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Preface

These notes are meant to provide an introduction to fundamental parts of lin-
ear algebra, as might be applied to problems in combinatorics. I assume the
reader has had a first course in linear algebra, and is familiar with determinants.
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To Do

1. Interlacing, via Courant-Fischer and by rational functions. Need equi-
table partitions for this.

2. Walk modules. Controllable graphs.

3. Quadrics.

4. Matrix exponential.

5. Lie algebras, sl (2) repns.

6. Perron-Frobenius, symbolic dynamics.

7. Perturbation theory.
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Chapter 1

Spaces and Subspaces

We review the basic results on vector spaces.

1.1 Vector Spaces

We assume familiarity with the basic terminology of vector spaces—linear com-
binations, subspaces, linear dependence and independence, span, spanning
sets, and bases. We present a proof of the existence of bases (in vector spaces
with a finite spanning set).

We define a circuit in a vector space V to be a minimal dependent set. Thus
if C is a circuit and x is any element of C then C \ x is linearly independent.
Hence C \x and C have the same span.

1.1.1 Lemma. If the vector v lies in the span of a set S, then there is a circuit in
S ∪ v that contains v .

Proof. Suppose that v is a linear combination of the vectors x1, . . . , xk from S,
and that v is not a linear combination of any subset of S with fewer than k
elements. Then x1, . . . , xk is linearly independent, for otherwise it contains a
circuit and by deleting an element of this circuit, we obtain a set of k−1 vectors
whose span still contains v . It follows that if for some i , the set

{v, x1, . . . , xk }\xi

is linearly dependent, then v is a linear combination of at most k −1 elements
of S. Therefore this set is linearly independent for each i , and so we conclude
that {v, x1, . . . , xk } is a circuit.

1



2 CHAPTER 1. SPACES AND SUBSPACES

A basis, we recall, is a linearly independent spanning set. We show they exist
if V has a finite spanning set S. If S is linearly independent, there is nothing to
prove. Otherwise S contains a circuit C ; if x ∈C then C \x and C have the same
span, and consequently S\x and S have the span. Therefore, by deleting a finite
number of elements from S, we obtain a linearly independent set S1 with the
same span as S, and so S1 is our basis.

Now we show that all finite bases have the same size. To do this we prove
the following:

1.1.2 Lemma. Let V be a vector space. If S is a finite linearly independent subset
of V and T is a spanning set, then |S| ≤ |T |.
Proof. We prove the result by induction on |S \T |. Set k equal to |S \T |; if k = 0
the result is immediate, so suppose k > 0. Choose a vector u from S \T .

Since T is a spanning set, u is a linear combination of elements of T , and
therefore by the lemma above there is a circuit C in T ∪u that contains u. Since
S is linearly independent, C is not contained in S and therefore there is an ele-
ment v in C that does not lie in S. Now v lies in the span of C \v , and

C \v ⊆ (T \v)∪u.

Therefore v belongs to the span of (T \v)∪u. Since this span contains T \v , it
contains T .

We conclude that (T \ v) ∪ u is a spanning set in V that meets S in k + 1
elements.

It follows from this that any two finite linearly independent spanning sub-
sets of V have the same size, which we define to be the dimension of V . A vector
space has finite dimension if and only if it has a finite basis. If V has dimension
n then any independent set of size n is a basis, as is spanning set of size n. Each
independent set is contained in a basis and, as we already knew, each spanning
set contains a basis.

If α= (v1, . . . , vn) is an ordered basis for the vector space V and w ∈ V then
there are unique scalars a1, . . . , an such that

w =
n∑

i=1
ai vi .

The coordinate vector [w]α of w with respect toα is the n×1 matrix with entries
a1, . . . , an . The function that maps w to [w]α is an injective map from V to Fn .
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We can also show that

[w +x]α = [w]α+ [x]α, [cw ]α = c[w]α.

This shows that the coordinate map is an example of a linear mapping.

1.2 Subspaces

The intersection of any two subspaces (indeed, of any collection of subspaces)
is a subspace. The union of two subspaces is rarely a subspace—in particular
no vector space over an infinite field can be expressed as the union of a finite set
of proper subspaces. There is a replacement for union though: the sum U +V
of two subspaces U and V . We define this by

U +V := {u + v : u ∈U , v ∈V }.

We see that U +V is the span of U ∪V and therefore it is a subspace and it
is contained in any subspace that contains U and V . Consequently it is the
intersection of all subspaces that contained U and V and it follows that the
subspaces of a vector space, with the operations of intersection and sum, forms
a lattice. If U ∩V = {0}, we say that U +V is the direct sum of U and V .

Here we are concerned with the dimension of U +V . For this we need some
preliminaries. Suppose U is a subspace of W . We say that a subspace V of W
is a complement to U if U ∩V = {0} and U +V =W . We construct examples as
follows. Suppose S is a basis of W and (S1,S2) is a partition of S into two parts.
Let Ui denote the span of Si . Then U1 +U2 contains S, and hence it is equal to
V . It is also not hard to show that U1 ∩U2 = {0}. Hence U2 is a complement to
U1 (and vice versa).

1.2.1 Lemma. Let W be a vector space with finite dimension. Then any sub-
space of W has a complement.

Proof. Let U be a subspace of W and let S be a basis for U . Then there is a basis
T for W that contains S, let V be the span of T \S.

1.2.2 Theorem. If U and V are finite-dimensional subspaces of V , then

dim(U +V ) = dim(U )+dim(V )−dim(U ∩V ).
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Proof. We first establish a special case of the theorem: if U1 and U2 are sub-
spaces and U1 ∩U2 = {0}, then

dim(U1 +U2) = dim(U1)+dim(U2).

To derive this, we note that if Si is an independent subset of Ui (i = 1,2) and
U1∩U2 = {0} then S1∪S2 is linearly independent. Hence the union of a basis of
U1 and a basis of U2 is a basis for U1 +U2.

Now we consider the general case. Let V1 be a complement to U ∩V in V .
Then by what we have just proved,

dim(V1) = dim(V )−dim(U ∩V ).

We show that V1 is a complement to U in U +V . First

U +V1 =U + ((U ∩V )+V1) =U +V.

Second, U ∩V1 ⊆U ∩V and U ∩V1 ⊆V1, so

U ∩V1 ⊆ (U ∩V )∩V1 = {0}.

Therefore V1 is a complement to U in U +V and consequently

dim(V1) = dim(U +V )−dim(U ).

The two expressions for dim(V1) imply the result.

1.3 Linear Mappings

Let V and W be vector spaces over the same field. A function T with domain U
and codomain V is a linear mapping from U to V if, for all vectors u1 and u2 in
U ,

T (u1 +u2) = T (u1)+T (u2)

and if, for all scalars c and all vectors u in U ,

T (cu) = cT (u).

To specify a linear mapping, we must explicitly give its codomain. (This matters
most when we consider adjoints.)
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A bijective linear mapping is called an isomorphism. All this should be fa-
miliar. The image and kernel of a linear mapping T are subspaces. The dimen-
sion of im(T ) is its rank and the dimension of ker(T ) is its corank. The following
important relation between these parameters is sometimes called the “dimen-
sion theorem” for linear mappings.

1.3.1 Theorem. If T is a linear mapping with domain V then

rk(T )+cork(T ) = dim(V ).

Proof. Choose a basis v1, . . . , vn for V such that v1, . . . , vk is a basis for ker(T ).
Let U be the span of vk+1, . . . , vn . If u ∈U and Tu = 0, then

u ∈U ∩ker(T ) = {0}.

Hence the set T (vk+1), . . . ,T (vn) is linearly independent, and consequently it is
a basis for im(T ).

This is perhaps the most useful formula in linear algebra. An important
consequence is that, if T maps V to itself, then it is onto if and only if it is one-
to-one.

The coordinate map with respect to a basis is an important example of a
linear mapping.

If A is an m×n matrix over F then the function that sends x ∈ Fm to Ax in Fm

is a linear mapping, often denoted TA. This gives an even more important class
of examples. Note that ker(TA) is the null space of A and im(TA) is the column
space of A, so the dimension theorem yields that

rk(A)+cork(A) = n.

As an application, we rederive the formula for the dimension of the sum of
two subspaces. If U and V are vector spaces over the same field, their external
direct sum is the vector space with vectors

{(u, v) : u ∈V , v ∈V },

where
(u1, v1)+ (u2, v2) = (u1 +u2, v1 + v2)

and
c(u, v) = (cu,cv).
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We denote this by U ⊕V , and claim that

dim(U ⊕V ) = dimU +dimV.

Now suppose that U and V are subspaces of W . Then we can define a linear
map S from U ⊕V to W by

S : (u, v) 7→ u − v.

Note that S is a linear map from U ⊕V to the subspace U +V of W . It is
easy to see that S is onto, and that its kernel consists of the vectors (x, x), where
x ∈U ∩V . Hence

dim(U +V ) = rk(S) = dim(U )+dim(V )−dim(U ∩V ).

Define
(U ,0) := {(u,0) : u ∈U }

and define (0,V ) similarly. Then (U ,0) and (0,V ) are subspaces of U ⊕V having
zero intersection and

U ⊕V = (U ,0)+ (0,V ).

Thus an external direct sum is a direct sum of subspaces, as in the previous
section.

The term “external direct sum” is somewhat confusing. It may help to view
this as follows. We have a simple construction of a vector space W from two
vector spaces U and V over a field F. The space W is the direct sum, in our
original sense, of subspaces isomorphic to U and V .

1.4 Duals and Adjoints

Since we can add linear transformations from V to W and multiply them by
scalars, the set L (V ,W ) of all linear transformations from V to W forms a vec-
tor space. Hence:

1.4.1 Theorem. If V and W are vector spaces over F, then L (V ,W ) is a vector
space with dimension dim(V )dim(W ).

Proof. We present you a set of linear mappings, and invite you to prove they
form a basis.
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Let v1, . . . , vn be a basis for V and w1, . . . , wm be a basis for W . Let Ei , j be the
element of L (V ,W ) given by

Ei , j (vr ) =
{

w j , if r = i ;

0, otherwise.

(We use the fact that a linear transformation can be defined by specifying its val-
ues on a basis.) This set of dim(V )dim(W ) operators is the subset we promised.

Here we will be most interested in the dual space L (V ,F), which we denote
by V ∗. We consider some examples.

Suppose V is the space of all polynomials over F. If ψ ∈ V ∗, then ψ is de-
termined by its values on a basis, and hence determined by its values on the
powers of x. If we denote ψ(xn) by ψn , then we find that

ψ :
m∑

i=0
pi xi →

m∑
i=0

piψi .

Thus each sequence (ψn)n≥0 determines an element of V ∗. It follows that we
can identify V ∗ with the space of all formal power series in x.

Each element v of V gives rise to a map from V ∗ to F, that sends ψ in V ∗

to ψ(v) in F. This map is linear and injective, and allows us to identify V with a
subspace of (V ∗)∗. The previous example shows that this map need not be an
isomorphism in general, but it is an isomorphism when dim(V ) is finite. (This
follows from the observation that V , V ∗ and V ∗∗ all have the same dimension.)

If V = Fn , then the map that sends an element v to its i -th coordinate is
linear, and so belongs to V ∗. In this case V ∗ ∼=V .

If V = Matn×n(F), then the trace function is an element of V ∗.
We cannot resist remarking on one special property of V ∗. There is a natural

product on it: if f , g ∈V ∗ then f g is defined by ( f g )(u) = f (u)g (u).

Let T be a linear map from V to W . If g ∈ W ∗, then the composition g ◦T
is a linear mapping from V to F; hence it is an element of V ∗. Thus we have a
mapping that takes an element g of W ∗ to an element g ◦T in V ∗. This map is
linear (prove it!), and is called the adjoint of T . We denote it by T ∗. (We also
offer a warning: if T is a linear operator on an inner product space, the term
‘adjoint’ is applied to a different map.)

(1) Prove that T ∗ is linear.
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(2) Prove that T is one-to-one if and only if T ∗ is onto, and that T is onto if and
only if T ∗ is one-to-one.

(3) Prove that T ∗∗ = T .

(4) Prove that V is isomorphic to a subspace of V ∗∗.

1.5 Bilinear Forms

Suppose Φ is a linear mapping from V to V ∗. If u, v ∈V , then the map

(u, v) 7→Φ(u)(v)

is linear in each variable. Such a map is called a bilinear form. The simplest
example arises if we take V to be the space of n ×1 matrices over F. Then we
can identify V ∗ with the space of 1×n matrices. If vT ∈V ∗ and u ∈V , then the
value of vT on u is vT u. So we may take Φ to be the transpose map, and then
the bilinear form takes (u, v) to uT v . We generally denote the value of a bilinear
form by 〈u, v〉.

If u ∈ V and Φ(u)(v) = 0 for all v then Φ(u) must be the zero vector, and so
u ∈ kerΦ. If Φ(u)(v) = 0 for all u, then imΦ lies in the subspace of V ∗ formed
by the elements f such that f (v) = 0. If V is finite dimensional, then V and V ∗

have the same dimension and kerΦ is the zero subspace if and only if imΦ=V ∗.
We say that a bilinear form is non-degenerate if Φ is invertible; in this case Φ is
an isomorphism and we have the following description of V ∗:

1.5.1 Lemma. Let V be a finite-dimensional vector space with a non-degenerate
bilinear form. If f ∈V ∗, then there is a vector v in V such that f (x) = 〈v, x〉.

A bilinear form is symmetric if

〈u, v〉 = 〈v,u〉

for all u and v . It is alternating if

〈u, v〉 =−〈v,u〉

and 〈u,u〉 = 0 for all u. (The first condition implies the second unless we are
working over a field of characteristic two.)
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We describe one simple construction of bilinear forms. Let A be an n ×n
matrix over F. If u and v belong to Fn , define

〈u, v〉 := uT Av.

It is easy to verify this is bilinear. It is non-degenerate if and only if A is invert-
ible. It is symmetric if and only if A = AT and alternating if and only if both
AT =−A and all diagonal entries of A are zero.

If S is a subset of V then we define S⊥ to be the set of vectors v such that
〈v, x〉 = 0 for all x in S. (In practice, S will usually be a subspace or a vector.) It
is true that if U is a subspace of V , then

dimU⊥ = dimV −dimU ;

but we leave you to prove this. (See the exercises at the end of this section.)

(1) If U is a subspace of V , show that V =U +U⊥ if and only if U ∩U⊥ = {0}.

(2) Given that dim(U⊥) = dim(V )−dim(U ), prove that U⊥⊥ =U .

1.6 Counting

We count bases and subspaces in vector spaces over GF (q). Throughout this
section we assume that F has order q . Let V = Fn . Then V contains exactly qn

elements.
We begin by counting the number of subspaces of dimension 1. First we

note that two distinct subspaces of dimension 1 have only the zero vector in
common, and that a subspace of dimension 1 contains exactly q −1 non-zero
vectors. It follows that there are exactly (qn−1)/(q−1) 1-dimensional subspaces
of V . This number plays quite a role in what follows, so we define

[n] := qn −1

q −1
.

(We will write [n]q if we need to make the order of F explicit.) Note that [1] = 1
and [2] = q +1.

We next determine the number of ordered k-tuples (v1, . . . , vk ) of vectors
from V such that v1, . . . , vk is linearly independent. Suppose we have such a
(k −1)-tuple. We can extend it to a k-tuple by choosing vector not in the (k −1)-
dimensional subspace spanned by the (k −1)-tuple. There are qn − qk−1 such
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factors, and now a simple induction argument yields that the number of or-
dered k-tuples of linearly independent vectors is

(qn −1) · · · (qn −qk−1) = q(k
2)(q −1)k [n][n −1] · · · [n −k +1].

Since each k-tuple of linearly independent vectors spans a unique subspace of
dimension k, and since each subspace of dimension k gives rise to exactly

q(k
2)(q −1)k k[k −1] · · · [1]

k-tuples of linearly independent vectors, we find that the number of subspaces
of dimension k is

q(k
2)(q −1)k [n][n −1] · · · [n −k +1]

q(k
2)

(q −1)k k[k −1] · · · [1] = [n][n −1] · · · [n −k +1]

[k][k −1] · · · [1]
.

This suggests the use of the following notation. We define

[n]! := [n][n −1] · · · [1]

and [n

k

]
:= [n]!

[k]![n −k]!
. (1.6.1)

The right side of (1.6.1) is known as the Gaussian binomial coefficient. Using it,
we have:

1.6.1 Theorem. The number of subspaces of dimension k in a vector space of
dimension n over a field of order q is

[n
k

]
.

We note another consequence. An ordered basis for Fn is the same thing as
an invertible n ×n matrix. Hence:

1.6.2 Lemma. The number of invertible n ×n matrices over a field of order q is
q(n

2)(q −1)n[n]!.

Although it may not be immediately apparent, the Gaussian binomial coef-
ficient is a polynomial in q .

(1) Prove the recurrence for Gauss. . .

(2) Let U be a fixed subspace of Fn with dimension k. Compute the number of
`-dimensional subspaces V of Fn such that V ∩U = {0}.

(3) Let U and V be subspaces of Fn such that dim(U ) = k, dim(V ) = n −k and
U ∩V = {0}, where 2k ≤ n. Compute the number of subspaces W with di-
mension k such that

W ∩U =W ∩V = {0}.
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1.7 Normal Forms

There are a number of cases where we wish to decide if two linear independent
sets in a vector space span the same subspace. We can answer this by construct-
ing normal forms.

The conventional way to do this is using reduced row echelon form. At first
glance this only solves our problem for the vector spaces Fn , but we can always
translate our problem to Fn using the coordinate map with respect to some ba-
sis.

Let V be a finite dimensional vector space and let f1, . . . , fn be an ordered
basis for V ∗. If v ∈ V , we define the height of v to be the least value of i such
that fi (v) 6= 0. We write v < w if the height of v is less than the height of w .
(Technically the relation we have just introduced is a pre-order on V .)

1.7.1 Lemma. Let S be a finite subset of the finite-dimensional vector space V .
Then there is a subset T of V such that span(S) = span(T ) and no two elements
of T have the same height.

Proof. We convert S to T in a number of steps, as follows. If S does not contain
a pair of elements of the same height, there is nothing to be done. If S does
contain a pair of elements of the same height, choose a pair v and w with the
least possible height, i say. Then replace w by

w ′ := w − fi (v)

fi (w)
v.

Then the height of w ′ is greater than the height of w and

span((S \w)∪w ′) = span(S).

In this we may replace each element of height i , other than v , by a vector with
greater height, eventually reaching the situation where v is the unique element
of height i .

By induction on the number of elements, we may convert S \v to a set T1

such that span(S \v) = span(T1), no two elements of T1 have the same height,
and the least height of an element of T1 is greater than i . Then we may take T
to be T1 ∪ v .

