 0. We have the following result, which provides a partial fraction de-
composition of the resolvent.

13.8.4 Theorem. Let R(z) be the resolvent of A and let Pg(z) be the principal
part of R(z) at@. Then R(z) =) g Pg(2).

Proof. A rational function in z is called proper if the degree of its numerator
is less than the degree of its denominator. A proper rational function with no
poles is constant. The set of proper rational functions is a vector space.

We note that the entries of R(z) and the entries of Py(z) are proper rational
functions. Hence each entry of the difference

R(2)-)_ Py(2);
0

is a proper rational function. By the construction of Py(z), these rational func-
tions have no poles. As both R(z) and Py(z) converge to zero as z — oo, our
theorem follows. i

We know that, if m is the multiplicity of 8 as an eigenvalue of A then A, =0
when r < —m, equivalently (61 — A)"Ey = 0. This implies that the order of the
pole of R(z) at 0 is at most m.

13.8.5 Theorem. The order of the pole of R(z) at 6 is equal to the multiplicity of
0 as a zero of the minimal polynomial of A.

Proof. Let y(z) denote the minimal polynomial of A, let v(0) be the multiplicity
of 0 as a zero of ¥(z) and suppose

¥(2)

Yo(z) = m

Let <y denote the space spanned by the matrices (81— A)! Eg and let d(6) be its
dimension. Thus d(0) is the greatest integer such that (61 — A)4®~1E, #0.
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As (01— A)?9 py(z) = 0, it follows that

[T61- 2P R(z) =0.
0

Since R(z) is invertible, this implies that
[TO1- 479 =o.
0
From the definition of the minimal polynomial we then deduce that v(0) < d (),
for all eigenvalues 6 of A. We show next that v(0) = d(0).
The matrices (01 — A)'Ep for i = 0,1,...,d(0) — 1 form a basis for <. As
we(0) # 0, it follows that the matrix representing the action of 4 (A) relative

to this basis is triangular, with non-zero diagonal entries. In particular, it is in-
vertible. On the other hand, if M € <%, then

0=01-A4)"Pye(AM =yg(A) O - A v(O)M,

and this implies that (61 — A)” acts as the zero operator on «#. It follows that
v(0) =d@0). O

13.8.6 Corollary. For each eigenvalue 0, the matrix Ey is a polynomial in A.

Proof. Since zR(z) — I and zPy(z) — Ey as z — oo, Theorem13.8.4/implies that

I=) Ey. (13.8.1)
0

It follows from the proof of Theorem [13.8.5|that yg(A)E; = 0 if 7 # 6, whence
yields that

O - A)'pe(A) = (01— A)yy(A)Ey.

Referring to the proof of Theorem|13.8.5|again, we see that yy (A) Ep lies in <. It
is not hard to show that the matrices (61— A)'yy(A)Eg fori =0,1,...,v(0) form
a basis for &, and accordingly each matrix in o« must be a polynomial in A. O

13.8.7 Corollary. Any square matrix A is the sum of a diagonalizable and a nilpo-
tent matrix, each of which is a polynomial in A.
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Proof. As EgE; = 0 when 6 # 7 and Eg = Ep, the column space of Ep is an
eigenspace for all the idempotents E;. Given this, implies that F” is the
direct sum of eigenspaces of Ey. Hence Ejy is diagonalizable; more generally any
linear combination of the matrices Ep is diagonalizable. It is also a polynomial
in A.

As AEg = Eg + Ny, it also follows from that

A=) (0Egp+Ng) =) OEg+)_ Np.
0 0 0

Since Ng N; = 0 when 0 # 7, it follows that )"y Ny is nilpotent. Since Ny = (61 —
A)Ey, we see that Ny is a polynomial in A and, therefore, ) g Nj is too. O

The last result implies that symmetric matrices are diagonalizable—if A is
symmetric, so is any polynomial in A, but the only symmetric nilpotent ma-
trix is the zero matrix. It is slightly more difficult to see that the only normal
nilpotent matrix is the zero matrix; from this it follows that normal matrices are
diagonalizable.

13.8.8 Corollary. Let ¢(z) be the characteristic polynomial of A and let g(z) be
the greatest common divisor of the determinants of the (n — 1) x (n—1) subma-
trices of zI — A. Then ¢(z)/ g(z) is the minimal polynomial of A.

Proof. Let 0 be an eigenvalue of A, with multiplicity m, and let v be its mul-
tiplicity as a zero of y(z). Let f; j(z) be the ij-minor zI — A. It follows from
Theorem that no entry of R(z) has a pole of order greater than v(0) at
0, and that some entry has a pole of this order at 8. In other words (z —6)""""
divides each polynomial f; j(z), and divides one of these polynomials exactly.
The result follows immediately. |
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Chapter 14

Determinants

The determinant is a function on square matrices which plays many roles. If
A is a square matrix over R, its determinant is a measure of ‘what A does to
volume’. More precisely, if S is a region in R” with unit volume, then the volume
of set of points

{Ax:x€ S}

is |det(A)|. Because of this, the determinant plays an important role in integra-
tion of functions of several variables.