We remark that this lemma holds in the vector space of all polynomials.
Take fr to be the element of the dual space that maps a polynomial to the coef-
ficient of xr . Then fr (p) = 0 for all r if and only if p is the zero polynomial, and
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this is all we need to make the argument work. One interesting point is that the
fr ’s do not form a basis of the dual space. Note also that in this case the height
of a polynomial is just its degree. For Pol(R), the above lemma asserts that each
subspace with finite dimension has a spanning set containing at most one poly-
nomial of each degree.

We will say that S is in echelon form if it contains at most one element of
each height. If S is in echelon form, then |S| ≤ n and S is linearly independent.
Further, if S does not contain an element of height i , then no element of span(S)
has height i . Consequently a basis for V must have size n.

We will say S is in normal form if:

(a) If v ∈ S has height i , then fi (v) = 1.

(b) There is at most one element of any given height in S.

(c) If v and w are elements of S with heights i and j respectively and i < j , then
f j (v) = 0.

These properties are a straighforward extension of the concept of reduced row-
echelon form.

1.7.2 Lemma. Let V be a finite dimensional vector space, and suppose S1 and
S2 are subsets of V in normal form. If S1 and S2 have the same span, they are
equal.

Proof. Suppose U = span(S1) and let H denote the set of heights of elements of
S1. If i ∈ H , let vi denote the element of S1 with height i . If x ∈V , let z be given
by

z := x − ∑
i∈H

fi (x)vi .

Then f j (z) = 0 when j ∈ H . If x 6= z, then the height of x −z is not an element of
H . Therefore x ∈U if and only if x = z.

Note that i is the height of an element in span(S1) if and only if i ∈ H . Ac-
cordingly H is also the set of heights of elements of S2. Let w1 and w2 denote
the elements of least height in S1 and S2 respectively. Then w1 and w2 have the
same height, k say.

Since w2 ∈U , so is w1 −w2. But

fi (w1 −w2) = 0

for all i in H , and therefore w1 = w2.
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The set of vectors in U with height greater than k is a subspace of U ; the
heights of the elements in this subspace are elements of H that are greater than
k. As both S1 \ w1 and S2 \ w2 are bases for this subspace in normal form, it
follows by induction (on the dimension of U ) that they are equal.

1.8 Groebner Bases

Let R be the ring of polynomials F[x1, . . . , xn]. An ideal in R is a subset I of R
such that, if p ∈ R and q ∈ I , then pq ∈ I . An ideal is a subspace of R that is
invariant under multiplication by elements of R. An ideal is finitely generated
if it contains polynomials g1, . . . , gr such that

I =
{

r∑
i=1

pi gi , pi ∈ R

}
.

If α= (a1, . . . , an) is a sequence of non-negative integers, then

xα :=
n∏

i=1
xai

i .

We use |α| to denote
∑

i ai , and we say that xα is a monomial of degree |α|. A
monomial order is a total order ‘≤’ of the set of all monomials in x1, . . . , xn such
that

(a) For any λ, we have 1 ≤ xα.

(b) If α, β and γ are non-negative and xα ≤ xβ, then xα+γ ≤ xβ+γ.

One important property of monomial orders is that any set of monomials
has a least element. It follows from (b) that a monomial order is an extension
of the usual partial order on monomials, that is, if xα divides xβ, then xα ≤ xβ.
We define the height of a monomial to be the number of monomials less than it,
relative to the given order. The height of a polynomial is the height of its leading
term. (Note that this is consistent with our usage in the previous section—the
map that takes a polynomial to the coefficient of a given monomial in it lies in
the dual space.)

Once we have chosen a monomial order, each polynomial in R has a unique
leading term of the form cxα, for some monomial xα. The scalar c is the leading
coefficient of the polynomial and xα is its leading monomial. If I is an ideal of
R, the leading-term ideal of I is the ideal generated by the leading terms of the
polynomials in I .
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1.8.1 Lemma. Any ideal of F[x1, . . . , xn] that is generated by monomials is gen-
erated by a finite set of monomials.

Proof. Let I be an ideal of R, let M denote the set of leading monomials of I ,
and let J be the ideal generated by M . If M contains both xα and xβ and xα

divides xβ, then M \xβ generates J . Hence we may assume that no element of
M divides another and so, by Lemma 1.8.3, it follows that M is finite.

1.8.2 Theorem. Every ideal of F[x1, . . . , xn] is finitely generated.

Proof. Let I be an ideal of R, let M denote the set of leading monomials of I ,
and let J be the ideal generated by M . Let g1, . . . , gm be set of polynomials in I
whose leading terms generate the leading-term ideal of I . We show that these
polynomials generate I .

If h ∈ I then there are polynomials a1, . . . , am such that the leading term of

m∑
i=1

ai gi

equals the leading term of h. Hence h −∑m
i=1 ai gi is a polynomial in I with

leading term less than the leading term of h. By induction on the height, we
conclude that this polynomial lies in the ideal generated by the gi ’s, and hence
that h ∈ I .

A Groebner basis for an ideal in F[x1, . . . , xn] is a generating set g1, . . . , gn

such that the leading terms of the gi ’s generate the leading-term ideal of I . The
previous result is a nice application of Groebner bases, which are a very useful
tool in computational algebra. We have managed to sidestep the question of
how we might actually find a Groebner base of an ideal. (They are not unique.)

If x and y are vectors over an ordered ring, e.g., the integers, we write x ≥ y
if the entries of x − y are all non-negative.

1.8.3 Lemma. If S is an infinite set of n-tuples of non-negative integers, it con-
tains a pair of distinct elements x and y such that x ≤ y .

Proof. We proceed by induction on n; the case n = 1 is trivial. Consider the
subset S(i , j ) of S defined by

S(i , j ) := {x ∈ S : xi = j }.
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If S(i , j ) is infinite for some i and j , then the set of (n − 1)-tuples we get by
dropping the i -th coordinate of each element of S(i , j ) contains a comparable
pair of distinct elements.

So we may assume that S(i , j ) is finite for all i and j . Choose an element z
of S. Then

n⋃
i=1

⋃
j≤zi

S(i , j )

is a finite union of finite sets. Accordingly there are infinitely many elements y
in S such that y ≥ z.

1.8.4 Corollary. Let A and B be integer matrices and let N denote the set of
non-negative integer solutions to AX = B . Define an element of N to be inde-
composable if it cannot be written as the sum of two non-zero elements of N .
Then the number of indecomposable elements of N is finite.

1.9 Codes

The goal of coding theory is to successfully transmit information, despite the
occurrence of errors in transmission. We describe one way of doing this.

We assume we have a message to transmit, which is a long binary string.
We divide the message into input words of length k, padding the message if
needed. If x is an input word, we transmit

w T = xT G . (1.9.1)

If the rows of G are linearly dependent, there will be vectors x such that xT G = 0
but x 6= 0. This is clearly no use to us, so we assume that rk(G) = k.

In place of w the receiver actually receives (w +e)T , where e is an error vec-
tor. The receiver’s task to determine e, and then to solve the equation (1.9.1) for
x. The possible form of e depends very much on the details. We will assume
that each bit is sent correctly with probability 1−p, and with probability p it is
changed from a 0 to a 1, or vice versa. The expected number of errors when we
send n bits is np. Generally p is small.

An input word is just an element of Zk
2 . The words we transmit, which we

call code words, are elements of row(G). If the error vector e ∉ row(G) then
(w + e)T ∉ row(G). We can decide if a received wode is a code word by attempt-
ing to solve (1.9.1) for x. Define the Hamming distance h(v, w) between two
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binary vectors to be the number of positions at which they differ. The mini-
mum distance of a code is the minimum distance between two distinct code
words. Our basic problem is to choose G so that its rank is large, and the mini-
mum distance is at least np+γpnp, for some positive constant γ. (For example,
γ= 10.)

We consider an example. Let G be given by

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

Thus we have 16 code words in our code C . The receiver needs a method to
decide if a given element w of Zn

2 lies in C . A convenient approach is to use a
so-called parity check matrix. This is a (n −k)×n matrix H with linearly inde-
pendent rows, such that

HGT = 0.

Thus the null space of H is equal to the column space of GT and a vector w t lies
in row(G) if and only if H w = 0. If we receive w and H w = 0 then the first four
entries of w are the input word. (Thus decoding is trivial.) Here we may take H
as follows (see Exercise ?? below):

H =
1 1 0 1 1 0 0

1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

Suppose we send w T = xT G and the w + ei arrives at the receiver. As usual,
ei is the i -th standard basis vector—we are assuming that exactly one error oc-
curs in transmission. Then the receiver computes

H w = H(w +ei ) = H w +Hei = Hei .

This is the i -th column of H . Inspection reveals that the seven columns of H
are distinct, and thus we can decide which entry of w has been corrupted in
transmission. Consequently we can correct any single error.

We note that since the columns of H are distinct, if i 6= j , then

H(ei +e j ) = Hei +He j 6= 0;
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therefore we can detect if one or two transmission errors occur.
Thus we might choose simply to detect errors, and request a retransmission

whenever an error occurred. Or we might know that the probability of two er-
rors in one word is too low to worry about, and correct each error that we noted.
In this case, if two errors did occur, our “correction” would not give us the word
that was really sent.

Note that we cannot hope to correct or even detect all errors, but we can
aim to reduce the proportion of undetected or wrongly corrected errors to a
specified level.

(1) If
G := (

I G1
)

and
H := (

GT
1 −I

)
,

show that the null space of H equals row(GT ).

(2) Suppose G is a k ×n matrix in reduced row echelon form and let G1 be the
k × (n −k) matrix we get from G by deleting the basic columns of G . Con-
struct an (n − k)×n matrix as follows: if the j -th column of G is the i -th
non-basic column of G , the j -th column of H is −ei ; if the j -th column of
G is basic and Gi , j = 1, then the j -th column of H is times the i -th column
of GT

1 . Prove that HGT = 0.

(3) Give a generator matrix G of order 11×15 such that the associated code can
be used to correct any single error.
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Chapter 2

Primary Decomposition

We use the primary decompostion to decompose vector spaces and linear map-
pings.

2.1 Modules

Let V be a vector space over F and let T be an endomorphism of V . A subspace
U of V is T -invariant if u ∈U for all elements u of U . If U is T -invariant, it is
invariant under all matrices in the ring F[T ] of polynomials in T . Hence it is a
module over this ring; we may also refer to it as a T -module.

(1) If T = I then a T -invariant subspace is just another name for a subspace.

(2) The zero subspace and V itself are T -invariant, for any T .

(3) ker(T ) is T -invariant, because if u ∈ ker(T ) then Tu = 0, and certainly 0 ∈
ker(T ).

(4) The range of T is T -invariant. For if u lies in the range of T then Tu is
contained in the range of T .

(5) If U is a subspace of V , the preimage of U relative to T is the set

{v ∈V : T v ∈U }.

If U is T -invariant, then so is its preimage relative to T . (Since ker(T ) is the
preimage of {0}, this shows that ker(T ) is T -invariant.)

19
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(6) The intersection and sum of T -invariant subspaces are T -invariant.

If U is a T -invariant subspace, then T �U denotes the endomorphism of U
that is defined by

(T �U )(u) = Tu,

for all u in U . We call T the restriction of T to U . If U is a 1-dimensional T -
invariant subspace and u spans U , then Tu must be a scalar multiple of u. If
u is a non-zero vector and Tu = θu, we say that u is an eigenvector of T with
eigenvalue θ.

If u ∈W , then the subspace spanned by vectors

T r v, r = 0,1, . . .

is easily seen to be T -invariant. We call it the T -invariant subspace generated
by v , and observe that is the smallest T -invariant subspace of W that contains
v . A T -invariant subspace generated by a single vector u is called a cyclic sub-
space for T . Cyclic subspaces are perhaps the most important class of invariant
subspaces.

(1) If T ∈ End(V ) and T is invertible, show that a T -invariant subspace is T −1-
invariant.

2.2 Control Theory

Consider a system of n+1 bodies arranged in a line. Assume that if the temper-
ature of the i -th body (1 ≤ i ≤ n) at time r is ti (r ), then its temperature at time
i +1 is given by

ti (r +1 = 1

4
(ti−1(r )+2ti (r )+ ti+1(r ))

The temperature of the 0-th body is entirely under our control, we denote its
value at time r by u(r ). The temperature of the (n +1)-st is fixed at zero. If t (r )
is the vector in Rn with i -th entry ti (r ) then t is determined by the equation of
the form:

t (r +1) = At (r )+u(r )b
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and the temperature vector t (0) at time zero. In particular, if n = 4 then

A =



0 0 0 0 0 0
0.25 0.5 0.25 0 0 0

0 0.25 0.5 0.25 0 0
0 0 0.25 0.5 0.25 0
0 0 0 0.25 0.5 0.25
0 0 0 0 0 0

 , b =



1
0
0
0
0
0

 .

By choosing different values for the terms of the sequence

u(0),u(1) . . .u(m)

we can reach a variety of different temperature distributions; are there any we
cannot reach?

To study this we assume that t (0) = 0. Then

t (1) = u(0)b

t (2) = u(1)b +u(0)Ab

t (3) = u(2)b +u(1)Ab +u(0)A2b

and

t (r +1) =
r∑

i=0
u(r − i )Ai b.

If Wr is the matrix

Wr =
(
b Ab · · · Ar−1b

)
then we see that

t (r +1) =Wr

u(0)
...

u(r )

 .

The state t (r+1) is therefore reachable if and only if it lies in the column space of
Wr . When r ≥ n, this column space is precisely the A-cyclic subspace generated
by b. (As the vectors Ar b lie in Rn we have that An lies in the column space of
Wn and, in general, the rank of Wm equal to the rank of Wn , whenever m ≥ n.)

In our particular example above, W6 is an upper triangular matrix with diag-
onal entries 41−r , for r = 1, . . . ,6. Therefore the cyclic subspace generated by b
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is R6, and so all states are reachable after at most six steps. If we change b to

1
0
0
0
0
1


then the space of reachable states has dimension two—in this case all reachable
states have t1(r ) = t6(r ), t2(r ) = t5(r ) and t3(r ) = t4(r ).

(1) Show that, even if t (0) 6= 0, it is still true that all states are reachable after at
most n steps if and only if the A-cyclic subspace generated by b is all of Rn .

(2) A system given by

t (r +1) = At (r ), z(r ) = cT t (r )

is observable if, given z(0), z(1), . . . z(m) (where m ≥ n) we can compute t (i )
for i = 0, . . . ,m. (Note: the input for the computation is A, c and the val-
ues of z.) Show that this system is observable if and only if the cyclic AT -
subspace generated by c is equal to Rn . Show further that, if the system
is observable, we need at most n consecutive values of z to determine all
previous states of the system.

2.3 Sums

We consider direct sums of subspaces. Suppose U1, . . . ,Uk are subspaces of V ,
and define U ′

i to be the sum of the subspaces U j , where j 6= i . We say that V is
the direct sum of the subspaces Ui if V is the sum of the subspaces Ui and

Ui ∩U ′
i = {0}, (i = 1, . . . ,k). (2.3.1)

If this condition holds, we write

V =U1 ⊕·· ·⊕Uk . (2.3.2)

There is a condition equivalent to (2.3.1) that is often easier to work with: V is
the direct sum of U1, . . . ,Uk if and only if for i = 1, . . . ,n −1,

Ui ∩ (Ui+1 +·· ·+Uk ) = {0}.
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We leave you to verify that these two conditions are equivalent.
As an easy consequence of the definition of direct sum, we have

dim(V ) = dim(U1)+·· ·+dim(Uk ).

There is a converse to this: if U1, . . . ,Uk are subspaces of V whose sum is V and∑
i

dim(Ui ) = dim(V ),

then V is the direct sum of the Ui ’s.

If (2.3.2) holds and v ∈V , then v can be written in exactly one way as a sum

v = u1 +·· ·+uk ,

where ui ∈Ui . Define a map Ei : V →Ui by Ei (v) = ui . Then Ei is linear,

E1 +·· ·+Ek = I ,

and

Ei E j =
{

Ei , ifi = j ;

0, otherwise.

Note that the last condition implies that Ei is idempotent, that is, E 2
i = Ei . We

call Ei the projection onto Ui . Conversely, if E1, . . . ,Ek is a set of idempotents
satisfying these conditions and Ui is the range of Ei , then V is the direct sum of
the spaces Ui .

1. If u1, . . . ,un are elements of V and Ui = span(ui ), show that V is the direct
sum of U1, . . . ,Un if and only if u1, . . . ,un is a basis for V .

2.4 Invariant Sums

If T is an endomorphism of V , we say a direct sum decomposition of V is T -
invariant if each summand is. If V is the T -invariant direct sum of U1, . . . ,Uk

and v ∈V then
v = u1 +·· ·+uk ,

where ui ∈Ui . Hence

T (u) = (T �U1)(u1)+·· ·+ (T �Uk )(uk ),
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and so we say that T is the direct sum of the operators T�Ui . It can be extremely
useful to be able to decompose V into a T -invariant direct sum.

We develop a characterization of invariant direct sums in terms of projec-
tions. We use the following simple tool.

2.4.1 Lemma. If E is idempotent, then x ∈ im(E) if and only if x = E x.

Proof. If x ∈ im(E) then x = E y for some y and therefore

E x = E 2 y = E y = x.

If x = E x then clearly x ∈ im(E).

2.4.2 Theorem. Suppose V =V1 ⊕·· ·⊕Vk and let E1, . . . ,Ek be the set of projec-
tions corresponding to the subspaces Vi . Let T be a linear operator on V . Then
the direct sum decomposition of V is T -invariant if and only if T Ei = Ei T for
each i .

Proof. We first claim that if E is an idempotent then im(E) is T -invariant if and
only if (I −E)T E = 0.

Now (I−E)T E = 0 if and only if T maps im(E) into ker(I−E). But (I−E)x = 0
if and only if x = E x and so the previous lemma implies that ker(I −E) =∈ (E).
This proves our claim.

It follows from this claim that im(I −E) is T -invariant if and only if ET (I −
E) = 0.

If T E = ET , then both ET (I −E) and (I −E)T E are zero. Conversely, if

ET (I −E) = (I −E)T E = 0

then
0 = ET (I −E)− (I −E)T E = ET −T E

and so T and E commute. Hence we have shown that im(E) and im(I −E) are
T -invariant if and only if ET = T E .

Let V ′
i be the sum of the subspaces V j for j 6= i . Then V ′

i = im(I −Ei ), and so
Vi and V ′

i are both T -invariant if and only if Ei commutes with T . The theorem
follows directly from this.

Our next result identifies one case where we can express V as a sum of T -
invariant subspaces.
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2.4.3 Lemma. Let T be an endomorphism of V . Then V = im(T )+ker(T ) if and
only if im(T )∩ker(T ) = 0.

Proof. Suppose rk(T ) = k and dim(W ) = n. Then dim(ker(T )) = n −k and so
im(T )+ker(T ) = n if and only if im(T )∩ker(T ) = {0}.