14.1 Permutations

Let Q2 be a set. A permutation of Q is a bijection from Q to itself. The set of
all permutations of 2 is called the symmetric group on Q. If |Q| = n, then
|Sym(Q)| = nl. We use Sym(n) to denote the set of all permutations on some
set of size n, usually {1,...,n}. If i € 2 and o € Sym((2), then we denote the
image of i under o by i°.

Permutations of 2 are functions from Q2 to (2, so if p and ¢ are permutations,
their product op is defined by

7P = (i%)°.
This is again a permutation of 2. As we will see, the order matters: usually

op # po. Since a permutation is a bijection, it has an inverse. If o € Sym(Q), we
denote the inverse of o by 6~1. We have
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The identity mapping on (2 is a bijection; we call it the identity permutation
and denote it by 1. Finally, if p, 0 and 7 are permutations of 2, then

(po)t =ploT).

In other words, multiplication of permutations is associative.
IfQ=1{1,...,n} and o € 2, we can specify o by writing down the sequence

o o o
19,2%,...,n".

This is sometimes called the Cartesian form of the permutation. There is a sec-
ond useful way to present permutations, which we develop now. Suppose i € 2
and consider the infinite sequence of elements

by successively applying o. Since (2 is finite there are integers r and s such that
r < sand

Then

This shows that r = 0 and that s is the least integer such that i° = i. Hence the
elements

are distinct. We call the cyclic sequence

Yo .a's_l
(i,1%,...,1 )

the cycle of o that contains i. We can view o as rotating the elements of this
cycle.
We consider an example. Suppose n =7 and the Cartesian form of o is

2315674.
Then the cycle of o that contains 1 is
(123)
and the cycle of o that contains 5 is

(5674).
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We regard this as equal to each of the cycles
(4567),(6745), (7456).

The distinct cycles of 2 form a partition of Q2. Together they determine c—we
can specify o by simply listing its cycles. In the example at hand we may write

o =(123)(4567).

The order in which we list the cycles is irrelevant. This is the cyclic form of . A
permutation may have cycles of length one; it is conventional to omit this from
the cyclic form if the underlying set is clear. (The cyclic form of the identity
permutation is often denoted by (1).) Note that i lies in a cycle of length one if
and only if it is fixed by o, that is, i? = i.

Each cycle of a permutation is a permutation in its own right, and a permu-
tation is the product of the permutations corresponding to its cycles.

A permutation is a transposition if it has one cycle of length two, and all
other cycles have length one.

14.1.1 Theorem. If 0 € Sym(n) and o has exactly k cycles, then it is the product
of n — k transpositions. |

We leave the proof as an exercise. By way of a hint we note that
(1234) = (12)(13)(14),

from which we see that a cycle of length m is the product of m—1 transpositions.
We must count cycles of length one.

14.2 The Sign of a Permutation
A function of xy, ..., x, is alternating if, when 7 is a transposition in Sym(n),

fr=-.

Thus x; — x, is an alternating function of two variables. If f is symmetric and g
alternating in xi,..., x,, then f g is alternating. Define the function V(x,...,x,)
by

V(x1,..., xp) = [ ] (xi — x;).

i<j
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Clearly V is alternating. Further, if o € Sym(n), then
V7 =sign(a)V,

where sign(o) = £1. The value of sign(o) is called the sign of o. If ¢ is a trans-
position, sign(o) = —1.

14.2.1 Theorem. If o, T € Sym(n), then sign(o1) = sign(o) sign(r).

Proof. We have
VT = (sign(o) V)" = sign(o) sign(t) V

and therefore sign(o7) = sign(o) sign(r). O

By Theorem [14.1.1} each permutation is a product of transpositions, and
therefore we have the following:

14.2.2 Corollary. If f is an alternating function of n variables and o € Sym(n),
then f? =sign(o)f. O

The set of even permutations is known as the alternating group.
Since each permutation is a product of cycles, if we know the sign of these
cycles, we can use the previous lemma to get the sign of the permutation itself.

14.2.3 Lemma. The sign of a cycle is odd if and only if its length is even.

Proof. It follows from Theorem that a cycle of length k can be written as
the product of k — 1 transpositions. Since the sign of a transposition is odd, the
sign of a cycle of length k is (-1)F1. O

14.2.4 Corollary. If a permutation has exactly e even cycles, its sign is (-1)¢. O

14.3 Permutation Matrices
Let F be a field. If o € Sym(n), let P(0) be the linear transformation that maps

X1 X10
X2 Xoo

—

xn xnU
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Thusife, ..., e, is the standard basis for F**!, then P(0) maps e jto €jo1- Hence
the coordinate matrix for P (o) is

(610—1 620—1 ena—l).

The inverses are annoying, it may help to note that the i-th row of this matrix is
el?f,. We call P(o) are permutation operator and the matrix which represents it
is a permutation matrix.