The constraint on T here may also be expressed thus: if w ∈W and T 2w = 0
then T w = 0.

As an application of this lemma, suppose that T is idempotent. If T 2v = 0,
then T v = 0 and so no non-zero vector T v lies in ker(T ). Hence V is the direct
sum of im(T ) and ker(T ). Note that T �ker(T ) is the zero map.

1. Show that a square matrix of the form

P :=
(
0 X
0 I

)
is idempotent. If T is represented by the matrix(

A B
C D

)
,

show that T fixes kerP if and only if C = 0 and that T fixes col(P ) if and
only if

XC X − AX +X D −B = 0.

2.5 Minimal Polynomials

Let T be an endomorphism of the n-dimensional vector space V . If v ∈V , then
there is a least positive integer r such that T r v lies in the span of v , T v ,. . . ,T r−1.
Hence there are scalars a1, . . . , ar such that

T r v +a1T r−1v +·· ·+a0v = 0.

It follows that there is a monic polynomial ϕ(t ) such that ϕ(T )v = 0. If ϕ1 and
ϕ2 are two polynomials such thatϕi (T )v = 0, then for all polynomials a1(t ) and
a2(t ),

(a1(T )ϕ1(T )+a2(T )ϕ2(T )v = 0,

from which it follows that if ϕ(t ) is the gcd of ϕ1(t ) and ϕ2(t ), then ϕ(T )v = 0.
Consequently:
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2.5.1 Lemma. Suppose T is an endomorphism of the finite-dimensional vector
space V and v ∈ V . There is a unique monic polynomial of least degree ψv (t )
such that ψv (T )v = 0. The degree of ψv is equal to the dimension of the sub-
space generated by v .

We call ψv (t ) the minimal polynomial of T relative to v . Since dimV = n,
the degree of ψv (t ) is at most n.

Next we observe that space of endomorphisms of V has dimension n2, and
therefore there is a least integer r , at most n2, such that I , T ,. . . ,T r are linearly
dependent. It follows that there is a unique monic polynomialψ of least degree
such that ψ(T ) = 0. It is called the minimal polynomial of T . (If LT denotes the
linear operator on End(V ) given by LT (M) = T M , then the minimal polynomial
of T is the minimal polynomial of LT relative to T itself.)

If v ∈V , then certainlyψ(T )v = 0, and it follows thatψv (t ) must divideψ(t ).
Hence ψ(t ) is the least common multiple of the polynomials ψv (t ), as v runs
over a basis of V .

2.5.2 Lemma. Suppose T is an endomorphism of the finite-dimensional vec-
tor space V and ψ is the minimal polynomial of T . Then each zero of ψ is an
eigenvalue of T .

Proof. Suppose ψv (θ) = 0. Then

ψ(t ) = (t −θ)ϕ(t )

and therefore
(T −θI )ϕ(T ) = 0.

Since ϕ is a proper factor of ψ, we see that ϕ(T ) 6= 0. Let w be a non-zero col-
umn of ϕ(T ). Then (T −θI )w = 0, and so w is an eigenvector for T with eigen-
value θ.

If ψv is the minimal polynomial of T relative to the vector v and ψv (t ) =
(t −θ)ϕ(t ), then ϕ(T )v is an eigenvector for T with eigenvalue θ. When dimV
is small, this provides an effective way of finding eigenvalues.

For example, suppose dimV = 2, and choose a non-zero vector v . If we are
very lucky, v is an eigenvector for T . If not, then T 2v is a linear combination of
v and T v , and ψv is quadratic. If θ and τ are the zeros of ψv (t ), then (T −θI )v
is an eigenvector for T with eigenvalue τ.
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2.6 Primary Decomposition

We use the minimal polynomial of an endomorphism to derive a direct sum
decomposition of the space on which it acts. We use the following fact: the
greatest common divisor of the polynomials ϕ1, . . . ,ϕk is 1 if and only if there
are polynomials a1, . . . , ak such that

a1ϕ1 +·· ·+akϕk = 1.

2.6.1 Theorem. Let T be an endomorphism of V with minimal polynomialψ(t ).
Suppose that ψ(t ) =∏r

i=1ψi (t ), where the factors ψi are pairwise coprime. Set
ϕr = ψ/ψr and let a1(t ), . . . , ar (t ) be polynomials such that

∑
i ai (t )ϕi (t ) = 1.

Then V is the direct sum of T -invariant subspaces Ui , where Ui is the range
of the idempotent ai (T )φi (T ). The minimal polynomial of T �Ui is ψi (t ), and
Ui = kerψi (T ).

Proof. Then the greatest common divisor of the polynomials ϕi is 1, and so
there are polynomials ai such that

a1ϕ1 +·· ·+arϕr = 1. (2.6.1)

Define
Ei := ai (T )ϕi (T ).

Then
r∑

i=1
Ei = I .

If i 6= j then ψ divides ϕiϕ j , whence

Ei E j = 0.

Together the last two equations imply that E 2
i = Ei ; thus Ei is an idempotent.

Let Ui denote the range of Ei . If u ∈Ui then Ei u = u and so

Tu = T Ei u = Ei Tu.

Therefore Tu lies in the range of Ei , and therefore Ui is T -invariant. Hence V is
a direct sum as described.

Next we show that the minimal polynomial of T �U1 is ψ1. Suppose p is a
polynomial such that p(T )Ui = 0. Then

0 = p(T )E1 = p(T )a1(T )ϕ1(T )
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which implies that pa1ϕ1 is divisible by ψ and consequently that ψ1 divides
pa1. Since ψ1 divides each of a2, . . . , ar , it follows from (2.6.1) that a1 and ψ1

are coprime. Hence ψ1 divides p, and we conclude that ψ1 is the minimal poly-
nomial of T �U1. Setting 1 equal to i , the general result follows.

Remark: If T has minimal polynomial ψ(t ), the ring of all polynomials in T
is isomorphic to the quotient ring F[t ]/(ψ(t )). The preceding theory is a reflec-
tion of the structure theory of this ring.

We use the primary decomposition theorem to prove the following funda-
mental result.

2.6.2 Theorem. Let T be an endomorphism of the vector space V over the field
F, where F is algebraically closed. Then there is a diagonalizable endomor-
phism S and a nilpotent endomorphism N such that S and N are both poly-
nomials in T and T = S +N .

Proof. Letψ be the minimal polynomial of T . Since F is algebraically closed, we
may write ψ as

ψ(t ) =∏
i

(t −θi )mi .

Define ψi by

ψi (t ) = ψ(t )

(t −θi )mi
.

Let Ei denote kerψi (T ). The polynomialsψi are coprime (as a set) and so by the
primary decomposition theorem, the Ei are pairwise orthogonal idempotents
summing to I . Further each Ei is polynomial in T .

Define S by

S =∑
i
θi Ei .

If x ∈ ker(T −θi )mi then

(T −S)mi x = (T −θi I )mi x = 0,

from which it follows that T −S is nilpotent. As Ei is a polynomial in T , we see
that S is too.
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2.7 The Degree of the Minimal Polynomial

We have seen that the minimal polynomial of an endomorphism T of V is equal
to the least common multiple of the minimal polynomials ψv , where v runs
over the vectors of a basis V . Fortunately something more concrete is true.

2.7.1 Theorem. If T is an endomorphism of Fn , then there is a vector x such
that the minimal polynomial of T relative to x is the minimal polynomial of T .

Proof. Assume first that the minimal polynomial ψ of T equals p(t )m , where p
is irreducible. Then p(T )m = 0 but p(T )m−1 6= 0. Choose a vector x such that
p(T )m−1x 6= 0. If φ is monic and φ(T )x = 0 then φ must divide ψ. If φ divides
pm−1 then φ(T )x 6= 0. Consequently φ= pm .

Now suppose that the minimal polynomial of T has the coprime factoriza-
tion ψ1ψ2 and that U1 and U2 are the summands of the corresponding direct
sum decomposition of Fn . Let E1 and E2 be the associated idempotents. Sup-
pose that xi is a vector in Ui such that the minimal polynomial of T relative to
xi is ψi . If φ is monic and

φ(T )(x1 +x2) = 0

then

0 = E1φ(T )(x1 +x2) =φ(T )E1(x1 +x2) =φ(T )x1.

This implies that ψ2 divides φ and a similar argument shows that ψ1 divides it.
So ψ divides φ and x1 +x2 is the vector we need.

An easy induction argument based on the last two paragraphs yields that
there is always a vector x such that the minimal polynomial of T is the minimal
polynomial of T relative to x.

If the field we are working with is infinite, there is an alternative proof. First,
the set of relative minimal polynomials ψv is finite, since they are all monic
divisors ofψ. Supposeψ1, . . . ,ψr is a list of all the possibilities, and let Vi be the
set of vectors v such that ψi (T )v = 0. Then Vi is a subspace of V and the union
of the spaces Vi is V itself. But a vector space over an infinite field cannot be
the union of a finite number of proper subspaces, hence Vi =V for some i and
ψi is the minimal polynomial of T .

2.7.2 Corollary. If dimV = n and T ∈ End(V ), then the degree of the minimal
polynomial of T is at most n.
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Proof. If T ∈ End(V ) has minimal polynomial ψ(t ), then there is a vector v
in V such that ψ(t ) is the minimal polynomial of T relative to v . Hence, if ψ
has degree d , the vectors v, Av1, . . . , Avd−1 are linearly independent. Therefore
dim(V ) ≥ d .

(1) Let T be an endomorphism of Fn and let x1, . . . , xn be a basis for Fn . If ψi

denotes the minimal polynomial of T relative to xi , show that the minimal
polynomial of T is the least common multiple of ψ1, . . . ,ψn .

(2) Prove that a vector space over an infinite field cannot be the union of a finite
number of proper subspaces.

2.8 Root Spaces

We consider primary decomposition when the field of scalars is algebraically
closed. In this case, if T is a linear operator on V with minimal polynomial
ψ(t ), then ψ(t ) has the coprime factorization

ψ(t ) =
k∏

i=1
(t −θi )mi ,

where θ1, . . . ,θk are the distinct zeros of ψ. It follows that V is the direct sum of
the subspaces

ker(T −θi )mi .

We call these subspaces the root spaces of T .
If v ∈V and (T −θI )m v = 0, then the minimal polynomial of T relative to v

divides (t −θ)m . We say that v is a root vector for T if its minimal polynomial
relative to T has the form (t −θ)r , for some integer r . If (T −θI )r v = 0 and v 6= 0,
then θ is an eigenvalue of T .

Since V is the direct sum of the root spaces of T , we have the following fun-
damental result.

2.8.1 Theorem. Let V be a finite-dimensional vector space over an algebraically
closed field. If T is a linear operator on V , then V has a basis consisting of root
vectors of T .
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The dimension of the root space of an eigenvalue θ of T is called its alge-
braic multiplicity. (The dimension of ker(T −θI ) is the geometric multiplicity
of the eigenvalue.)

2.8.2 Lemma. Let T be a linear operator on V and let v1, . . . , vn be non-zero root
vectors. If the respective eigenvalues of these vectors are distinct, then they are
linearly independent.

Proof. Assume dim(V ) = n. Suppose that we have scalars a1, . . . , ak , not all zero,
such that

k∑
i=1

ai vi = 0. (2.8.1)

We prove by induction on k that a1 = ·· · = ak = 0. When k = 1, this claim is
trivial. Assume k > 1. If we apply (T−θk I )n to both sides of the above expression
we get

a1(T −θk I )n v1 +·· ·+ak−1(T −θk I )n vk−1 = 0. (2.8.2)

Since none of v1, . . . , vk−1 lie in the root space belonging to θk , none of the k −1
terms in this sum is zero. Since each root space is T -invariant, (T −θi I )n vi is
therefore a non-zero root vector in the root space containing vi . So by induc-
tion, (2.8.2) implies that a1 = ·· ·ak−1 = 0. From (2.8.1) it follows that ak = 0 too,
and we conclude that v1, . . . , vk are linearly independent.

(1) Let T be a linear operator on V with an eigenvalue θ. Show that all root
vectors belonging to θ are eigenvectors if and only if

ker(T −θI )∩ range(T −θI ) = {0}.

2.9 Examples of Root Spaces

We give three examples of root spaces.
Suppose dimV = n and e1, . . . ,en is a basis for V . Thene there is a linear

operator T on V such that

T (ei ) =
{

ei+1, if i < n;

0, if i = n.

Thus, if r < n then T r (e1) = ei+r and T ne1 = 0. In this case V is the root space
belonging to the eigenvalue 0.
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Let V be C∞(R) and let D be differentiation. Then kerDr is the space of
polynomials of degree less than r . With some work, we can determine ker(D −
λI )r . First we define a linear operator Mλ on V by

Mλ( f ) := eλt f .

We claim that D −λI = MλDM−λ. (So D and D −λI are similar.)
To verify this we compute

DM−λ( f ) = d

d t
e−λt f (t )

=−λe−λt f (t )+e−λt f ′(t )

= e−λt (−λ f (t )+D( f (t )))

= M−λ(D −λI ) f .

Since M−1
λ

= M−λ, it follows that for all f in V ,

(MλDM−λ)( f ) = (D −λI )( f ),

which is what we claimed.
Now we determine ker(D −λI )r . We have

(D −λI )r = MλDr M−λ

and therefore (D −λI )r (g ) = 0 if and only if

MλDr M−λ(g ) = 0.

Since Mλ is invertible this holds if and only if

Dr M−λ(g ) = 0.

Accordingly ker(D −αI )r consists of the functions g (t ) such that e−λt g (t ) is a
polynomial of degree less than r . Therefore ker(D −λI )r consists of the func-
tions eλt p(t ) where p(t ) is a polynomial of degree less than r .

Let V =CN and let S be the left shift on V . Define a linear operator Mλ by

Mλ(a0, a1, a2, . . .) := (a0,λa1,λ2a2, . . .).

If λ 6= 0, then M−1
λ

= Mλ−1 and

S −λI = Mλ(S − I )M−1
λ .
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We can show that ker(S − I )r consists of the sequences

(p(0), p(1), p(2), . . .)

where p is a polynomial of degree less than r , and hence we can show that
ker(S −λI )r consists of the sequences

(p(0),λp(1),λ2p(2), . . .)

where p is again a polynomial of degree less than r .
The kernel of Sr consists of the sequences (ai )i≥0 such that ai = 0 if i > r .

2.10 Differential Equations

We begin with two technical results. In this section V is a vector space over C.

2.10.1 Lemma. Let T : V →V be linear and suppose that ifλ ∈C, then dim(ker(T−
λI ) ≤ 1. If p(t ) is a polynomial of degree n, then dim(ker p(T )) ≤ n.

Proof. We prove the result by induction on the degree of p(t ). If n = 1, there is
nothing to prove. Assume n > 1.

Suppose θ is a zero of p(t ). Then

p(t ) = (t −θ)q(t ),

where q is a polynomial of degree n − 1. By induction on n, we see that U =
ker q(T ) has dimension at most n −1.

Now ker p(T ) consists of all vectors v such that q(T )v lies in ker(T − θI ).
Hence q(T ) maps ker p(T ) into ker(T −θI ). Let S denote the restriction of q(T )
to ker p(T ). Then by the dimension theorem,

dim(ker p(T )) = dimker(S)+ rk(S) ≤ dim(ker(q(T )))+1 ≤ n.

The hypotheses of this lemma hold when V = C∞(R) and T is differentia-
tion, or when V =CN and T is the left shift.

2.10.2 Theorem. Let T be a linear operator on V and let p(t ) be a polynomial
whose zeroes are θ1, . . . ,θk , with respective multiplicities ν1, . . . ,νk . If ker p(T )
has finite dimension, it has a basis consisting of root vectors of T ; the eigenval-
ues of these root vectors are the zeros of p(t ) and the index of the root vectors
with eigenvalue θi is at most νi .



34 CHAPTER 2. PRIMARY DECOMPOSITION

Proof. Suppose K := ker p(T ). If u ∈ K , then

p(T )Tu = T p(T )u = 0

and therefore K is T -invariant. Hence K is spanned by root vectors of the re-
striction of T to K , and these are root vectors of T . Suppose z is a root vector of
T with eigenvalue θ and index m. Then

(T −θI )m z = 0, p(T )z = 0.

Therefore the minimal polynomial of T relative to z divides (t −θ)m and p(t ),
and thus it divides (t −θ)ν, where ν is the multiplicity of θ as a zero of p(t ).

Let V =C∞(R) and let D be differentiation. if

p(t ) := t n +a1t n−1 +·· ·+an ,

then the set of solutions to the differential equation

Dn f +a1Dn−1 f +·· ·+an f = 0

is the kernel of p(D). By Lemma 2.10.1 we see that ker p(D) has finite dimension
and so by Theorem 2.10.2, it follows that ker p(D) is spanned by root vectors of
D whose eigenvalues are zeros of p(t ).

We want to find all solutions to

D2 f +3D f +2 f = 0.

The solution set of this equation is ker p(D), where

p(t ) := t 2 +3t +2 = (t +1)(t +2)

From our work above, this subspace has a basis consisting of root vectors for D .
Since the zeros of p(t ) are simple we only need root vectors of index one, that
is, we only need eigenvectors. Hence the functions

e−t , e−2t

form a basis for the solution space of this differential equation and therefore
every solution can be written as

Ae−t +Be−2t ,
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for some scalars A and B .
Suppose we want all solutions of

D2 f +2D f + f = 0

Here
p(t ) = (t +1)2,

whence we see that ker p(D) is spanned by root vectors with eigenvalue −1 and
index at most two. Therefore it is spanned by

e−t , te−t ;

the solutions all have the form

(A+B t )e−t

for some scalars A and B .

2.11 Linear Recurrence Equations

The Fibonacci sequence ϕ= ( fn)n≥0 is defined by the recurrence

fn+1 = fn + fn−1 (2.11.1)

and the initial conditions f0 = f1 = 1. We want to find an explicict expression
for the terms of this sequence.

Let S denote the left shift on CN. Then we may rewrite (2.11.1) as

S2ϕ= Sϕ+ϕ;

this suggests we should study ker p(S), where

p(t ) = t 2 − t −1.

The zeros of p(t ) are
1±p

5

2
;

denote these by θ and τ, where θ > τ. It follows from Theorem 2.10.2 that
ker p(S) is spanned by root vectors for θ and τ with index at most one, hence
by eigenvectors.
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The eigenvector for S with eigenvalue a is the geometric series

(1, a, a2, . . .)

and therefore there are constants a and b such that

fn = aθn +bτn .

Setting n = 0 and n = 1 here gives two equations in the unknowns a and b:

1 = a +b, 1 = aθ+bτ.

We can rewrite the second equation as

1 = a +b

2
+ a −b

2

p
5;

since a +b = 1 this implies that

a −b = 1p
5

.