The product of two permutation operators is a permutation operator, and
consequently the product of two permutation matrices is a permutation ma-
trix.

If P is a permutation matrix then PPT = [, and therefore P~! = PT,

A matrix is a permutation matrix if it is a 01-matrix, and exactly one entry in
each row and column is equal to 1. We define a matrix to be a monomial matrix
there is at most one non-zero entry in each row and each column. It is not hard
to verify that a matrix M is monomial if M = PD, where P is a permutation
matrix and D is diagonal. Similarly DP is monomial. If P is a permutation
matrix and D is diagonal, then

P 'DP

is diagonal.

14.3.1 Lemma. The product of two monomial matrices of the same order is a
monomial matrix.

Proof. Suppose P; and P, are permutation matrices and D; and D are diago-
nal. Then P; D; and P, D, are monomial and

(P1D1)(P2Ds) = P P5(P; ' D1 Py) D,.

Here PP is a permutation matrix and (P, 1D, P,)D, is a product of diagonal
matrices, and so is diagonal. Hence (P, D) (P2 D>) is a monomial matrix. i

14.4 Definition of the Determinant

In this section we define the determinant of a square matrix, and develop some
of its properties.
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For this we will use a somewhat unusual matrix product: it is commutative
and associative and distributes over addition. If A and B are m x n matrices, we
define their Schur product Ao B by

(AOB)I',]' = Ai,jBi,j-

There are no difficulties in working with this product. If A and P are n x n ma-
trices and P is a permutation matrix, then Ao P is a monomial matrix.

The determinant is a function from the set of n x n matrices over a field (e.g.,
R or C) to the field itself. We define it in stages. If D is diagonal, then

n
det(D):= [[ Di,;.
i=1

If M is monomial, then M = DP where D is diagonal and P is a permutation
matrix. If P = P(o) for some permutation o, we define sign(P) to be sign(o)
and then

det(M) := det(D) sign(P).

Note that
PD=(PDP hHp

where PDP~! is diagonal. Since PDP~! is diagonal and det(PDP~!) = det(D),
det(PD) = det(PDP™!) sign(P) = det(D) sign(P).

It is implicit in this that, if P is a permutation matrix, then det(P) = sign(P).
To complete the definition of the determinant, let Perm(7n) denote the set of
all n x n permutation matrices. If A € Mat;«,(F), we define

det(A):= ) det(AoP(m)).

meSym(n)

By way of example, if n = 2 then Perm(2) consists of the two matrices
1 O 01
0 1)7 \1 0
a b
!

a 0 0 b
det(A) = det(o d) +det(c 0) =ad+ (-1)bc=ad - bc.

and so if

then
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14.4.1 Lemma. Let A be an n x n matrix. If A is lower triangular, then
n
det(A) = [ Ai;.
i=1

Proof. Suppose P € Perm(n). If det(Ao P) # 0, then P must be lower triangular,
but the identity matrix is the only lower triangular permutation matrix. There-
fore det(A) = det(Ao I), and the lemma follows. O

14.4.2 Lemma. If A is a square matrix, det(AT) = det(A).

Proof. We note first that if M is monomial, so is M'. Further, if M = DP where
D is diagonal and P is a permutation matrix, then

det(M?) = det(PT D) = det(PTDP)P™Y),
Since P! = PT, we see that PT DP is diagonal, and therefore
det(MT) = det(PT DP)sign(P™1) = det(D) sign(P) = det(M).
Now

det(A")= ) det(A"oP)

PePerm(n)

= Y det(AoPh)T
PePerm(n)
= Y det(AoP”)
PePerm(n)

= ) det(AoP)

PePerm(n)

=det(A).

14.5 The Determinant is Multiplicative

The determinant is useful in particular because, if A and B are square matrices
of the same order, then det(AB) = det(A)det(B). We work towards a proof of
this.

We work with functions on 7 x n matrices. We may think of such a function
0 as a function of n variables, the columns of the matrix. To indicate this, if A
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is nx n and ey,...,e, is the standard basis of F"*!, we may use §(Aey, ..., Ae,)
in place of of 6(A). A function 6 : Mat,,«,(F) — F is multilinear if 6 (A) is a linear
function of each column of A. If § is multilinear and Ae; = x + y, then

0(A) =6(Aey,...,Ae,) =6(x, Aey, ..., Ae,) +0(x, Aes, ..., Aey,).

Note that trace, although it is a linear function of A, is not multilinear. How-
ever, if P is a permutation matrix then the function d p given by

O0p(A) =det(Ao P)
is multilinear. (Prove it.) If §; and 6, are multilinear, then their sum, given by
(61+62)(A) =061(A) +62(4),

is multilinear.

Afunction 6 : Mat, ., (F) to F is alternating if 6 (A) = 0 whenever two columns
of A are equal. This usage is different from the one used in Section[14.2} but we
will see that it is consistent with it.

We need two preliminary results.