Therefore

a = 1+p
5

2
p

5
= θp

5

and

b = −1+p
5

2
p

5
=− τp

5

We conclude that

fn = 1p
5

(θn+1 −τn+1).

2.12 Diagonalizability

A matrix A is diagonalizable if there is a diagonal matrix D and an invertible
matrix L such that A = LDL−1, that is, A is similar to a diagonal matrix. If A =
LDL−1 then Ak = LDk L−1, and so computing k can be reduced to the simpler
task of computing Dk . More generally, it is often possible to reduce questions
about diagonalizable matrices to questions are diagonal matrices (which are
often trivial).
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2.12.1 Theorem. For an n ×n matrix A over an algebraically closed field F, the
following are equivalent:

(a) A is diagonalizable.

(b) Fn has a basis that consists of eigenvectors of A.

(c) The minimal polynomial of A has no repeated factors.

Proof. If two matrices are similar, their minimal polynomials are equal, and so
(a) implies (c).

If the minimal polynomial has no repeated factors then there are no root
vectors of index greater than one, and thus it follows that Fn has a basis formed
from eigenvectors of A.

Finally, suppose that the columns of L are a basis consisting of eigenvectors.
Then each column of AL is a scalar multiple of the corresponding column of L,
and therefore there is a diagonal matrix D such that AL = LD . Since L must be
invertible, (a) follows.

If F is not algebraically closed (or close to it, like R), then diagonalizability is
not usually a useful concept.



38 CHAPTER 2. PRIMARY DECOMPOSITION



Chapter 3

Frobenius Normal Form

We derive some properties of matrices from the theory we have established,
and then develop the theory of the Frobenius normal form.

3.1 Companion Matrices

Let T be an endomorphism of the finite-dimensional vector space V . One of
the best ways to study T is to find T -invariant subspaces of V , and cyclic sub-
spaces are the most accessible of these.

The dimension of the subspace U generated by a vector v is the least integer
k such that T k v lies in the span of the vectors

v,T v, . . . ,T d−1v,

and this set of vectors forms a natural basis for U . Let vi denote T i v . Then
there are scalars a1, . . . , ak such that

T vd−1 =−ad v0 −·· ·−a1vd−1. (3.1.1)

If i < d −1, then T vi = vi+1 and therefore the matrix representing the action of
T on U , relative to the ordered basis v0, . . . , vd−1, has the form

0 0 · · · 0 −ad

1 0 0 −ad−1

0 1 0 −ad−2
...

...
...

...
0 0 · · · 1 −a1

 (3.1.2)

39
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We call this matrix the companion matrix of the polynomial

p(t ) = t d +a1t d−1 +·· ·+ad .

(We will also refer to this as the right companion matrix of p; we will meet other
flavours as we proceed.) Since vi = T i v0, from (3.1.1) we find that

p(T )v0 = (T d +a1T d−1 +·· ·+ad I )v0 = 0.

Thus p(t ) is the minimal polynomial of T relative to v .

We now consider a matrix view of the previous material. Suppose v ∈ Fn and
A ∈ Matn×n(F). Assume that the A-cyclic subspace generated by u has dimen-
sion d and let the matrix R be given by

R := (
u Au · · · Ad−1u

)
.

Thus col(R) is the A-cyclic subspace generated by u. Ifψ(t ) is the minimal poly-
nomial of A relative to u and C is the companion matrix of ψ, then

AR = (
Au A2u · · · Ad u

)= RC .

There is a third view, which is also quite important. Suppose ψ is a polyno-
mial of degree d over F and let Vψ be the vector space of polynomials over F
modulo ψ. This vector space is usually denoted by F[z]/(ψ(z)); its elements are
equivalence class of polynomials, where polynomials f and g are equivalent if
and only if f − g is divisible by ψ. Each equivalence class contains a unique
polynomial of degree less than d , and these are the natural representatives of
the equivalence classes.

The powers
1, z, . . . , zd−1

provide one basis for Vψ. Multiplication by z is an endomorphism of Vψ, and
the matrix respresenting multiplication by z relative to this basis is easily seen
to be the companion matrix of ψ.

1. Let p(z) be a polynomial of degree k as above and let Cp denote its com-
panion matrix. If f is a polynomial of degree less than k, let f̂ be the
coordinate vector of f relative to the standard basis 1, x, . . . , xk−1. Use the
fact that f (z)zi and zi f (z) have the same remainder modulo p to prove
that

f (Cp ) = (
f̂ Cp f̂ . . . (Cp )k−1 f̂

)
.

Deduce that f (Cp )ĝ = g (Cp ) f̂ .
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2. If Cp is a companion matrix of order n ×n, show that rk(Cp −θI ) ≥ n −1,
for any element θ of F. Deduce that the geometric multiplicity of any
eigenvalue is at most 1. (This implies that C is diagonalizable if and only
if the zeros of p are all simple.)

3. Let U be the subspace spanned by the vectors T r u, where r ≥ 0. If Su ∈U ,
show that there is a polynomial p such that Su = p(T )u. Hence deduce
that if U is S-invariant and ST = T S, then S�U is a polynomial in T �U .

3.2 Transposes

We introduce a second basis for Vψ. If

ψ(z) = t d +a1t d−1 +·· ·+ad ,

define polynomials ψ1, . . . ,ψd by

ψi (z) := t d−i +a1t d−i−1 +·· ·+ad−i .

These polynomials can also be defined by the initial condition ψd (z) = 1 and
the backwards recurrence

ψi−1(z) = zψi (z)+ad−i+1. (3.2.1)

As a third alternative, we can view ψi (z) as the polynomial part of the rational
function z−iψ(z). Since ψi (z) is monic of degree d − i , we see that these poly-
nomials form a basis for Vψ, sometimes called the control basis.

Suppose v ∈ V and T is an endomorphism of V with minimal polynomial
ψ(z) relative to v . Then the vectors

ψ1(T )v, . . . ,ψd (T )v

form a basis for the T -cyclic subspace U generated by v . It follows from (??)
that

Tψi (T )v =
{
−ad v, if i = 1;

ψi−1(T )v −ad+1−i v, if 2 ≤ i ≤ d .

From this we see that the matrix representing T with respect to the control basis
is C T

ψ , the transpose of the companion matrix of ψ.
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It follows that since C and C T both represent the action of T on U , they are
similar. We can say more about this.

Let Q be the d ×d matrix given by

Q =


ad−1 ad−2 . . . a1 1
ad−2 ad−3 1 0

...
...

a1 1 0
1 0 . . . 0

 .

Note that Q is symmetric and invertible. Choose an ordered basis α for V and
let A be the matrix representing T in its action of V . Let R be the matrix with
the coordinate vectors [T i v]α as its columns and let S be the matrix with the
vectors [pi (T )v]α as its columns. Then S = RQ and

AR = RC , AS = SC T .

Hence ARQ = AS = SC T = RQC T and therefore RCQ = RQC T . Since the columns
of R are linearly independent, it follows that QC T =CQ.

It will follow from what we have just proved that if A is an n×n matrix, there
is a symmetric invertible matrix Q such that AT =Q−1 AQ.

3.3 Eigenvectors for Companion Matrices

We give explicit formulas for the left and right eigenvectors of a companion ma-
trix. We use e1, . . . ,ed to denote the standard basis vectors of Fd , as customary.

3.3.1 Lemma. Let ψ(z) be a polynomial of degree d and let C be its companion
matrix. Then (

1 z · · · zd−1
)

C = z
(
1 z · · · zd−1

)−ψ(z)eT
d .

Proof. Suppose
ψ(z) = t d +a1t d−1 +·· ·+ad .

If i < d , the i -th entry of (
1 z · · · zd−1

)
C

is zi+1; while the d-th entry is

−(a1 +a2z +·· ·+ad zd−1 = zd −ψ(z).

The lemma follows at once from this.
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If, in the above lemma, we take z to be a zero θ of ψ, then it follows that(
1 θ · · · θd−1

)
is a left eigenvector of C with eigenvalue θ.

Our next lemma will provide right eigenvectors. Let ψ1, . . . ,ψd denote the
control basis for Vψ.

3.3.2 Lemma. Let ψ(z) be a polynomial of degree d and let C be its companion
matrix. Then

C

ψ1
...
ψd

= z

ψ1
...
ψd

−ψ(z)e1.

Proof. This is again routine; we leave it as an exercise.

These two lemmas provides right and left eigenvectors for C , one for each
zero θ of ψ(z). If ψ(z) has d distinct zeros, we obtain d distinct left eigenvec-
tors for C . Since the eigenvalues are distinct, these eigenvectors are linearly
independent.

If we are working over R or C, we can say something useful when ψ(z) has
zeros with multiplicity greater than 1. The idea is to differentiate both sides of
the identity in Lemma 3.3.2. Define

Ψ(z) :=

ψ1
...
ψd


and let Ψ(r )(z) denote the r -th derivative of Ψ(z). Then

CΨ(r )(z) = zΨ(r )(z)+ rΨ(r−1) −ψ(r )(z)e1.

If θ is a zero of ψ with multiplicity m and r < m, then ψ(r )(θ) = 0 and therefore

(C −θI )rΨ(r )(θ) = r !Ψ(θ).

Note the since the polynomials ψi form a basis for the polynomials of degree
less than d , they cannot all be zero at θ; therefore Ψ(θ) 6= 0. It follows that the
vectors Ψ(r )(θ) are a basis for the root space associated with θ. (Exercise: show
that these vectors are linearly independent.)



44 CHAPTER 3. FROBENIUS NORMAL FORM

1. By expanding the expression

(
1 w · · · w d−1

)
C

ψ1(z)
...

ψd (z)


in two different ways, derive the identity

(w − z)
∑

i
w iψi (z) =ψ(w)−ψ(z).

(If we take w and z to be zeros of ψ, this gives the orthogonality relation
between the right and left eigenvectors of C .)

2. Let Q be the symmetric matrix from ??. Show that

Ψ(z) =Q


1
z
...

zd−1

 ,

and hence deduce that C T =Q−1CQ.

3.4 Inverses of Companion Matrices

Suppose A ∈ Matn×n(F) and that u ∈ Fn that generates an A-cyclic subspace of
dimension d . Let ψ be the minimal polynomial of A relative to u. If

ψ(t ) := t k +a1t k−1 +·· ·+ak ,

then C is invertible if and only if ak 6= 0. (There are a number of ways to see this.
Perhaps the easiest is to note that if we move the last column of C to the first
position, the resulting matrix C ′ is lower triangular with (C ′)1,1 = −ak and all
other diagonal entries equal to 1.) If C is invertible, there is a simple expression
for C−1. To describe this, we need a new operation on polynomials.

If q is a polynomial with degree k, let q̃ denote the polynomial t k q(t−1).
(This is q with its coefficients reversed.) Note that if A is invertible, then p(A) =
0 if and only if

Ak p̃(A−1) = 0.
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It follows that if p is the minimal polynomial of A, then a−1
k p̃ is the minimal

polynomial of A−1.
Let R be the matrix given by

R = (
u Au · · · Ad−1u

)
.

Then AR = RC and col(R) is the A-cyclic subspace generated by u. If A is invert-
ible, then A−1 is a polynomial in A and therefore col(R) is A−1-invariant. Hence
there is a matrix D such that

A−1R = RD

and D =C−1. Now

A−1 (
u Au · · · Ad−1u

)= (
A−1u u · · · Ad−2

)
,

whence D is a d ×d matrix of the form(
γ Id−1

cd 0

)
.

If we write C in the form

C =
(

0 ad

Id−1 α

)
,

then the equation DC = I implies that

Id =
(

Id−1 adγ+α
0 ad xd

)
Consequently we must have

cd = a−1
d , γ=−a−1

d α

and therefore

D =
(−a−1

d α Id−1

a−1
d 0

)
.

This expression for D makes sense if and only if ad 6= 0, because C can be invert-
ible even when A is not. Hence we have proved the following:

3.4.1 Theorem. Let p be a polynomial with degree k and let C be the compan-
ion matrix of p. Then C is invertible if and only if p(0) 6= 0. If p(0) 6= 0, then

C−1 = T DT,

where D is the companion matrix of a−1
k p̃ and T is the matrix whose columns

are the standard basis vectors in reverse order.
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By way of example, we have
−c/d 1 0 0
−b/d 0 1 0
−a/d 0 0 1
−1/d 0 0 0




0 0 0 −d
1 0 0 −c
0 1 0 −b
0 0 1 −a

= I .

If C is a companion matrix and T is the permutation matrix in the previ-
ous theorem, we say that TC T is a left companion matrix. Analogously we will
call C T a bottom companion matrix. And to round off the list, T C T T is a top
companion matrix. All four flavours occur in practice.

3.5 Cycles

Let P be the n×n matrix such that Pe1 = en and, if 2 ≤ i ≤ n then Pei = ei−1 and
Pen = e1. Thus if n = 5,

P =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

We see that P n = I and P is a companion matrix for the polynomial t n −1. Fur-
ther P−1 = P T , and therefore P is orthogonal.

Let vθ be the vector of length n with i -th entry θi−1. Thus

vθ =
∑

i
θi−1ei

and consequently, if θn = 1, then

P vθ =
∑

i
θi−1Pei =

∑
i
θi−1ei−1 = θvθ.

Therefore the vectors vθ, as θ runs over the distinct n-th roots of unity, are eigen-
vectors for P . It is not hard to show that, if n is odd, any real eigenvector of P is
a scalar multiple of v1.

Now let A = P +P T . Then A is symmetric and

Avθ = (θ+θ−1)vθ.



3.6. CIRCULANTS AND CYCLIC CODES 47

Therefore the vectors vθ, as θ runs over the distinct n-th roots of unity, are eigen-
vectors for A. Note that here the eigenvalues

θ+θ−1 = θ+θ

are real, even though the eigenvectors themselves are complex (unless θ is real).
The eigenvalues of P are roots of unity. Suppose Q is orthogonal and v is an

eigenvector for it with eigenvalue θ. Then Qv = θv , but

‖v‖ = ‖Qv‖ = ‖θv‖ = |θ|‖v‖.

It follows that all eigenvalues of an orthogonal matrix lie on the unit circle in
the complex plane.

3.6 Circulants and Cyclic Codes

Let Pn be the companion matrix for the polynomial t n −1. Thus if n = 5 then

P5 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


We see that Pnei = ei+1 if i < n and Pnen = e1. A circulant matrix is a matrix
which is a polynomial in Pn . This is equivalent to stating that a matrix is a cir-
culant if it is square and each row is a cyclic right shift of the row above it. If the
first column of the circulant A is a1

...
an


then

A =
n∑

i=1
ai P i−1.

It follows that there is an isomorphism between the vector space of n ×n circu-
lant matrices and the space of polynomials with degree less than n. But this is
misleading. Suppose a and b are polynomials with degree less than n, and asso-
ciated circulants A and B respectively. Then the product AB is a circulant, but
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the polynomial belonging to it cannot be ab unless the degree of this product
is less than n. In fact the polynomial is the remainder of the product a(t )b(t )
on division by t n − 1. Thus the space of n ×n circulants is isomorphic to the
quotient ring F[x]/(xn − 1). This isomorphism is an algebra isomorphism. If
deg(a) < n, we use Cg to denote the circulant associated with g .

The row space of an n ×n circulant over F is a cyclic code of length n. Sup-
pose f is a polynomial and that g is its greatest common divisor with t n − 1.
Then there are polynomials a and b such that

a(t ) f (t )+b(t )(t n −1) = g (t ).

Hence
Cg =Ca f =CaC f

and therefore row(Cg ) ⊆ row(C f ). On the other hand, f = f1g and so

C f =C f1Cg ,

which implies that row(C f ) ⊆ row(Cg ) and hence that row(C f ) = row(Cg ). This
proves that a cyclic code of length n over F is equal to Cg , for some divisor g of
t n −1.

One of the most important parameters of a code is its dimension. Thus we
would like to determine rk(Cg ). If g has degree d , then the submatrix formed by
the intersection of the first n−d columns and last n-d rows of Cg is the identity
matrix In−d . Therefore

rk(Cg ) ≥ n −d .

Suppose a(t ) is a polynomial of degree less than n, and let [a] denote its
coordinate vector with respect to the ordered basis 1, t , . . . , t n−1. If Cg [a] = 0,
then

0 =Cg [a] = P r Cg [a] =Cg P r [a]

for all r and consequently
Cg Ca = 0.

Equivalently, Cg Ca = 0 if and only if Cg Cae1 = 0. Now Cg Ca = 0 if and only
if t n − 1 divides g (t )a(t ), and accordingly the null space of Cg consists of the
vectors [a] such that (t n−1)/g (t ) divides a(t ). If we set h(t ) equal to (t n−1)/g (t ),
then the null space of Cg is the column space of Ch . The dimensions of the row
and column spaces of Ch are equal, and therefore

rk(Ch) ≥ n − (n −d) = d .
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So by the rank+nullity theorem,

rk(Cg )+ rk(Ch) = n,

which forces us to conclude that rk(Cg ) = n −d .

If Cg 2 [a] = 0 then Cg 2Ca = 0 and so t n −1 divides g (t )2a(t ). If t n −1 has no
repeated factors, then t n−1 divides g (t )2a(t ) if and only if it divides g (t )a(t ). In
this case it follows that Cg is diagonalizable. If xn −1 = p(t )2q(t ), then C 2

pq = 0
and Cpq is nilpotent, and not diagonalizable.

However xn −1 has a repeated factor if and only if its gcd with its derivative
nxn−1 is not constant, in other words, if and only if n is not divisible by the
characteristic of F. In particular, if the characteristic of F does not divide n,
then Fn is the direct sum of ker(Cg ) and col(Cg ).

Let E be an extension field of F in which t n −1 splits into linear factors. If n
and the characteristic of F are coprime, these factors are all distinct. It follows
that each divisor g of t n −1 is determined by the set of n-th roots of 1 on which
it vanishes. Let vθ be the vector of length n with i -th entry equal to θi−1. Then
if θn = 1,

Cg vθ = g (θ−1)

and so row(Cg ) consists of the vectors xT such that

xT vθ = 0

whenever θ−1 is a zero of g .

3.7 Frobenius Normal Form

A square matrix C is in Frobenius normal form if

(a) It is block-diagonal, with diagonal blocks C1, . . . ,Cm .

(b) Each diagonal block is the companion matrix of a polynomial ψi (t ).

(c) For i = 1, . . . ,m −1, the polynomial ψi+1 divides ψi .

Thus the Frobenius normal form can be specified by giving the sequence of
polynomials ψi .

We want to prove that two matrices over a field are similar if and only if they
have the same Frobenius normal form. We require two preliminary results.
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3.7.1 Lemma. Then if N1 and N2 are similar, they are equal.

Proof. Suppose that

N1 :=
(
L1 0
0 D1

)
, N2 :=

(
L2 0
0 D2

)
are both in Frobenius normal form. Then p(N ) = 0 if and only if p(L1) = 0 and
p(D1) = 0. Hence the minimal polynomial of N1 is the minimal polynomial
of L1. Since N1 and N2 are similar, they have the same minimal polynomial,
and this is also the minimal polynomial of L2. Thus L1 and L2 have the same
minimal polynomial, and as they are companion matrices this implies that they
are equal.

Now let ψ1 be the minimal polynomial of D1. Then ψ1(N1) and ψ1(N2) are
similar and thus (

ψ1(L) 0
0 0

)
∼

(
ψ1(L) 0

0 ψ1(D2)

)
.

This implies that ψ1(D2) = 0 (prove it!) and we conclude that D1 and D2 have
the same minimal polynomial. An easy induction argument now yields that
D1 = D2.

3.7.2 Lemma. Let A be an n ×n matrix over F. If there is a non-zero cyclic sub-
space U of dimension k, then there is a cyclic subspace of Fn of dimension at
least k with an A-invariant complement. If dim(U ) equals the degree of the
minimal polynomial of A, then U has an A-invariant complement.

Proof. Let u be a non-zero vector and suppose that the A-invariant subspace it
generates has dimension k. Let U be the n ×k matrix with the vectors

u, Au, . . . , Ak−1u

as its columns. Then rk(U ) = k, and by Lemma ??, there is a n×k matrix V such
that V T U = I . Let w denote the last column of V . (Now that we have w , we will
ignore V .)

We have

w T Ar Asu = w T Ar+su =
{

1, if r = k −1− s;

0, ifr < k −1− s.

If W is the matrix with columns

(Ak−1)T w, (Ak−2)T w, . . . , AT w, w
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then W T U is a lower triangular matrix with diagonal entries equal to 1. There-
fore it is invertible, and therefore rk(W ) = k.

Let ` be the dimension of the AT -invariant subspace generated by w . Since
rk(W ) = k, we see that k ≤ `. If k 6= `, then repeating the above argument with
AT in place of A and w in place of U , we obtain a cyclic subspace for A with
dimension at least `. By repeating both these steps a finite number of times,
we reduce to the case where k = `. Therefore we may assume that col(W ) is
AT -invariant, and so there is a matrix L such that AT W = W LT . If W T x = 0
then

0 = LW T x =W T Ax;

accordingly the null-space K of W T is A-invariant. Since W T U is invertible, no
non-zero element of col(U ) lies in K . Since rk(W ) = k, we see that dimK = n−k
and therefore K is an A-invariant complement to col(U ).

To obtain the last statement of the proof, note that A and AT have the same
minimal polynomial. So if k equals the degree of this polynomial, then rk(U ) =
rk(W ).

It follows readily from this lemma that every square matrix is similar to a
block diagonal matrix, where each block is a companion matrix. We can also
use it as follows to verify the existence of the Frobenius normal form.

3.7.3 Theorem. Every square matrix is similar to a matrix in Frobenius normal
form.

Proof. Let A be an n×n matrix with minimal polynomialψ(t ) of degree k. By ??,
there is a vector u such thatψ is the minimal polynomial of A with respect to u,
and therefore u generates a cyclic subspace V of dimension k. By the previous
lemma, it follows that this subspace has an A-invariant complement K .

Choose a basis for Fn consisting of the columns of V followed by a basis for
K . Relative to this basis, A is represented by a block-diagonal matrix(

L 0
0 B

)
,

where L is the companion matrix of the minimal polynomial of A. The minimal
polynomial of B divides the minimal polynomial of A. By induction on n we
see that B is similar to a matrix in Frobenius normal form; stacking L on top of
this produces a matrix in Frobenius normal form that is similar to A.
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We can use Lemma 3.7.2 to compute the minimal polynomial of a sqaure
matrix. First compute a block-diagonal matrix similar to A, with companion
matrices as its blocks. The least common multiple of the polynomials associ-
ated to these companion matrices is the minimal polynomial of A.

3.8 Applications

We use C (M) to denote the commutant of M , that is, the set of matrices that
commute with M . This a subspace that contains all polynomials in M .

3.8.1 Theorem. Let A and B be square matrices. If C (A) ⊆ C (B), then B is a
polynomial in A.

Proof. Assume A is n×n. We can decompose Fn as the direct sum of A-invariant
subspaces V1, . . . ,Vk . For each subspace there is a cyclic vector vi such that the
powers Ar vi span Vi . If ψi is the minimal polynomial of A�Ui , then its degree
equals dimVi , and ψi+1 divides ψi .

Let Pi denote the projection on Vi . From ??, the projections Pi commute
with A. Hence they commute with B and, again by ??, it follows that the sub-
spaces Vi are B-invariant. Therefore B vi ∈ Vi and therefore there is a polyno-
mial gi such that B vi = gi (A)vi . As AB = B A, we have

B Ar vi = Ar B vi = Ar gi (A)vi = gi (A)Ar vi ,

and therefore B v = gi (A)v for all v in Vi .
To complete the proof, we show that gi (A)vi = g1(A)vi . This implies that

B = g1(A).
Let qi := ψ1/ψi . Consider the map that sends f (A)vi to qi (A) f (A)v1. If

f (A)vi = 0, then ψi divides f and so ψ1 =ψi qi divides qi (A) f (A)v1. It follows
that this is a well-defined linear map from Vi to V1. We extend it a linear map
Xi from V to V by defining Xi (v) = 0 if v ∈ V j and j 6= i ; if v = f (A)vi then
Xi v = qi (A) f (A)v1.

If i 6= j and v ∈V j , then AXi v = Xi Av = 0. Further

AXi f (A)vi = Aqi (A) f (A)v1

and
Xi A f (A)vi = qi (A)A f (A)v1.
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Therefore Xi commutes with A, and therefore it commutes with B . Now

Xi B vi = Xi gi (A)v1 = gi (A)qi (A)v1

and
B Xi vi = B qi (A)v1 = qi (A)B v1 = qi (A)g1(A)v1.

Since Xi and B commute, this implies that

(gi (A)− g1(A))qi (A)v1 = 0,

whence (gi − g1)q1 is divisible by p1 = qi pi , and so pi divides gi − g1. Conse-
quently

gi (A)vi = g1(A)vi ,

for all i .

The above proof follows Prasalov.

3.9 Nilpotent Matrices

A linear mapping or a matrix is nilpotent if some power of it is zero. The canon-
ical example is

N2 :=
(
0 0
1 0

)
,

whose square is zero. If T is nilpotent then its minimal polynomial is t k for
some k, sometimes called the index of nilpotency of T (but not very often, if we
can help it). A nilpotent matrix of index 1 is the zero matrix. We note that N2

is the companion matrix of t 2. More generally the companion matrix of t k is a
nilpotent matrix with index k, which we will denote by Nk . Note that Nk e1 = 0
and Nk ei+1 = ei when i ≥ 1.

Nilpotent matrices are interesting and useful, but also a source of difficul-
ties. Since Nk e1 = 0, we see that e1 is an eigenvector of Nk with eigenvalue 0.
Since the minimal polynomial of Nk is t k , we see that 0 is the only eigenvalue
of Nk . Further, since rk(Nk ) = k − 1, the eigenspace associated with 0 has di-
mension 1, and therefore equals the span of e1. Consequently eigenvalues and
eigenvectors provide very little information about nilpotent matrices.

We have the following structure theorem.
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3.9.1 Theorem. If M is a nilpotent matrix, then it is similar to a block diagonal
matrix, where each diagonal block is equal to Nk for some k.

Proof. The required block diagonal matrix is the Frobenius normal form of M .

One corollary of this is that the number of similarity classes of n ×n nilpo-
tent matrices over a field equals the number of vectors of non-negative integers

(k1, . . . ,kn)

such that k1 ≥ k2 ≥ ·· · ≥ k1 and
∑

i ki = n.

3.9.2 Lemma. Let A be an n ×n matrix over an algebraically closed field with
minimal polynomial ψ(t ). Then A is similar to a block diagonal matrix with
diagonal blocks of the form θI +Nθ, where θ runs over the zeros ofψ, and Nθ is
nilpotent with index equal to the multiplicity of θ as a zero of ψ(t ).

Proof. By the primary decomposition theorem Theorem 2.6.1, we know that A
is similar to a diagonal matrix with diagonal blocks Aθ indexed by the zeros ofψ,
such that the minimal polynomial of Aθ is (t−θ)mθ , where mθ is the multiplicity
of θ as a zero of ψ(t ). Hence A −θI is nilpotent, with index mθ. Thus we may
write

Aθ = θI +Nθ,

where Nθ is nilpotent, of index mθ.

The corank of (A−θI )mθ is known as the algebraic multiplicity of the eigen-
value θ. This distinguishes it from the geometric multiplicity, which is the
corank of A−θI .

We present one application. We wish to determine when a matrix A has a
square root, that is, when there is a matrix X such that X 2 = A. If A = LBL−1

and B has a square root Y , then

(LY L−1)2 = LY 2L−1 = LBL−1 = A.

This allows us to use the primary decomposition theory; more precisely, we
assume that A is block diagonal with blocks of the form

Aθ = θI +Nθ.

It follows that A has a square root if and only if each of its blocks does.
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Suppose M is nilpotent. Then I +M has a square root

(I +M)1/2 = ∑
r≥0

(
1
2

r

)
M r .

Note that this is a finite sum, since M r = 0 for all but finitely many values of r .
It follows that, if θ 6= 0, then

θI +Nθ = θ(I +θ−1Nθ)

has a square root. Hence we are left with the case where θ = 0, and this our
questions reduces to deciding which nilpotent matrices have a square root. If
N is nilpotent with index k and X 2 = N , then X 2k = 0 and so X is nilpotent with
index 2k. (This implies that the matrices Nk are not squares.)

Assume now that N is in Frobenius normal form. We claim that the (k+1)×
(k +1) matrix

N ′
k :=

(
Nk 0
0 0

)
has a square root. (You do it!) It follows that N has a square root if and only if
its corank is at least as large as the number of non-zero blocks.

3.10 A Similarity Condition

We are given the following two n ×n matrices:(
A 0
0 D

)
,

(
A B
0 D

)
,

where A and D are square. We ask for which matrices B are they similar.
We note that(

I −X
0 I

)(
A B
0 D

)(
I X
0 I

)
=

(
A AX −X D +B
0 D

)
,

and deduce that they are similar if there is a matrix X such that

AX −X D = B.

We show that this condition is necessary.
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Suppose that our two matrices are similar. Then there is an invertible matrix
S such that

S

(
A 0
0 D

)
=

(
A B
0 D

)
S.

We define linear mappings T1 and T2 on the space of n ×n matrices by

T1(Y ) :=
(

A 0
0 D

)
Y −Y

(
A 0
0 D

)
, T2(Y ) :=

(
A B
0 D

)
Y −Y

(
A 0
0 D

)
.

We have

S(T1(S−1Y )) = S

(
A 0
0 D

)
S−1Y −Y

(
A 0
0 D

)
=

(
A B
0 D

)
Y −Y

(
A 0
0 D

)
= T2(Y ),

and therefore ker(T1) and ker(T2) have the same dimension.
Let Y be the matrix

Y =
(
Y1,1 Y1,2

Y2,1 Y2,2

)
,

where the partitioning is compatible with the partitioning of the other matrices
above. Then

T1(Y ) =
(

AY1,1 −Y1,1 A AY1,2 −Y1,2D
DY2,1 −Y2,1B DY2,2 −Y2,2D

)
and

T2(Y ) =
(

AY1,1 −Y1,1 A+BY2,1 AY1,2 −Y1,2D +BY2,2

DY2,1 −Y2,1D DY2,2 −Y2,2D

)
.

We note that (
Y1,1 Y1,2

0 −I

)
lies in ker(T2) if and only if AY1,2−Y1,2D −B = 0, and we can prove our claim by
showing that there is a matrix of this form in ker(T2).

Let Ti denote the restriction to kerTi of the linear map(
Y1,1 Y1,2

Y2,1 Y2,2

)
7→ (

Y2,1 Y2,2
)

.

We will prove that T1 and T2 have the same image.
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From the expressions for T1(Y ) and T2(Y ), we see that kerT1 = kerT2. Fur-
ther

imT1 = {
(
Y2,1 Y2,2

)
: DY2,1 −Y2,1 A = 0, DY2,2 −Y2,2D = 0}

and im T2 consists of the elements of kerT1 for which there are matrices Y1,1

and Y1,2 such that

C Y2,1 = Y1,1 A− AY1,1, C Y2,2 = Y1,2D − AY1,2.

It follows that imT2 ⊆ imT1. Now

dim((T1))+ rk(T1) = dim(kerT1)

dim((T2))+ rk(T2) = dim(kerT2).

Since T1 and T2 have the same corank and since T1 and T2 have the same
corank, it follows that T1 and T2 have the same rank.

Finally, it easy to verify that (
0 0
0 −I

)
∈ kerT1

whence (
0 −I

) ∈ imT1 = imT2

and accordingly there is a matrix in kerT2 of the form(
Y1,1 Y1,2

0 −I

)
.

This completes the proof.

3.11 Triangular Maps

A flag in V is a sequence V0, . . . ,Vr of distinct subspaces such that

V0 ⊂V1 ⊂ ·· · ⊂Vr .

If dimV = n, then a flag contains at most n+1 subspaces, and a maximal flag is
a flag with n +1 elements. A maximal flag V0, . . . ,Vn has V0 = {0} and Vn = V . If
v1, . . . , vn is a basis for V and we define V0 = {0} and

Vi := span{v1, . . . , vi }
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then V0, . . . ,Vn is a maximal flag. There is a converse to this. Suppose that
V0, . . . ,Vn is a maximal flag, and for i = 1, . . . ,n choose a non-zero vector wi in
Vi \Vi−1. Then w1, . . . , wn is a basis (as you are invited to prove). Let T be an en-
domorphism of V . A flag F is T -invariant if each subspace of F is T -invariant.
If F is T -invariant, we also say that T fixes F .

3.11.1 Lemma. If β = x1, . . . , xn is a basis for the vector space V and the linear
map A fixes the flag associated to β, then the matrix that represents A relative
to β is upper triangular.

3.11.2 Theorem. An endomorphism of a finite-dimensional vector space over
an algebraically closed field fixes a maximal flag.

Proof. We prove the result by induction on dimV . We define a hyperplane in V
to be a subspace with dimension dim(V )−1. It will be enough to prove that any
endomorphism of a vector space fixes a hyperplane H for then, by induction,
we may assume that T �H fixes a maximal flag of H .

By Lemma 2.5.2, the adjoint T ∗ of T has an eigenvector in V ∗. Choose such
an eigenvector f . Then T ∗ f =λ f for some scalarλ, but T ∗ f is the composition
f ◦T and therefore

f (T v) =λ f (v),

for all elements v of V . This implies that if f (v) = 0, then f (T v) = 0 and there-
fore ker f is T -invariant.

Since f 6= 0, there is a vector v such that f (v) 6= 0. If f (w) 6= 0 too, then the
vector

f (w)v − f (v)w

lies in ker f , from which it follows that ker f is a hyperplane.

In Section 3.12, we will prove a more concrete version of this result using a
variation of the above argument.

(1) Prove that each maximal flag determines a basis, as described above.

(2) Prove that if f ∈V ∗, then ker f is a hyperplane.

(3) Let S and T be endomorphisms of V that fix the same flag, and suppose
n = dimV . Prove that the minimal polynomial of ST −T S divides t n .
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3.12 Triangulations

We prove that if A is a square matrix over C, then there is a unitary matrix L
such that L−1 AL is triangular. We have already proved a version of this result
for linear mappings (see Section ??) but our argument there did not yield the
fact that we could choose L to be unitary.

3.12.1 Theorem. Let A be an n×n matrix over C. Then there is a unitary matrix
L such that L−1 AL is lower triangular.

Proof. We proceed by induction on n. Let u1 be an eigenvector for A∗ with
eigenvalue θ and let U denote the subspace

u⊥ = {x ∈Cn : u∗x = 0}.

Then U is A-invariant: if v ∈U , then

u∗
1 Av = (A∗u1)T v = θu∗

1 v = 0.

Let u2, . . . ,un be an orthonormal basis for U . Since u1 ∉ U , the vectors
u1,u2, . . . ,un form an orthonormal basis for Cn . If we define the matrix L1 by

L1 := (
u1 u2 · · · un

)
then L1 is unitary and

AL1 = L1

(
a 0
b A2

)
.

We may assume inductively that there is a unitary matrix M such that M−1 A2M
is lower triangular; then L = L1M is the unitary matrix we need.

Suppose that M is an upper triangular n ×n matrix. If M v = θv , then (M −
θI )v = 0 and so M−θI is not invertible. The matrix M−θI is also upper triangu-
lar; it is invertible if and only if its diagonal entries are non-zero. We conclude
that the eigenvalues of M are precisely the diagonal entries of M . This gener-
alises the fact the the eigenvalues of a diagonal matrix are its diagonal entries.

3.13 The “Fundamental” “Theorem of Algebra”

The fundamental theorem of algebra is the assertion that any polynomial with
coefficients from C has a root in C. It is equivalent to the claim that every com-
plex matrix has an eigenvector, and we offer a proof of this due to Harm Derk-
son. The original appears in the American Math. Monthly, and on his web page.
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(It has been stated that this result is theorem of analysis, not algebra, and is not
fundamental. I tend to agree.)

3.13.1 Theorem. Every square complex matrix has an eigenvector.

Before setting out on the proof, some terminology. Let A be a set with a
multiplication defined on it. If A,B ∈ A , we denote their product by AB . A set
A of endomorphisms of V is an algebra if

(a) A is a vector space over F.

(b) If A,B ∈A , then AB ∈A .

(c) There is an element I in A such that AI = I A = A for all A in A .

If V is a vector space over F, then End(V ) is an algebra. If the elements of an alge-
bra A are endomorphisms of V , it is called an operator algebra ; if the elements
of A are matrices we call it a matrix algebra. The set of all upper triangular
matrices is an example of a matrix algebra. The set of strictly upper triangular
matrices is not an algebra according to our definition, because it does not con-
tain the identity matrix. An algebra A is commutative if AB = B A for all A and
B in A . If A is a square matrix, the set of all polynomials in A is a commutative
algebra.

We note next that if f (t ) is a polynomial over Rwith odd degree, then f has
a real zero. (This is a comparatively simple exercise in calculus.)

We now start the proof of the theorem. We divide it into a number of lem-
mas.

3.13.2 Lemma. If A is an n×n real matrix and n is odd, then A has an eigenvec-
tor.

Proof. The space Rn is a direct sum of cyclic subspaces for A. Since n is odd,
there is a cyclic subspace U for A with odd dimension d . The minimal polyno-
mial ψ of A�U has degree d , and therefore there is a real number θ such that
ψ(θ) = 0. It follows that A has an eigenvector with eigenvalue θ.