14.5.1 Lemma. If M; and M, are n x n monomial matrices, then det(M; M,) =
det(M;) det(M>).

Proof. We may suppose that for i = 1,2,
M;=D;P;
where D; is diagonal and P; is a permutation matrix. Then
MMy =D{P1DyP, = Dl(PlDPfl)Plpz.

Here P DP;* is diagonal, so D (P;DP;!) is diagonal and also P; P, is a permu-
tation matrix. Therefore M; M, is monomial and

det(M; M,) = det(Dl(PlDPfl)) sign(P; P,)
= det(D;) det(D7) sign(P;) sign(P»)
=det(D;P;)det(D,P,)
= det(M,) det(M>).

This completes the proof. |
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14.5.2 Lemma. If A, B and P are n x n matrices and P is a permutation matrix,
then (Ao B)P = (AP) o (BP).

Proof. Suppose ey,..., ey is the standard basis and Pe; = ¢;. Then

((AP)o(BP))e; = (AP)e;o (BP)e;
= Aej OBej
= (Ao B)e;
= (Ao B)Pe;.

Since this works for all i, we have proved the lemma. O

14.5.3 Theorem. The determinant is an alternating multilinear function of the
columns of a matrix.

Proof. Since the functions 6 p are multilinear and since det is the sum of the
functions 0 p, it follows that det is multilinear.

To show that det is alternating, we first prove that if Q is a permutation ma-
trix, then det(AQ) = det(A) sign(Q). Using the previous two lemmas, we have

det(AQ) = )  det((AQ)oP)

PePerm(n)

= Y det[(AoPQ 1)Q]

PePerm(n)

= Y det(Ao(PQ 1) det(Q)

PePerm(n)

=det(Q) Y det(Ao(PQ7M).

PePerm(n)

Since
{P:PePerm(n)} = {PQ'1 : P e Perm(n)},

the last sum above equals det(A), we have proved that det(AQ) = det(A) sign(Q),
as claimed.

Now suppose columns i and j of A are equal, let 7 be the transposition (i j)
and let T = P(7). Then sign(T) = -1, T? = I and AT = A; hence

(Ao P)T =(AT)oPT = AoPT
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and consequently

det(Ao P) +det(AoPT) =det(Ao P) +det((Ao P)T)
=det(Ao P) +det(Ao P)det(T)
=det(Ao P)—det(Ao P)
=0.

The set {B, PT} is the left coset of the subgroup {1, T} of Perm(n). For fixed T, the
set Perm(n) can be partitioned into pairs of the form {P, PT} (prove this), and
therefore it follows that det(A) = 0. ]

One corollary of this proofis that if P € Perm(n), then det(AP) = det(A) sign(P).
Hence the determinant is an alternating function in the sense we used in Sec-
tion[14.2] More generally, the same argument shows that if § is an alternating
function on n x n matrices and P is a permutation matrix, then

O0(AP) =6(A)sign(P).

Therefore a function that is alternating in the sense of this section is alternating
in the sense we used in Section[14.2} but the current definition is more useful if
we work over fields such as Z,.

Our next result is a converse to the previous theorem.

14.5.4 Theorem. If 6 is an alternating multilinear function on n x n matrices
and 6(I) =1, then 6 (A) = det(A) for all n x n matrices.

Proof. We have

n
Aej = Z Aj je;.
i=1

Since ¢ is multilinear,
n
5(A) =6(Aey,..., Aey) = ) 6(Aiqei, Aey,..., Aey)
i=1

and, using even more subscripts,

0(A) = Z 6(Ai1,1ei1,...,Aimnein). (14.5.1)

1<iy,..,ip<n

Since ¢ is multilinear,

n
6(A,~1,1ei1,...,A,-n,ne,-n) = 5(8,‘1,...,6,'") H Aik,k;
k=1
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and since ¢ is alternating if r < s and i, = i, then
6(6,-1,...,61'”) =0

Hence in (14.5.1), the summands indexed by the sequences iy,...,i, that are
not permutations are zero, and therefore

5(A)= ) 8(AoP).

PePerm(n)

This shows that ¢ is determined by the values it takes on monomial matrices.
If D is diagonal and P is a permutation matrix, then since 9 is alternating,

6(DP) =6(D)sign(P).

Further, since ¢ is multilinear,

§(D) =[] Dii6(1)
i=1

and therefore
O0(DP)=det(DP)6(I).

This completes the argument. |
14.5.5 Corollary. If A and B are n x n matrices, then det(AB) = det(A) det(B).
Proof. Consider the function 6 from Mat, ., (F) to [, given by

0(B):=det(AB).
It is easy to verify that this is alternating and multilinear, and therefore

0(B) = cqdet(B)

for some scalar c4. Taking B = I in the definition of §, we see that c4 = det(A)
and therefore det(AB) = det(A) det(B). O
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14.6 The Laplace Expansion

The determinant is remarkable for the number of different ways in which we
can compute it. Here we describe an approach due to Laplace. You may be
familiar with the case when k = 1, because this is the well-known expansion by
cofactors.