3.13.3 Lemma. If A is a commutative algebra of real n ×n matrices and n is
odd, there is a vector z which is an eigenvector for all matrices in A.
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Proof. Let A1, . . . , Ak be a basis for A . If A is generated by I , there is nothing to
prove, so we may assume A1 6= I . By the previous lemma, A1 has an eigenvector
z; let θ be its eigenvalue. The subspaces ker(A1−θI ) and im(A1−θI ) are proper
non-zero subspaces of Rn and by the rank theorem,

dim(ker(A1 −θI ))+dim(im(A1 −θI )) = n.

Therefore one of these subspaces has odd dimension; we denote it by U .
If A1u = θu, then

A1 Ai u = Ai A1u = θAi u

and consequently Ai u ∈ ker(A1 −θI ) if u ∈ ker(A1 −θI ). If v = (A1 −θI )w , then

Ai v = Ai (A1 −θI )w = (A1 −θI )Ai w ∈ im(A1 −θI ).

Hence U is invariant under each matrix A1, . . . , Ak , and so it is invariant under
all matrices in A .

Since U is a proper non-zero subspace of Rn with odd dimension, it follows
by induction that there is a vector in U which is an eigenvector for each matrix
in A .

3.13.4 Lemma. If A is an n ×n complex matrix and n is odd, then A has an
eigenvector.

Proof. Let W denote the vector space of all n ×n Hermitian matrices (which is
not an algebra if n > 1). We define linear operators L1 and L2 by

L1(M) = 1

2
(AM +M A∗),

L2(M) = 1

2i
(AM −M A∗).

If M = M∗, then

(L1(M))∗ = 1

2
(AM +M A∗)∗ = 1

2
(M A∗+ AM) = L1(M)

and

(L2(M))∗ = 1

−2i
(AM −M A∗)∗ = 1

−2i
(M A∗− AM) = L2(M).

Therefore L1,L2 ∈ End(W ). Also

L1L2(M) = 1

2

1

2i
[A(AM −M A∗)+ (AM −M A∗)A∗] = 1

2

1

2i
[A2M −M(A∗)2]
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and

L2L1(M) = 1

2

1

2i
[A(AM +M A∗)− (AM +M A∗)A∗] = 1

2

1

2i
[A2M −M(A∗)2].

Therefore L1 and L2 commute.
Now W is a vector space of dimension n2 overR, and n2 is odd. If we choose

a basis for W , the matrices representing L1 and L2 relative to this basis have or-
der n2×n2 and they commute. Consequently they have a common eigenvector,
and this is an eigenvector for L1 and L2 This eigenvector is a non-zero matrix
M such that

L1(M) =λM , L2(M) =µM .

Then
AM = L1(M)+ i L2(M) = (λ+ iµ)M

and this shows that each non-zero column of M is an eigenvector for A.

3.13.5 Lemma. If A is a commutative algebra of complex n ×n matrices and n
is odd, there is a vector z which is an eigenvector for all matrices in A.

Proof. We simply apply the proof of Lemma 3.13.3. If A1, . . . , Ak is a basis for A

and A1 has an eigenvector, then there is a non-zero proper subspace of Cn of
odd dimension over C which is invariant under A . By induction this contains
an eigenvector for A .

3.13.6 Lemma. A square complex matrix has an eigenvector.

Proof. Assume n = 2k n1, where n1 is odd. We prove the lemma by induction on
k. Let W denote the space of all matrices M in Matn×n(C) such that M T =−M .
We note that

dim(W ) =
(

n

2

)
and therefore 2k does not divide dim(W ). We define two mappings L1 and L2

as follows:

L1(M) = AM +M AT ,

L2(M) = AM AT .

Then L1,L2 ∈ End(W ) and L1L2 = L2L1. Choose a basis for W . The matrices
representing L1 and L2 relative to this basis commute and have order

(n
2

)× (n
2

)
.
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By induction on k, the algebra generated by these matrices has an eigenvector
M ; this is an eigenvector for L1 and L2 and we may assume that its eigenvalues
are λ and µ respectively. Hence

µM = AM AT = A(L1(M)− AM) = (λA− A2)M

and so
(A2 −λA+µI )M = 0.

Let z be a non-zero column of M . Then the minimal polynomial of A rela-
tive to z is quadratic, and so the A-cyclic subspace generated by z has dimen-
sion at most two. Assume that the minimal polynomial ψ of A relative to z is
quadratic, and is equal to

t 2 −λt −µ.

This quadratic has two roots in C, and so there are complex numbers θ and τ

such that
(A−θI )(A−τI )z = 0.

If (A−τI )z = 0, then z is an eigenvector for A with eigenvalue τ; if (A−τI )z 6= 0
then (A −τI )z is an eigenvector for A with eigenvalue θ. Thus we have shown
that A has an eigenvector.

3.14 The Kronecker Product

If A and B are matrices over F, we construct their Kronecker product A ⊗B by
replacing the i j -entry of A with

Ai , j B ,

for all i and j . We find that

(A⊗B)(u ⊗ v) = Au ⊗B v

and, more generally that

(A⊗B)(C ⊗D) = AC ⊗BD,

provided only that the products AC and BD are defined. It follows that if x is an
eigenvector for A and y is an eigenvector for B , then x ⊗ y is an eigenvector for
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A ⊗B . Consequently the eigenvectors of A ⊗B are just the products λµ, where
λ is an eigenvalue of A and µ is an eigenvalue of B . We also have

(A⊗B)T = AT ⊗B T .

If X is an m ×n matrix, then vec(X ) is the mn ×1 matrix we get by stacking
the columns of X one above the other. In other terms

vec(X ) =∑
Xi , j ei ⊗e j .

We have

vec(AX ) = (I ⊗ A)vec(X ), vec(X B) = (B T ⊗ I )vec(X ).

It follows for example, that there is a matrix X such that

AX −X B =C

if and only if
(I ⊗ A−B T ⊗ I )vec(X ) = vec(C ).

The eigenvalues of the matrix I ⊗ A −B T ⊗ I are the differences µ−λ, where λ
is an eigenvalue of A and µ is an eigenvalue of B , and therefore it is invertible if
and only if A and B have no eigenvalues in common.

Let P be the matrix such that

P (x ⊗ y) = y ⊗x.

Then P maps U ⊗V to V ⊗U . If V = U , then P 2 = P . We say an element u of
V ⊗V is symmetric if Pu = u and antisymmetric if Pu =−u. Thus u ⊗u and

u ⊗ v + v ⊗u

are symmetric and
u ⊗ v − v ⊗u

is antisymmetric. (Thus symmetric and antisymmetric elements of V ⊗V are
eigenvectors for P , with eigenvalues 1 and −1 respectively.) If A and B belong
to End(V ), then

P (A⊗B)P (u ⊗ v) = P (A⊗B)(v ⊗u) = (B ⊗ A)(u ⊗ v).

We also have
P vec(X ) = vec(X T ).
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(1) Show that the matrix P (A⊗ AT ) is symmetric.

(2) Let V be Matn×n(F) and let A be a fixed matrix. If X ∈ V , define the map
AdA in End(V ) by

AdA(X ) := AX −X A.

If An = 0, prove that Ad2n
A = 0.
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Chapter 4

Orthogonality

We study inner product spaces over R and C.

4.1 Properties of Projections

Let U be subspace of the inner product space V . Then orthogonal projection
onto U is a function P from V to itself such that, for all v in V , we have v−P (v) ∈
U⊥. We establish a number of properties of P , the most important of which is
that it is linear.

4.1.1 Lemma. Let P be the orthogonal projection of V onto U . Then P is linear
mapping and

(a) im(P ) =U .

(b) ker(P ) =U⊥.

(c) P 2 = P .

(d) If v, w ∈V , then 〈v,P w〉 = 〈P v, w〉.

Proof. Suppose v, w ∈ V . Then v − P (v) and w − P (w) both belong to U⊥,
whence

(v +w)− (P (v)+P (w)) = (v −P (v)+ (w −P (w)) ∈U⊥.

Since P (v)+P (w) ∈U , this implies that P (v)+P (w) is the orthogonal projection
of v +w onto U . Therefore P is linear.

67
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Since P v ∈U for all v in V , we see that im(P ) ⊆U , and since Pu = u for all u
in U , we see that im(P ) =U and P 2 = P . This proves (a) and (c).

For (b), we note that if P (v) = 0 then v ∈U⊥. On the other hand, v −P (v) ∈
U⊥ and so if v ∈U⊥ then P (v) ∈U⊥. Since P (v) ∈U , this implies that P (v) = 0.

Finally, for any vectors v and w we have

〈v −P v,P w〉 = 0, 〈P v,P w −w〉 = 0.

Summing these two expressions yields

0 = 〈v,P w〉−〈P, v〉P w +〈P v,P w〉−〈P v, w〉,

whence (d) follows.

Linear mappings P such that P 2 = P are called idempotent. If 〈v,P w〉 =
〈P v, w〉 for all v and w , we say P is self adjoint with respect to the inner product.

4.2 Matrices Representing Projections

If we are working in Euclidean space—Rn with dot product—then we can give
an explicit formula for the matrix representing orthogonal projection.

4.2.1 Lemma. Let V be Rn equipped with dot product, and let U be a subspace
of V with dimension k. If B is an n ×k matrix whose columns form a basis for
U , the matrix representing orthogonal projection on U is

B(B T B)−1B T .

Proof. We offer two proofs. The first is a simple verification that the quoted
formula is correct. First you may easily verify that B(B T B)−1B T is symmetric.
Then we compute that

(I −B(B T B)−1B)B = B −B(B T B)−1B T B = B −B = 0

and therefore

(v −B(B T B)−1B T v)T B = vT (I −B(B T B)−1B)T B

= vT (I −B(B T B)−1B)B

= 0.
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So, if u := B(B T B)−1B T v , then v −u is orthogonal to each column of B . Hence
it lies in U⊥, and therefore u is the orthogonal projection of v onto U .

A difficulty with the previous argument is that it gives no indication how
we found the matrix B(B T B)−1B T in the first place. We outline the reasoning.
Suppose Q is the matrix representing orthogonal projection on U . Then rkQ =
k and by Theorem ?? we can write

Q = AB T ,

where A and B are n ×k matrices with rank k. Since col(A) = col(Q) = U , the
columns of A form a basis for U . Since the columns of A are linearly indepen-
dent, if Ax = 0 then x = 0. Therefore kerB T = kerP = U⊥ and consequently
col(B) ⊆U⊥⊥ =U . As rkB = k, this shows that colB =U . Since each column of
A lies in U , we have

A =Q A = AB T A

and therefore B T A = I . On the other hand, the columns of B form a basis for
U , so each column of A is a linear combination of columns of B , and there-
fore there is a k ×k matrix M such that A = B M . If B T A = I , this implies that
B T B M = I and so M = (B T B)−1. Accordingly

Q = B(B T B)−1B T .

(It might be a useful exercise to identify where in this argument we have
used that our inner product is the dot product.)

To sum up, we have two ways to compute the orthogonal projection of a
vector v onto a subspace U . If we are given an orthogonal basis for U , we can
use (??). If we are working in Rn with dot product and given a basis for U , we
could construct Q = B(B T B)−1B T , in which case the answer is Qv .

(1) If 〈·, ·〉 is the dot product, show that (??) implies that P = P T .

(2) Suppose B and C are n×k matrices with rank k and the same column space.
Prove that B(B T B)−1B =C (C T C )−1C .

(3) Let u1, . . . ,uk be an orthogonal basis for the subspace U . Show that the ma-
trix representing orthogonal projection on U is equal to

k∑
i=1

〈ui ,ui 〉−1ui uT
i .
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4.3 Least Squares

We consider a version of the least squares problem. Let W be an m ×n matrix
where m < n, and rk(W ) = m. Then the system of equations

W x = v (4.3.1)

will have infinitely many solutions, but some may suit us better than others. For
example, in the control theory setting of Chapter 11, a solution x to an equa-
tion of the form W x = v represented a sequence of inputs that would drive our
system to a chosen state. In this case, xT x corresponds to the power that this
sequence would require, and it would be very natural to seek to minimize it.
Thus we want to find the solution to (4.3.1) with minimum squared length.

Suppose that x is any solution to (4.3.1), and let x̄ be the orthogonal pro-
jection of x on col(W T ). Then x − x̄ is orthogonal to col(W T ), and therefore
W (x − x̄) = 0. Hence

W x̄ =W x = v.

If y is another solution to (4.3.1), then W y =W x̄ and so y− x̄ is in the null space
of W . Consequently y − x̄ is orthogonal to x̄ and

‖y‖2 = ‖y − x̄‖2 +‖x̄‖2.

Thus x̄ is the solution to (4.3.1) with minimum norm.
How can we compute x̄? If we can assume that the rows of W are linearly

independent then, by Lemma 4.2.1, the matrix representing orthogonal projec-
tion onto colW T is

Q :=W T (W W T )−1W

and our solution is Qx. However we do not need to find x; we have

Qx =W T (W W T )−1W x =W T (W W T )−1v,

and we can proceed as follows: given v , solve the system

W W T z = v,

the desired solution is W T z. (This approach avoids the need to compute the
inverse of W W T . Computing an inverse explicitly is rarely worth the trouble. It
may also pay to avoid computing W W T , but we digress. . . .)

In ??, we will develop a general method for least squares problems, which
does not require that the rows of W are linearly independent.
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4.4 Orthogonal Polynomials

Let V be the space of all real polynomials, or the vector space of polynomials
with degree at most n. Assume V is equipped with an inner product such that

〈p, xq〉 = 〈xp, q〉,
and, if p(x) is non-negative and not zero, then 〈1, p〉 > 0. All our examples have
these properties.

If we apply Gram-Schmidt to the basis of V formed by the powers of x, we
obtain a sequence of polynomials (pr )r≥0, where pr has degree r . A sequence
of orthogonal polynomials is an orthogonal set of polynomials (pr )r≥0, where
pr has degree r (and p0 6= 0). If we multiply each member of a sequence of
orthogonal polynomials by a non-zero scalar, the result is still a sequence of
orthogonal polynomials.

4.4.1 Lemma. The sequence of polynomials (pr )r≥0 is an orthogonal basis if
and only if pr is non-zero and is orthogonal to all polynomials of degree less
than r .

4.4.2 Lemma. Let (pr )r≥0 be a sequence of orthogonal polynomials. If pr (x) =
a(x)b(x), where a and b are polynomials and b(x) ≥ 0 for all x, then b is con-
stant.

Proof. We have
〈pr , a〉 = 〈ab, a〉 = 〈1, a2b〉.

Now a2b is non-zero and non-negative and therefore 〈1, a2b〉 > 0. But, if the
degree of b is positive, then the degree of a is less than r and, by the previous
lemma, 〈pr , a〉 = 0. We conclude that b must be constant.

4.4.3 Theorem. If p is a member of a sequence of orthogonal polynomials, its
zeros are real and simple.

Proof. Suppose θ is a complex zero of p. Then its complex conjugate θ̄ is also a
zero of p and therefore the real quadratic polynomial

(x −θ)(x − θ̄)

divides p. Since this quadratic has two complex roots and is monic, it is non-
negative. By the previous lemma, it cannot divide p. This proves the first claim.

For the second, note that (x −θ)2 is non-negative and the same technique
yields that this cannot divide p.
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(1) Let 〈p, q〉 := ∫ 1
0 p(x)q(x)d x. Show that if p is a member of the sequence of

orthogonal polynomials associated to this inner product, all zeros of p lie
in the interval (0,1).

(2) Suppose pr and pr+1 are consecutive members of a sequence of orthogonal
polynomials. Show that they cannot have a common zero.

4.5 The Three-Term Recurrence

We provide an easier way to construct families of orthogonal polynomials. The
key is to note that

〈xpr , p j 〉 = 0

if j ∉ {r −1,r,r +1}. For if j < r −1 then xp j has degree less than r , and therefore

〈xpr , p j 〉 = 〈xpr , p j 〉 = 0.

If j > r +1 then similarly p j is orthogonal to xpr .

4.5.1 Theorem. Let (pr )r≥0 be a sequence of monic orthogonal polynomials.
Then

pn+1 = (x −an)pn −bn pn−1,

where an = 〈xpn , pn〉/〈pn , pn〉 and bn = 〈pn , pn〉/〈pn−1, pn−1〉.
Proof. From our remarks just above, xpn is a linear combination of pn−1, pn

and pn+1. Thus we may write

xpn = γpn+1 +αpn +βpn−1.

Here

γ= 〈xpn , pn+1〉
〈pn+1, pn+1〉

.

Since pn+1 is monic, xpn = pn+1 −q , where q has degree less than n. So

〈xpn , pn+1〉 = 〈pn+1, pn+1〉
and therefore γ= 1.

Next we see that α= 〈xpn , pn〉/〈pn , pn〉 and

β= 〈xpn , pn−1〉
〈pn−1, pn−1〉

.

Arguing as before,
〈xpn , pn−1〉 = 〈pn , pn〉

and this leads to the stated expression for bn .
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One consequence of the formulas for the coefficients in this recurrence is
that bn > 0 for all n.

There is another way of stating the last result. Let (pr )r≥0 be a monic se-
quence of orthogonal polynomials. Let Mx denote the linear transformation
that maps a polynomial p to xp. Then the matrix representing Mx with respect
to the basis (pr )r≥0 is 

a0 b1

1 a1 b2

1 a2 b3
. . . . . . . . .


This is an example of a tridiagonal matrix.

4.6 Numerical Integration

We want to compute definite integrals of the form∫ b

a
f (t ) w(t )d t .

Here w(t ) is a weight function. For example if the interval of integration is
[0,∞], then we may use w(t ) = e t . But for now we take w(t ) to be identically
1, and the interval of integration will be [0,1]. So all we want is∫ 1

0
f (t )d t .

The problem is that we do not know the anti-derivative of f , and so we seek a
procedure that will produce a reasonably accurate answer in reasonable time.

There are many possible notions of what ‘reasonably accurate’ might mean.
Before we discuss this, we specify the sort of procedure we want in more detail.
The first thing is to note that the map

S : f 7→
∫ 1

0
f (t )d t .

is a linear map from the space C [0,1] of continuous functions on [0,1] to R.
Hence it is an element of the dual space C [0,1]∗. This has the property that
if f ≥ 0, then S ( f ) ≥ 0—it maps non-negative functions to non-negative real
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numbers. In this context, the elements of C [0,1]∗ are known as linear func-
tionals, and we say a linear functional is non-negative if it maps non-negative
functions to non-negative numbers.

There are many other non-negative linear functionals, and amongst the
simplest are the evaluation maps ea , for a ∈R, given by

ea( f ) := f (a).