If T={n,..., tx}, define | T| by

k
1Tl =) (& —9.
i=1

Let As 1 denote the submatrix of A with rows indexed by S and columns by T.
If [S|=|T| =1, then Ag r is just an entry of A. We use S to denote the comple-
ment of S in {1,..., n}. Now we can state and prove a result known as Laplace’s
expansion of the determinant.

14.6.1 Theorem. Let A be an n x n matrix and let S and S' be two subsets of
{1,...,n}, with sizes k and n — k respectively. Then

Y. =D'"Vdet(As ) det(Ag 1) =

{(—1)"5“ det(4), ifS' =S;
T:|T\1=k

0, otherwise.

Proof. We first consider the case where S’ = S. Let Sand T be subsets of {1, ..., n}
with size k. Then
detA=) ) det(AoP(0)).
T 0:8=T

Note that if 0 maps S to T then it must map S to 7. Hence

> det(AoP)(0) = (-1)!" det(As 1) det(Ag 7).
0:89=T
Now suppose that S’ # @. Let A’ be the matrix whose first k rows are the
rows of A indexed by S, and whose last n — k rows are the rows of A indexed by
S». Since we know that Laplace’s expansion holds when SN S’ = @, we see that
det(A’) is equal to the sum on the left on the statement of the theorem. On the
other hand, A’ has a repeated row, and therefore det(A’) = 0. i

Let A(i|j) denote the matrix we get from the square matrix A by deleting
row i and column j. Then (-1)i*J det(A(i|j) is called the i j-cofactor of A. The
following special case of the Laplace expansion is known the expansion by co-
factors of det(A). This is somtimes used as a definition of the determinant.
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14.6.2 Corollary. Let A be an n x n matrix. Then

. n .
det(A) = (-1)""' Y (-1)77 4; ; det(A(il j). O
j=1

Let A be an n x n matrix. We define the adjugate adj(A) of A as follows:

adj(A);,; = (-1)"*/ det AGl ).

Thus if
a b
A‘(c d)’
then
. [d -b
ad](A)—(_c a)'
If

1 11
J=11 11
1 11
then adj(J) =0.
Applying the previous theorem with k = 1, we obtain:

14.6.3 Corollary. If A is a square matrix, then Aadj(A) = det(A)I. O

It is also true that adj(A) A = det(A); this can be proved using the transpose.
We leave the proof as an exercise.

14.6.4 Corollary. If A is a square matrix, then it is invertible if and only if det(A)
is.

Proof. If det(A) is invertible, the previous corollary implies that
A~ =det(4)adj(A).
If Aiainvertible then
1 =det(]) = det(AA™") = det(A) det(A™)

and therefore det(A) is invertible. O
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The following identity is due to Jacobi.

14.6.5 Theorem. Let A be an n x n matrix and suppose S < {1,...,n}. If s =S|,
then
det(adj(A)5 3) = det(A)" "' det(As,s).

Proof. If M is n x n, we have adj(M)M = det(M)I and, taking determinants of
both sides yields
det(adj(M)) det(M) = det(M)".

Therefore det(adj(M)) = det(M) "1 Assume S consists of the first s elements of
{1,...,n}. We have adj(A) A = det(A)I whence adj(A) Ae; = det(A)e; and

(det(A)I; 2

adj(A) (Ae; ... Aes e5 en) = 0 adj(A)- <
55

Taking the determinant of each side, we get
det(A)" ' det(As ) = det(A)Sdet(adj(Agyg)).

This yields the theorem. O

14.7 The Characteristic Polynomial of a Matrix

If A is a square matrix then det(¢I — A) is a polynomial in ¢. It is called the
characteristic polynomial of A. It is not too difficult to verify that if Ais n x n,
then its characteristic polynomial is a monic polynomial of degree n. If

a=(2 )

det(tI— A) = t* — (a+c)t + (ac — bd).

The constant term of the characteristic polynomial of A is

then

det(—A) = (-1)"det(A).
Suppose A= LBL™!. Then

det(tI - A) =det(t]— LBL™Y) = det[L(:] - B)L™ Y]
=det(B) det(tI — B)det(L™)
=det(tI - B).
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Thus we see that similar matrices have the same characteristic polynomial.
We leave the proof of the following as an exercise.

14.7.1 Lemma. If ¢(1) is the characteristic polynomial of the square matrix A,
then the coefficient of "1 is —tr(A). O

Our next result is called the Cayley-Hamilton theorem. Cayley proved it for
2 x 2 and 3 x 3 matrices.

14.7.2 Theorem. If (1) is the characteristic polynomial of the square matrix A,
then ¢(A) =0.

Proof. Each entry of adj(z/ — A) is a polynomial in ¢ with degree at most n — 1.
Hence there are matrices Bj,..., B, such that

adj(tI—A)=B,+tB,_+---+1t""'B;

We want to show that each of the matrices By, ..., B, is a polynomial in A.
We have

(t1-A)adj(tI-A)
= "B+ t" Y (By— AB)) + -+ t(By— AB,_1) + (—A)B,. (14.7.1)

Assume that
GO =t"+art" 4+ +a,.

From Corollary[14.6.3|we have
(tI-A)adj(tI-A) = (t"+au " tayl (14.7.2)
If we equate the coefficients of the powers of ¢, we obtain:
By=1, Bit1=ABij+a;I (i=1,...,n-1)
whence

B =1
Bo=A+a;1
Bs=ABy+ayl = A+ a1 A+ ayl



210 CHAPTER 14. DETERMINANTS

and, in general,
Bii1= A+ a AT+ ag

Thus By, is a polynomial of degree k—1 in A.
From (14.7.1) and (14.7.2), we see that a,I = —AB,,. So

0=AB,+ayl=AA" '+ A" 2+ +an_1D+a,l
=¢p(A).

This completes the proof. |

It is tempting to argue that if we substitute A for ¢ in the equation
(11— A)adj(tI - A) = p(1) 1,

then tI — A becomes zero, and therefore ¢p(A) = 0. It is true that if f(¢) is a
polynomial in ¢ with coefficients in a field and ¢ — a divides f (1), then f(a) = 0.
It need not be true that if f(¢) and f;(#) are polynomials in ¢ with matrices as
coefficients and

(tI-A) f1(1) = f(2)
then f(A) = 0. The basic problem is, for example, that if b is a scalar then

?b = tht = bt?,

but if A and B are square matrices, then the products A%2B, ABA and BA? can
all be different.

14.8 An Algorithm

If we attempt to compute the determinant of a matrix in Mat,x,(Z) using our
definition, we may be obliged to sum n! products. This is already unpleasant
when n = 4. There is a second algorithm using elementary row operations; the
only disadvantage of this is that its intermediate stages often require the use
of rational numbers, even though the final answer is an integer. (This is the
algorithm usually taught.) We are going to describe a a third algorithm that
does not suffer from this disadvantage, and still runs in polynomial time.

Let Abe an m x n matrix and suppose k < m, n. We construct an (m+1-k) x
(n+1— k) matrix Dy (A) from A as follows. If k< r <m and k < s < n, thereis a
unique k x k submatrix of A that contains the rs-entry of A along with all entries
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in the first k — 1 rows and columns. Define Dy(A),_k s—k to be the determinant
of this submatrix. So D;(A) = A and if

aiy daie a4z
A=|a1 azp ars|,
as1 dazpz dadss

then
a1z —dizdz1 a11023—dz101,3
Dy(A) = ( ) .
apasp —dypds) ad1ds3—dads1ds
If Ais n x n, then D,(A) = det(A). For any matrix A, let d;(A) denote the de-
terminant of the submatrix formed by the first k rows and columns; we assume
do(A) =1.

14.8.1 Lemma. If A is an m x n matrix, then Dy (D (A)) = di_1(A)Dy,1(A).

Proof. We prove the result by induction on the size of A. Since D, (A) = A, the
lemma holds when k =1 and we assume k = 2.
First we consider a special case. Suppose Ais (k+1)x(k+1). Then Dy, (A) =
det(A) and
det(A(k+1|k+1) det(A(k+1]k))

Dy(A) = det(A(klk + 1)) det(A(k|k))

Therefore

det(Dy(A)) = det(A(klk)) det(A(k+ 1]k + 1))
—det(A(k +1|k))det(A(k|k+1))

andsoif S:=1,...,k—1, then
D5 (D(A)) = det(adj(A)z 3).
By Jacobi’s identity (Theorem|[14.6.5),
det(adj(A)g 5 = det(A) det(As,s) = di—1Dg+1(A).

Now we verify that the result follows from this special case. If i > k we and B
is the matrix we get by deleting the i-th row of A, then Dy (B) is obtained from
Dy(A) by deleting its (i + 1 — k)-th row. Since that Di(AT) = Dy(A), a similar
claim holds when we delete columns.
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Ifi, j = k+1, then (Dgy1(M));—, j—k is the determinant of the submatrix M of
A formed by the intersection of rows 1 through k and i with columns 1 through
k and j. Since dj_,(A) = dy_1 (M), we have

di-1(A) D1 (A) -k, j—k = dig—1 (M) Dg11 (M)
= Dy(Dy(M))
=D2(D(A)) ik, j-k

and so the result follows. O

The algorithm to compute det(A) runs as follows. The input is an n x n ma-
trix A. We also use a scalar 6, which is initially set to 1.

1. If n=1, then det(A) = A; halt.
2. If the first row or column of A is zero, then det(A) = 0; halt.
3. If necessary, swap two columns of A so that A; ; # 0 and replace 6 by —6.