Our aim is to choose an increasing sequence of nodes θ1, . . . ,θn and a sequence
of weights w1, . . . , wn , such that the linear functional

Q :=∑
i

wi eθi

is a good approximation to S . We call a linear functional of this form a quadra-
ture scheme. Define the degree of precision of Q to be the greatest integer k
such that

Q(p) =
∫ 1

0
p(t )d t

for all polynomials p with degree at most k.
By way of example, if Q has degree of precision 1, then

Q(1) = 1 Q(t ) = 1

2
.

These hold if and only if

∑
i

wi = 1,
∑

i
wiθi = 1

2
.

It is easy to find nodes and weights for which these conditions hold.
We will be more greedy. Suppose we are given nodes a1, . . . , an , and that we

try to find weights to go with them. Let p1, . . . , pn be the Lagrange interpolating
polynomials at the given nodes. Thus

pi (a j ) = δi , j .

Then

Q(pi ) =∑
j

w j pi (a j ) = wi
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and, if we want degree of precision at least n −1, we will need

wi =
∫ 1

0
pi (t )d t .

There is one problem: there are good reasons to require that the weights wi

be non-negative, and it is not clear how to choose the nodes to ensure this in
general.

We can go further if we use orthogonal polynomials. Define an inner prod-
uct on C [0,1] by

〈p, q〉 =
∫ 1

0
p(t )q(t )d t .

Let p0, . . . , pn be the first n +1 members of the corresponding family of orthog-
onal polynomials, and let θ1, . . . ,θn be the zeroes of pn in increasing order. (We
know by Theorem 4.4.3 that these zeroes are real and distinct.) Using the La-
grange interpolating polynomials, we compute the weights wi for a quadrature
scheme with degree of precision at least n − 1. Then, as Gauss first noted, a
miracle occurs: the degree of precision of our scheme is 2n −1.

We verify this. Suppose f is a polynomial with degree at most 2n−1. By the
Euclidean algorithm, there are polynomials q and r , both with degree at most
n −1, such that

f (t ) = q(t )pn(t )+ r (t ).

Now ∫ 1

0
f (t )d t = 〈1, f (t )〉 = 〈1, q(t )pn(t )〉+〈1,r (t )〉.

Since q has degree less than n,

〈1, q(t )pn(t )〉 = 〈q(t ), pn(t )〉 = 0,

and therefore ∫ 1

0
f (t )d t =

∫ 1

0
r (t )d t .

Because the degree of r (t ) is at most n−1, the integral on the right can be com-
puted exactly using our (well, Gauss’s) quadrature scheme. Hence this scheme
has degree of precision at least 2n −1. However it is exactly 2n −1, because

Q(pn(t )2) = 0 <
∫ 1

0
pn(t )2 d t .
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Chapter 5

Eigenthings

In this chpater we understake a study of questions related to existence of eigen-
vectors and eigenvalues. Our focus is on self-adjoint operators, because that is
where eigenvalues are most useful.

5.1 Self-Adjoint Operators

If S is an operator on an inner product space V , we define the adjoint S∗ of S to
be an operator such that, for all u, v in V we have

〈S∗u, v〉 = 〈u,Sv〉.

It is an easy exercise to show that, if it exists, the adjoint is unique. If V isCn and
the inner product is the usual complex dot product, amd M is a matrix repsent-
ing S on V , then S8 is represented by the conjugate transpose of M , which we
usually denote by M∗.

By way of a second example, if V is the vector space of all real polynomials
and

〈p, q〉 :=
∫ b

a
p(x)q(x) w(x)d x

then

〈xp, q〉 = 〈p, xq〉.
Hence the operation of multiplication by x is a self-adjoint linear mapping of
V . (This is why the theory of orthogonal polynomials is so rich.)

77
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We turn to the existence question. There is a notational difficulty that arises
because, outside the context of inner product space, the dual of a linear map-
ping is often referred as the adjoint (with good reason). We will temporarily use
Sd to denote the dual of a linear mapping.

There are two steps to the existence proof. Assume V is an inner product
space. If a ∈V then we have a map θa in V ∗ given by

θa(v) = 〈a, v〉.
This is linear, and is an isomorphism from V to its dual V ∗. If ∈ EndV then, by
the definition of the dual,

〈u,Sv〉 = (θa ◦S)(b) = (Sdθa)(b).

Now Sd ◦θa ∈V 8 and, since the map a 7→ θa is an isomorphism, there is a vector
S∗(a) in V such that

Sd ◦θa = θS∗(a).

As the notation suggests, and as you should prove, the map a 7→ S∗(a) is linear.
We say that S∗ is the adjoint of S.

5.2 Diagonalizability

We prove that self-adjoint operators are diagonalizable, and more.

5.2.1 Theorem. Let S be a self-adjoint operator on the inner product space V .
Then

(a) The minimal polynomial of S has only simple zeros.

(b) Eigenvectors of S with distinct eigenvalues are orthogonal.

(c) The eigenvalues of S are real.

(d) S is diagonalizable.

Proof. Assume by way of contradiction that the minimal polynomial ψ(t ) of S
has a multiple root. Then there is a proper divisor p(t ) of ψ(t ) such that ψ(t )
divides p(t )2. Suppose S1 := p(S). Then S1 6= 0 because p is a proper divisor of
ψ, but S2

1 = 0. If v ∈V , then S2
1v = 0 and

0 = 〈v,S2
1v〉 = 〈S1v,S1v〉,
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whence we see that S1v = 0. Since v can be chosen arbitrarily in V , this implies
that S1 = 0, our contradiction.

Next, suppose
Su = θu, Sv = τv.

Then
τ〈u, v〉 = 〈u,τv〉 = 〈u,Sv〉 = 〈Su, v〉 = 〈θu, v〉 = θ〈u, v〉;

and we conclude that either θ = τ, or 〈u, v〉 = 0.
It follows from (a) that S is diagonalizable, and therefore V is a direct sum of

S-invariant subspaces Vi on each of which S acts as multiplication by a scalar
θi .

On the other hand, the proof of Corollary 5.4.2 shows that each S∗S-invariant
subspace of V contains an eigenvector for S∗S with a non-negative real eigen-
value. Since S∗S = S2, any S-invariant subspace is S∗S-invariant. Suppose the
eigenvalue of S2 on Vi is σi . Then σi = θ2

i , and therefore θ is real.

5.2.2 Corollary. Suppose S is a self-adjoint operator on the inner product space
V . Then there is an orthogonal basis for V formed of eigenvectors for S.

5.3 Diagonalizability, Again

We offer a second proof that for any self-adjoint operator on a finite dimen-
sional space, there is an orthogonal basis for the space that consists of eigen-
vectors. They is the following result.

5.3.1 Lemma. Let S be a self-adjoint operator on the inner product space V . If
U is an S-invariant subspace of V , then U⊥ is S-invariant.

Proof. If v ∈U⊥, then
〈Sv,u〉 = 〈v,Su〉

and therefore Sv lies in U⊥.

This makes everything easy. Suppose S is self-adjoint and λ is a zero of its
minimal polynomial. Then there is an eigenvector z associated with λ. Its span
U is certainly S-invariant, and hence U⊥ is S-invariant. The restriction of S to
U⊥ is self-adjoint (prove it) and therefore by induction on the dimension, U⊥

has an orthogonal basis formed from eigenvectors. This basis together with z
provides the basis of V that we need.
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5.4 Eigenvectors and Optimization

We present a result which may appear to be of limited interest, but it provides
an important reason why we should be interested in eigenvectors. It also illus-
trates how self-adjoint operators can arise in practice.

5.4.1 Lemma. Let L be a linear map from Rn to Rm , let U be a subspace of Rn ,
and let u be a unit vector in U such that ‖Lu‖ is maximal. If h ∈U and hT u = 0,
then hT LT Lu = 0.

Proof. We have

‖L(u + th)‖2 = (u + th)T LT L(u + th) = uT LT Lu +2tuT LT Lh + t 2hT LT Lh.

Since 〈u,h〉 = 0, we have

‖u + th‖2 = ‖u‖2 + t 2‖h‖2 = 1+ t 2‖h‖2.

Assuming that t is small enough that t 2 is negligible, we find that

‖Lu‖2 − ‖L(u + th)‖2

‖u + th‖2
≈−2thT LT Lu.

We may choose t to be positive or negative; as we have chosen the unit vector u
in U to maximize ‖Lu‖ it follows that if h is orthogonal to u, then hT LT Lu = 0,
and therefore Lu and h are orthogonal.

Now we present the application of this lemma to eigenvectors.

5.4.2 Corollary. Let L be a linear map from Rn to Rm , let U be a subspace of Rn ,
and let u be a unit vector in U such that ‖Lu‖ is maximal. If U is LT L-invariant,
then u is an eigenvector of LT L, and its eigenvalue is non-negative and real.

Proof. Suppose u is as stated. From the previous lemma we see that if h ∈ U
and h ∈ u⊥, then hT LT Lu = 0. Therefore

U ∩u⊥ ⊆ (LT L)⊥,

from which we have
LT Lu ∈ span(u)+U⊥.

Therefore LT Lu = θu + v , where v ∈U⊥. But U is LT L-invariant, and therefore
LT Lu ∈U . Hence

LT Lu −θu ∈U⊥∩U = {0}

and so u is an eigenvector for LT L.
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Obviously Rn itself is LT L-invariant, and thus it follows that if u is a unit
vector inRn that maximizes uT LT Lu, then u is an eigenvector for LT L Since the
associated eigenvalue is the maximum value of a non-negative real function,
the final claim holds.

We consider one important case where we are interested in maximizing
‖Lu‖ over unit vectors. Let A be an n ×n invertible matrix and consider the
system of linear equations

Ax = b. (5.4.1)

If z is a vector then the solution to Ax = b + z is A−1b + A−1z. Thus we may say
that an error z in b leads to an error A−1z in the solution to (5.4.1).

Which vector z leads to the greatest error? It is clear that if, for example, we
replace z by 2z then the error is doubled, thus it makes sense to consider

max
‖z‖=1

‖A−1z‖.

From our considerations above, the maximum value of this occurs when z is an
eigenvector of

(A−1)T A−1 = (A AT )−1.

The magnitude of the error will be given by the eigenvalue associated with z.
We will see that the eigenvalues of A AT are real and positive. If the matrix M
is invertible, then θ is an eigenvalue of M if and only if θ−1 is an eigenvalue of
M−1. It follows that the solution of (5.4.1) will be most sensitive to errors in b
when the least eigenvalue of A AT is small.

5.5 The Singular Value Decomposition

If the m ×n matrix A has rank k, then it can be shown that there is an m × k
matrix X and a k ×n matrix Y such that rk(X ) = rk(Y ) = k and A = X Y T . When
we work overR (orC), we can prove a somewhat stronger version of this, known
as the singular value decomposition. This is extremely important in practice.

5.5.1 Theorem. Let A be a non-zero real matrix with rank k. Then A = Y ΣX T ,
where

(a) X T X = Ik ,

(b) Σ is a k ×k diagonal matrix Σ with positive diagonal entries,
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(c) Y T Y = Ik .

Proof. Assume A is m ×n. Using induction on k, we construct an orthonormal
subset x1, . . . , xk of Rn and an orthonormal subset y1, . . . , yk of Rm such that yi =
σi Axi and

A =
k∑

i=1
σi yi xT

i .

This is equivalent to the statement of the theorem.
Let U0 denoteRn and let x1 be a unit vector in U0 such that ‖Ax1‖ is maximal.

Set σ1 equal to ‖Ax‖ and define

x1 := x, y1 =σ−1
1 Ax1.

Let U1 denote x⊥
1 . By Lemma 5.4.1 we see that if hT x1 = 0, then hT AT Ax1 = and

consequently A(U⊥
1 ) ⊆ A(U1)⊥.

Suppose
A1 := A−σ1 y xT .

Since y lies in the column space of A, we see that col(A1) ⊆ col(A). Since A 6= 0
we see that x1 6= 0 and y1 6= 0. Therefore Ax 6= 0, but

A1x = Ax −σ1 y xT x =σ1 y −σ1 y = 0.

Consequently rk(A1) < rk(A). As rk(σ1 y xT ) = 1 it follows that rk(A1) = k −1.
Note next that if x ∈U1, then Ax = A1x and so A and A1 agree on U1. Work-

ing now with A1 and U1, we conclude by induction on k that there are orthog-
onal unit vectors x2, . . . , xk in Rn and orthogonal unit vectors y2, . . . , yk in Rm ,
such that yi = A1xi and, if σi := ‖A1xi‖, then

A1 =
k∑

i=2
σi yi xT

i .

Our theorem follows immediately.

In numerical work, the following alternative version of the singular value
decomposition may be more useful. (It does not assume we know the rank of
A.)

5.5.2 Corollary. If A is a square matrix, there are orthogonal matrices X and Y ,
and a non-negative diagonal matrix Σ such that A = Y ΣX T .
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The matrices Y and X in the singular value decomposition Y ΣX T of A are
not unique in any useful sense. However Σ is determined up to a permutation.
Its entries are known as the singular values of A; there are usually denoted by
σ1, . . . ,σn , with the assumption that they form a non-increasing sequence.

The easiest way to see that the singular values are determined by A is to
verify that there squares are the eigenvalues of A AT . To show this, note that

A AT = Y ΣX T XΣY T = Y Σ2Y T ,

and therefore
A AT Y = Y Σ2.

It follows from this that the columns of Y are eigenvectors for A AT , and the
diagonal entries of Σ2 are its eigenvalues.

In a similar fashion we can show that the squares of the singular values of
A are the eigenvalues of AT A. Hence we see that A AT and AT A have the same
eigenvalues. (This actually holds over any field, although the proof at hand only
works over R or, with modest extra effort, over C.)

(1) Prove Corollary 5.5.2.

(2) Compute the singular values of a companion matrix. (You may work with
either CC T or C T C , but one is significantly easier. First show that all but
two of the singular values are equal to 1.)

(3) Show that the sum of the singular values of a square matrix is a norm.

(4) If σ1(A) denote the largest singular value of A, show that it is a norm.

.

5.6 Least Squares

We consider the system of linear equations

Ax = b (5.6.1)

where A is m ×n. In ?? we considered the case where the rows of A are linearly
independent. Then the columns of A span Rm , and we want the vector x with
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minimum norm such that Ax = b. The second, and more commonly met sit-
uation, is when the columns of A are linearly independent, and we want the
vector x such that ‖b − Ax‖2 is minimal.

We draw attention to one difficulty. It is in fact a non-trivial numerical prob-
lem to determine the rank of a real matrix, and so it may not be easy to verify
that the rows or columns of A are linearly independent. In fact, the best way
to determine the rank in finite precision arithmetic is to use the singular value
decomposition A = Y ΣX T , since rk(A) = rk(Σ). (Thus determining the rank of
A is reduced to determining the rank of a diagonal matrix; in the presence of
rounding errors and uncertainties in the data, this still may require thought.)
But rather than using the singular value decomposition just to get the rank of
A, we can use it to solve the least squares problem.

5.6.1 Lemma. Let A be an m×n real matrix with singular value decomposition
A = Y ΣX T , where Σ is k × k and invertible. Then the vector z of minimum
norm, such that b − Az has minimum norm is given by

z = XΣ−1Y T b.

Proof. We note that the columns of Y form an orthonormal basis for col(A),
whence the matrix representing projection onto col(A) is Y Y T . Similarly, the
columns of X form an orthonormal basis for col(AT ), and therefore X X T is the
matrix representing projection onto col(AT ).

Consequently y = Y Y T b is the vector in col(A) closest to b. Suppose Ax = y .
Then

Y ΣX T x = Y Y T b

and, multiplying both sides on the left by Y T , we have

X T x =Σ−1Y T b.

Now X X T x is the projection of x onto col(AT ), and accordingly

z = XΣ−1Y T b

is the vector of minimum norm such that Az is closest to b.
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5.7 Legendre Polynomials

Let V be Pol(R), the vector space of all real polynomials, with inner product

〈p, q〉 =
∫ 1

−1
p(t )q(t )d t .

Define a linear mapping L : V →V by

L(p) = (1− t 2)p ′′−2t p ′.

If n ≥ 2 then

L(t n) = (1− t 2)n(n −1)t n−2 −2nt n =−n(n +1)t n +n(n −1)t n−2. (5.7.1)

It follows that

〈t m ,Lt n〉 =
∫ 1

−1
(n(n −1)t m+n−2 −n(n +1)t m+n)d t ;

when m +n is odd the integral here is zero, if m +n is even then it is[
2n(n −1)

m +n −1
− 2n(n +1)

m +n +1

]
=− 4mn

(m +n)2 −1
.

Hence
〈t m ,Lt n〉 = 〈Lt m , t n〉

for all m and n. It follows that for any polynomials p and q ,

〈p,Lq〉 = 〈Lp, q〉,
and therefore L is self-adjoint. (This can also be proved directly using integra-
tion by parts.)

It follows that the eigenvalues of L are real, and eigenvectors with distinct
eigenvectors are orthogonal with respect to the above inner product. It is not
hard to determine the eigenvalues of L. From (5.7.1) we see that Poln(R) is
L-invariant and further, if Ln denotes the restriction of L to Poln(R) and β =
{1, t , . . . , t n} is the standard basis for Poln(R), then

[Ln]β =


0 0 2

−2 0 6
−6 0 12

−12 0
. . .


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This is a triangular matrix, and reveals that the eigenvalues of Ln are the integers
−m(m −1) for m = 1, . . . ,n.

As the eigenvalues are distinct, each eigenspace is 1-dimensional and is
thus spanned by a polynomial. The polynomial with eigenvalue −m(m−1) will
have degree m and is a solution of Legendre’s equation :

(1− t 2)p ′′−2t p ′+m(m −1)p = 0.

We call pm the Legendre polynomial of degree m. The first five Legendre poly-
nomials are as follows:

p0 = 1

p1 = t

p2 = 3t 2 −1

p3 = 5t 3 −3t

p4 = 35t 4 −30t 2 +3.

It makes no harm if we replace pi by any non-zero scalar multiple of itself, and
it is customary to choose the multiple so that pi (1) = 1. (But we have not done
that here.)

There are a number of related examples (of self-adjoint linear operators on
P (R)). We summarize some of them here. The numbers λ0,λ1, . . . are the eigen-
values of the operator.

(a) Chebyshev.

Lp = (1− t 2)p ′′− t p ′; 〈p, q〉 =
∫ 1

−1
p(t )q(t )

d tp
1− t 2

; λn =−n2.

(a) Laguerre.

Lp = t p ′′+ (1− t )p ′; 〈p, q〉 =
∫ ∞

0
p(t )q(t )e−t d t ; λn =−n.

(a) Hermite.

Lp = p ′′− t p ′; 〈p, q〉 =
∫ ∞

−∞
p(t )q(t )e−t 2/2 d t ; λn =−n.

In general, if
Lp = f p ′′+ g p ′
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then we may write
Lp = w−1(w f p ′)′

where

w(t ) = 1

f (t )
exp

∫ t

α

g (u)

f (u)
du.