4. Compute 61D, (A) and let § = (A)1,1. Return to the first step with 6 1Dy (A)
in place of A.

After n — 1 steps of this kind, we obtain D, (A) = det(A).
We give one example. If

then

Since d; (A) = x,
det(A) = D3(A) = x ' (x* —2x%) = x% - 2x.

This algorithm is sometimes attributed to C. Dodgson, better known as Lewis
Carroll.
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14.9 Summary

The most useful facts are (c), (f) and (g). You are not required to know anything
about the proofs of (f), (g), (h), (i) and (j). You might need to use them. Note that
(d) and (e) together yield an algorithm for computing the determinant, since we
can bring a matrix to triangular form by elementary row operations.

(a) Permutations, sign of a permutation, permutation and monomial matrices.
(b) Definition of determinant.

(c) det(AT) =det(A)

(d) If Ais triangular, det(A) =11; A;,;.

(e) Adding a scalar multiple of one row of A to another does not change det(A).
Swapping rows changes the sign. Ditto for columns. If we get B from A by
multiplying a column by ¢, then det(B) = cdet(A).

(f) Multilinear and alternating functions on matrices, det(AB) = det(A) det(B).
(g) The adjugate of a matrix, Aadj(A) = det(A)I.
(h) Cofactor expansion of det(A).
(i) The Cayley-Hamilton theorem.
(j) Bareiss algorithm.
(k) When the products AB and B A are both defined, det(/ — AB) = det(I — BA).
(1) Binet-Cauchy.

(m) det(exp(M)) = exp(tr(M)).

(We did not treat the last three items.)
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14.10 Groups

In this chapter we met the ‘symmetric group’ and the ‘alternating group’ As
we continue with the course, we will meet other ‘groups’. For the sake of back-
ground information, we explain the terminology.

A group is a set G with a multiplication o defined onit. If a,b € G, then ao b
denotes the product of a and b. (In many cases the elements of G are operations
on some structure, and a o b denotes “do a, then b”.) The multiplication must
satisfy the following axioms.

1. Ifa,be G, thenaobeG.
2. Ifa,b,ce G, then (aob)oc=ao(boc).
3. Thereis an element 0 in G such that 8o a = a for all a in G.

4. For each element a € G, there is an element a~! in G such that a 1oa = 6.

The first axiom states that G is closed under multiplication. The element 0 is
the identity element of the group. The element a™! is the inverse of a. We
do not assume that ao b = bo g; if this does hold for all a and b the group is
commutative (or abelian).

One example of a group is the integers, with + as the ‘multiplication’. A
second example is the set of invertible n x n matrices over a field with the usual
matrix multiplication.

We usually write ab in place of ao b unless G is commutative, in which case
we write a + b. We usually use 1 to denote the identity unless G is commutative,
when we use 0.

Suppose a,x,y € G and ax = ay. Then

x=1x=(a'a)x=aax) = a_l(ay) = (a_la)y =ly=y.
Thus in a group we may ‘cancel on the left’. Since
alta)=(a'al=1"=1=a""a,
it follows (by left cancellation) that al = a for all a. Since
(aaVYa=a(a'a)=al=a=1a

1

we also see that aa™" =1 for any a. Now if xa = ya, then

x=xl=x(aa™ ) = (xa)a ' = (ya)a_1 = y(aa‘l) =yl=y;
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therefore we may also cancel on the right.

A subset of G is a subgroup if it contains the inverse of each of its elements
and is closed under multiplication. The alternating group is a subgroup of the
symmetric group.

Finally we point out that a group is a set with three operations. A binary
operation which, given (a, b) as input, returns ao b. A unary operation which,
given a as input, returns a~!. And a nullary operation which, given no input,
returns the identity 6. (It may help to understand the last statement if you think
of a button on a calculator labelled 7—this takes no input and returns 7.)
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Chapter 15
Rings, Fields, Algebras

Thus chapter is meant to to provide some background, to help you deal with
linear algebra over fields other than Q, R and C.

15.1 Rings

A ring R consists of a set R on which an addition operation + is defined, such
that (R, +) is a commutative group; in addition there is an associative multipli-
cation in R that satisfies the usual distributive laws relative to addition. The
multiplication is usually denoted by juxtaposition, i.e., the product of @ and b
is denoted ab (and ab need not equal ba.). We always assume that there is
multiplicative identity, denoted by 1 (so 1x = x1 = x for all x in R).

The canonical examples are Z, Q, R, C. Polynomials over Q, R or C form a
ring, and so do power series. Further, matrices with entries from a ring R form a
ring which is not normally commutative. Continuous real functions on R form
aring.

Rings were first introduced in number theory, but now it is somewhat un-
usual for a mathematician not to be working in the context of some ring.

As a general principal, any operation we can carry out on abelian groups
can be carried out on rings. So we have subrings, products and homomor-
phisms/quotients. Somewhat surprisingly, subrings do not play a big role, ex-
cept for ideals (which you can look up). Also finite rings seem to be less useful
than finite groups.

217
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15.2 Fields

A field is a ring in which every non-zero element has a multiplicative inverse.
The canonical examples are Q, R, C. We see that Z is not a field, and the rings
of polynomials we referred to above are not fields (although they can be used
to construct fields). If F is a field then F(¢), the ring of rational functions with
coefficients from F is a field.

As just defined, the multiplication in a field need not be commutative. How-
ever all fields we need are commutative and so henceforth field means commu-
tative field.

The integers modulo a prime p form a field Z,. We consider this in some
detail. Stricly speaking, the elements of Z,, are equivalence classes of integers,
where integers m and n are equivalent, i.e., m = n, if p divides m — n. Each
equivalence class contains exactly one element from the set of integers

10,1,...,p—1}

and so we can identify the equivalence classes with the members of this set. Itis
not too difficult to show that the equivalence classes form a ring, with addition
mod p and multiplication mod p as its operations. In fact we can show that, for
any positive integer n, the set Z,, forms a ring. But if n is not a prime we can
write n = ab where a and b both greater than 1, and therefore ab =0 in Z,,. It
follows that the equivalence class of a does not have a multiplicative inverse—if
xa=1and ab =0 then

0=x(ab)=(xa)b=1b=0b.

Therefore if n is not prime, then Z,, is not a field.

If p is a prime then each non-zero element of Z, does have a multiplicative
inverse. Forif a € Z, and a # 0, then the gcd of a and p is 1, and hence there
are integers x and y such that

xa+yp=1,

and therefore xa = 1. Thus we can find the multiplicative inverse of a using
the Euclidean algorithm. We have been a little sloppy here: when we apply
the Eulidean algorithm we are viewing a and p as integers, but we originally
chose a to be a non-zero element of the ring Z,,. To avoid this we should use
some notation like [a] to denote the equivalence class of a, but the sloppiness
is easier, and traditional.
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We can also construct fields from rings of polynomials. Let [ be a field and
let F[z] denote the ring of polynomials with coefficients from F. If p(f) is a
monic polynomial in F[#], define a relation = on [F[#] by declaring polynomi-
als g and h to be equivalent if their difference is divisible by p. Then this is an
equivalence relation and the equivalence classes form a ring. You may show
that this ring is a field if and only if p is irreducible over F (has no non-trivial
factors).

If we take F =R and p(f) = t2 + 1, this construction produces a field isomor-
phic to the complex numbers. If F = Z, and p(f) = 2+ t+ 1, we obtain a field
with four elements.

Exercise: Let E be a field and let F be the subset of E consisting of all the
elements of E we can get by adding 1 to itself any number of times. (By assump-
tion, 0 € F; thus F is the additive subgroup of E generated by 1.) Show that F is
aring. If |F| is finite, prove that it is a prime, and deduce that it is a field.

15.3 Algebras

A ring R is an algebra over a field F if R is a vector space over [ such that if
x,y€ Rand a€F, then

(ax)y =x(ay) = alxy).

If 1 is the multiplicative identity in R, then the set {al : a € [} forms a subring
of R that is isomorphic to F. Each element of this subring commutes with each
element of R (it lies in the center of R).

The term ‘algebra’ has changed its meaning over the years, and it still has
more than one interpretation. As we have just defined it, every algebra con-
tains a multiplicative unit, but, in analysis for example, this requirement can
be dropped.

The set of d x d matrices over of field F forms an algebra. More generally,
the set of linear mappings of a vector space to itself is an algebra. The complex
numbers are an algebra over the reals.

The dimension of an algebra is its dimension as a vector space over the un-
derlying field.

Let M denote the subset of the algebra of 2 x 2 matrices over () consisting of
the matrices of the form

o @) =elo V=2l o)
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It is not hard to show that this set is a subspace of Mat.»(Q) and this it is
closed under multiplication. Hence it is a subalgebra of Mat, 2 (Q), but you can
also show that it is commutative and that every non-zero element is invertible.
Therefore it is a field, isomorphic to the field usually denoted by @(\/Z).

If A is an algebra of dimension d over F and M € A, then the d + 1 powers
I,M,...,M* are linearly dependent, whence there is a polynomial f such that
f (M) = 0. Consequently there is a monic polynomial i of least degree such that
w(M) = 0. It is called the minimal polynomial of M and degree at most d.

Exercise: If A is a finite-dimensional algebra over F and x € A, show that
multiplication by x is a linear mapping (over [).

Exercise: If A is a finite-dimensional algebra over F, prove that A is isomor-
phic to an algebra of matrices over F.

Exercise: Suppose K, L, M are fields with K < L < M. Then L and M are
algebras over K; let £ and m respectively denote the dimensions of L and M
over K. Prove that ¢ divides m.

Exercise: Let F be a field. If S is a subspace of Mat;«,(F) such that each
non-zero element is invertible, prove that dim(S) < d.

Exercise: If A is a finite-dimensional algebra over a field F and each non-
zero element of A is invertible, prove that the minimal polynomial of each non-
zero element is irreducible over F.
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