(The value of the lower limit α in this integral will be determined by context.)
Then L is self-adjoint relative to the inner product

〈p, q〉 =
∫

p(t )q(t ) w(t )d t .

To see this, compute in outline as follows:

〈Lp, q〉 =
∫

q(w f p ′)′ d t =−
∫

w f p ′q ′ d t =−
∫

w f q ′ p ′ d t

=
∫

p(w f q ′)′ d t

= 〈p,Lq〉.

For this computation to be accurate, f (t )w(t ) must vanish at the endpoints of
the interval over which we integrate.

The eigenvectors of L will be polynomials only if w(t ) satisfies further re-
strictions.

5.8 Computing Eigenvalues

How do people really compute the eigenvalues of symmetric matrices? They
do not use the method offered in most introductory linear algebra course—
compute the characteristic polynomial, find its zeros—that is probably the fourth
best method. Here we outline the second best.

So, suppose A is a real symmetric n ×n matrix. We want to find an orthog-
onal matrix L such that LT AL is diagonal. What we will actually do is to de-
scribe how to find a sequence of orthogonal matrices S1, . . . ,Sr such that all
off-diagonal entries of

ST
r · · ·ST

1 AS1 · · ·Sr

are very small, we can then take the diagonal entries of this matrix to be the
eigenvalues of A.
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The basic idea is to note that we can diagonalize symmetric 2×2 matrices.
Using this we choose the matrix Si+1 so that it makes some off-diagonal entry
of ST

i · · ·ST
1 AS1 · · ·Si equal to 0. Unfortunately this will usually make some off-

diagonal entries non-zero, when they were already zero. This will make us work
harder, but will not prevent eventual success.

If M is a symmetric matrix then there is an orthogonal matrix L such that
LT ML is diagonal; if M is 2×2 then we may assume that L has the form(

c −s
s c

)
.

where c2 + s2 = 1. (We could, but do not, assume that c ≥ 0.) Now suppose that
A is a symmetric n ×n matrix, that B is the leading principal 2×2 submatrix of
A and that R is an orthogonal matrix such that RT BR is diagonal. Let S denote
the matrix (

R 0
0 In−2

)
.

Then
B = ST AS

is similar to A and B1,2 = 0. In general, if Ai , j 6= 0 then there is an orthogonal
matrix S such that the only non-zero off-diagonal entries of S are the i j and j i
entries, and (ST AS)i , j = 0. We call S a Givens rotation.

How does this help us. If A and B are n ×n matrices, define

〈A,B〉 = tr AB T .

Then ‖A‖2 is the sum of the squares of the entries of A and, if L is orthogonal,

‖LT AL‖2 = tr(LT AT LLT AT L) = tr(LT L A AT L) = tr(A AT ) = ‖A‖2.

Let sqo(A) denote the sum of the squares of the off-diagonal entries of A. Note
that, in passing from A to ST AS, the only diagonal entries that change are the
i i - and j j -entries and that the sum of the squares of these two entries increases
by 2(Ai , j )2. It follows that, if S and A are as above,

sqo(ST AS) = sqo(A)−2(Ai , j )2.

If sqo(A) = c, there are indices i and j such that

(Ai , j )2 ≥ c

n(n −1)
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and hence there is a Givens rotation S such that

sqo(ST AS) ≤ c

(
1− 2

n(n −1)

)
.

This implies that, by successively applying Givens rotations, we can form a ma-
trix M , orthogonally similar to A and such that sqo(M) is as small as we like.
The diagonal entries of M will be the eigenvalues of A.

5.9 Jacobi: An Example

By way of example, suppose that

A =
 1 0.5 0.3333

0.5 0.3333 0.25
0.3333 0.25 0.2

 .

Then Jacobi’s method runs through the following iterations.

(
c
s

)
=

(−0.47185
0.88167

)
; [1,2] →

0.065741 0 0.063132
0 1.2675 −0.41185

0.063132 −0.41185 0.2


(
c
s

)
=

(−0.32269
−0.94650

)
; [2,3] →

 0.06574 −0.05975 −0.02037
−0.05975 0.05958 0
−0.02037 0 1.40801


(
c
s

)
=

(−0.68867
−0.72507

)
; [1,2] →

0.002829 0 0.01403
0 0.12250 −0.01477

0.01403 −0.01477 1.40801


(
c
s

)
=

(−0.99993
−0.01149

)
; [2,3] →

 0.00283 −0.00016 −0.01403
−0.00016 0.12232 0
−0.01403 0 1.40818


(
c
s

)
=

(−0.99995
−0.00998)

)
; [1,3] →

0.00269 0.00016 0
0.00016 0.12233 0

0 0 1.40832


(
c
s

)
=

( −1.0
0.00135

)
; [1,2] →

0.00268 0 0
0 0.122327 0
0 0 1.40832


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Here the diagonal entries are the eigenvalues of A, and further iterations do not
change them.

(1) Suppose that 〈Av, Aw〉 = 0 whenever 〈v, w〉 = 0. Prove, or disprove, that A is
a scalar multiple of an orthogonal matrix.

(2) Suppose Q2 = Q and Q = QT . Show that I −2Q is a symmetric orthogonal
matrix, and explain the connection to reflections.

(3) Prove that an involution is symmetric if and only if it is orthogonal.

(4) Show that each involution has the form I −2P , for some idempotent P .

(5) Show that, if A and A−1 are similar, there is an involution T such that T AT =
A−1.



Chapter 6

Spectral Decomposition

6.1 Self-Adjoint Operators

The spectral decomposition of an operator is a more concrete form of diago-
nalizability. It is most useful when the operator is self-adjoint, so we confine
ourselves to that case.

Suppose S is an operator on the inner product space V and that the minimal
polynomial ψ of S is given by

ψ(t ) =
k∏

i=1
(t −θi ),

where the zeros θi are distinct. (Thus A is diagonalizable.) By the primary de-
composition theorem (Theorem 2.6.1), there are polynomials pi such that

I =
k∑

i=1
pi (S), (6.1.1)

where

(a) pi (S) is idempotent,

(b) p(S)p j (S) = 0 if i 6= j , and

(c) S acts on col(pi (S)) as multiplication by θi .

Assume Ei := pi (S). Then SEi = θi Ei and, by (6.1.1),

S =∑
i
θi Ei . (6.1.2)

91
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Equation (6.1.2) is known as the spectral decomposition of S.
One consequence of the spectral decomposition is that

Sn =∑
i
θn

i Ei ;

this can provide a simple way to compute powers of S.
If S is self-adjoint, then the operators Ei are self-adjoint, because each Ei is

a polynomial in S.

We now offer a matrix view of the spectral decomposition. If A is a diago-
nalizable n ×n matrix, then Fn has a basis consisting of eigenvectors for A. Let
L be the matrix with these eigenvectors as its columns. Then L is an invertible
matrix and there is a diagonal matrix D such that

AL = LD.

It follows that
A = LDLT .

We can write D as a sum of 01-diagonal matrices Di :

D =∑
i
θi Di ,

where θ1, . . . ,θm are the distinct eigenvalues of A and
∑

i Di = I . Accordingly

A =∑
i
θi LDi L−1.

It is easy to verify that
(LDi L−1)2 = LDi L−1

and, if i 6= j , then Di D j = 0 and

LDi L−1 LD j L−1 = LDi D j L−1 = 0

6.2 Commutative Algebras

Two idempotents E and F are orthogonal if EF = 0. For example, if E is an
idempotent, then E and I − E are orthogonal idempotents. We can define a
partial ordering on the idempotents of a commutative algebra A as follows. If
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E and F are idempotents in A , we declare that E ≤ F if F E = E . This relation is
reflexive, antisymmetric and transitive; therefore it is a partial order. A minimal
idempotent is a minimal element of the set of non-zero idempotents, relative
to this order. If E and F are idempotents, then EF ≤ E ,F . It follows that if E and
F are minimal, then they are orthogonal.

6.2.1 Theorem. Let B be a commutative matrix algebra with identity over an
algebraically closed field. Assume that if N ∈ B and N 2 = 0, then N = 0. Then
B has a basis of pairwise orthogonal idempotents.

Proof. As a first step, we show that each element of B is a linear combination
of idempotents.

Assme the matrices in B have order n ×n. Suppose A ∈ B and let ψ(t ) =∏k
i=1(t −θi )mi be its minimal polynomial. There are idempotents Ei , summing

to i , such that im(Ei ) is the root space associated with θi , and Fn is the direct
sum of these root spaces.

Further, the minimal polynomial of A on im(Ei ) is (t −θi )mi , and hence we
have

0 = (A−θi I )mi Ei = ((A−θi I )Ei )mi .

If mi > 1, we set k = b(mi +1)2c and N = ((A −θi I )Ei )k . Then N 6= 0 but N 2 = 0.
We conclude that zeros of the minimal polynomial of A are simple. We also see
that im(Ei ) is an eigenspace for A and as I =∑

i Ei it follows that

A = AI =∑
i

AEi =
∑

i
θi Ei .

Therefore A is a linear combination of idempotents belonging to B, and it fol-
lows that B is spanned by idempotents.

The problem that remains is to show that minimal idempotents exist. Sup-
pose E and F are distinct idempotents and E ≤ F . Then

F (I −E) = F −E 6= 0

but E(I −E) = 0. Hence the column space of E must be a proper subspace of
the column space of F . Therefore if E1, . . . ,Em are distinct idempotents and

E1 ≤ ·· · ≤ Em

then m ≤ n +1. We conclude that minimal idempotents exist.
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Now we prove that each idempotent is a sum of minimal idempotents. Sup-
pose F is an idempotent and E is a minimal idempotent. If EF 6= 0, then EF ≤ E
and therefore EF = E . This also shows that distinct minimal idempotents are
orthogonal. Let F0 be the sum of the distinct minimal idempotents E such that
E ≤ F . Then F0 is an idempotent. If F0 6= F then F −F0 is an idempotent and so
there is a minimal idempotent below it, which contradicts our choice of F0. We
conclude that B is spanned by minimal idempotents.

A matrix N is nilpotent if N k = 0 for some k. Theorem 6.2.1 asserts that
a commutative matrix algebra with identity has a basis of orthogonal idempo-
tents if there are no non-zero nilpotent matrices in it. Since a non-zero linear
combination of pairwise orthogonal idempotents cannot be nilpotent, this con-
dition is necessary too. A commutative algebra is semisimple if it contains no
non-zero nilpotent elements.

6.3 Normal Operators

An operator A on an inner product space is normal if A A∗ = A∗A. We consider
examples. Clearly any self-adjoint operator is normal. Unitary operators are a
second important class. If A = L∗DL where D is diagonal and L is unitary, then

A A∗ = L∗DLL∗DL = L∗DDL = L∗DDL = A∗A

and so any matrix that is unitarily similar to a diagonal matrix is normal.
Exercise: determine which complex 2×2 matrices are normal.
Exercise: If H is normal, show that we can write it as H = A + i B , where A

and B are Hermitian and commute.

6.3.1 Theorem. Suppose A is a commutative subalgebra of Matv×v (C) that is
closed under conjugate transpose and contains the identity. Then A has a basis
of matrix idempotents E0, . . . ,Ed such that

(a) Ei E j = δi , j Ei .

(b) The columns of Ei are eigenvectors for each matrix in A .

(c)
∑d

i=0 Ei = I .

(d) E∗
i = Ei .
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Proof. Suppose N ∈A and N 2 = 0. Then

0 = (N∗)2N 2 = (N∗N )2

and hence
0 = tr((N∗N )2) = tr((N∗N )∗(N∗N )).

If H := N∗N , then tr(H∗H) = 0 if and only if H = 0, so we deduce that N∗N = 0.
But then tr(N∗N ) = 0 and therefore N = 0. Hence A satisfies the hypotheses of
6.2.1, and therefore it has a basis that consists of pairwise orthogonal idempo-
tents.

We show that the idempotents Ei are Hermitian. Since A is closed un-
der transpose and complex conjugation, E∗

i ∈ A . Therefore there are scalars
a0, . . . , ad such that

E∗
i =∑

j
a j E j

and so
E∗

i Ei = fi Ei .

Since tr(E∗
i Ei ) > 0 and tr(E j ) > 0, it follows that fi 6= 0. But E∗

i is a minimal idem-
potent, and therefore f j = 0 if j 6= i . This implies that E∗

i is a scalar multiple of
Ei , but tr(Ei ) = tr(E∗

i ), and therefore E∗
i = Ei .

6.3.2 Theorem. If A is normal, then A is unitarily similar to a diagonal matrix.
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Chapter 7

Norms

7.1 Convexity

We work over R. We say that a vector v is an affine combination of vectors
x1, . . . , xn if

v =∑
i

ai xi

and
∑

ai = 1. An affine combination is proper if it has at least two non-zero
coefficients. The set of all affine combinations of a set of vectors is the affine
hull of the set. The affine hull of x is x itself. The affine hull of {x, y} (where
x 6= y) is

{t x + (1− t )y : t ∈R}.

Geometrically this set is the unique line passing through the points represented
by x and y . Note that this line contains 0 if and only if x and y are linearly
dependent.

If U is a subspace of V and then a coset of U is a set of the form

{a +u : u ∈U },

for some a in V .

7.1.1 Lemma. The affine hull of a set of vectors {x1, . . . , xm} is a coset of the sub-
space spanned by x2 −x1, . . . , xm −x1.

An affine subspace is a set S that is closed under affine combinations.

97
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We say that vectors x1, . . . , xm are affinely dependent if there are scalars ai ,
not all zero, such that ∑

i
ai = 0,

∑
i

ai xi = 0.

If a set is not affinely dependent, it is affinely independent. Note that any single
vector, including the zero vector, is affinely independent.

A vector v is a convex combination of vectors x1, . . . , xm if there are scalars
a1, . . . , am such that ∑

i
ai = 1, ai ≥ 0 (i = 1, . . . ,m)

and
v =∑

ai xi .

Thus a convex combination is a non-negative affine combination. A convex
combination is proper if its has at least two non-zero coefficients. The convex
hull of a subset S is the set of all convex combinations of elements of S. A set S
is convex if any convex combinations of its elements is contained in S, that is,
if S is equal to its convex hull.

The convex hull of two distinct vectors consists of the line segment that
joins them. Hence a set S is convex if, whenever x and y belong to S, so do
all points on the line segment joining them. We also see that the intersection of
two convex sets is convex.

A real-valued function f on Rn is convex if

f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y), 0 ≤ t ≤ 1.

(1) If a ∈Rn , show that f (x) := exp(aT x) is a convex function.

(2) Show that set of positive semidefinite matrices is the convex hull of the ma-
trices with rank 1.

(3) Suppose ai ≥ 0 and
∑

i ai = 1. If f is convex, prove that

f

(∑
i

ai xi

)
≤∑

i
ai f (xi ).

(4) Use the result of the previous exercise with f (x) = xp (p > 1) to show that∑
i
|xi yi | ≤

(|xi |p
)1/p (|yi |q

)1/q ,

where 1/p +1/q = 1. (This is Hölder’s inequality.)
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7.2 Extreme Points

Let C be a convex set. A point x is C is extreme if it cannot be expressed as the
convex combination of points in C \x. The extreme points of a line segment are
its endpoints. Suppose C is convex and x ∈ C . Let ` be a line through x. Then
`∩C is a line segment. The interior points of this line segment are not extreme.
A closed convex set is the convex hull of its extreme points. We will not prove
this, but we consider two cases that will be useful.

7.2.1 Lemma. Let S be the set of vectors x in Rn such that |xi | ≤ 1 for all i . Then
S is the convex hull of the vectors with all entries ±1.

Proof. It is easy to verify that S is convex, we leave this as an exercise. We show
that it is the convex hull of the ±1-vectors.

We prove this by induction on n, asserting that it is trivial when n = 1. As-
sume v ∈ S and that v1 = 1. Let v ′ be the vector we get by deleting the first entry
of v . Then v ′ lies in the set of vectors x in Rn−1 such that |xi | ≤ 1, and so by
induction it is a convex combination of the ±1-vectors in Rn−1. It follows that v
is a convex combination of those ±1-vectors in Rn with first entry equal to 1. If
v1 =−1, then −v ′ is a convex combination of ±1-vectors x1, . . . , xm , and so v ′ is
a convex combination of the vectors −x1, . . . ,−xm , but these are ±1-vectors too.
It follows that if |vi | = 1, then v is a convex combination of ±1-vectors.

Now suppose that |vi | < 1 for all i . Let v+ be the vector such that (v+)i = 1 if
vi ≥ 0 and (v+)i =−1 if vi < 0. Then

((1− t )v++ t v)i =
{

1− t + t vi , if vi ≥ 0;

t −1+ t vi , otherwise.

from which we eventually deduce that w = (1− t )v++ t v ∈ S provided

0 ≤ t ≤ 2

1−|vi |
.

Choose t so that t = 2/(1−|v j |) for some j . Then |w j | = 1, and therefore v is a
convex combination of v+ and w . Since |w j | = 1, it is the convex combination
of ±1-vectors, and therefore v is too.

7.2.2 Lemma. Let S be the set of vectors x such that∑
i
|xi | ≤ 1.

Then S is the convex hull of the vectors ±ei for i = 1, . . . ,n.
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(1) Show that if x is a proper convex combination of points from C , it is the
proper convex combination of two points.

(2) Let C be a convex set and let f be a convex function. If the point x0 in C
maximizes the value of f , show that it is an extreme point.

(3) Prove (??).

7.3 Norms

Let V be a vector space over F, where F is R or C. A norm on V is a function
from V to R, whose value on x is written ‖x‖, such that

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

(2) If c ∈R, then ‖cx‖ = |c|‖x‖.

(3) If ‖x + y‖ ≤ ‖x‖+‖y‖.

The third axiom is called the triangle inequality. It implies that any norm is a
convex function on V . The set

{x : ‖x‖ ≤ 1}

is called the unit ball of the norm, but it need not be very round.
We consider some examples over R. If we have an inner product on V , then

we can define a norm by
‖x‖ :=

√
〈x, x〉

The only difficulty here is to verify the triangle inequality. We note that

‖x + t y‖2 = 〈x + t y, x + t y〉 = 〈x, ,〉x +2〈x, y〉t +〈y, y〉t 2.

This is a quadratic in t which is non-negative for all t , and consequently

〈x, y〉2 −〈x, x〉〈y, y〉 ≤ 0,

which is usually called the Cauchy-Schwarz inequality. It follows that

〈x, x〉+2〈x, y〉t +〈y, y〉t 2 ≤ 〈x, x〉+2〈x, y〉t +〈y, y〉t 2

≤ 〈x, x〉+2‖x‖‖y‖t +〈y, y〉t 2

= (‖x‖+ t‖y‖)2.
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We conclude that ‖x‖+ t y ≤ ‖x‖+‖t y‖, which yields the triangle inequality.
If our inner product is the dot product our norm is the usual Euclidean

norm or `2-norm and is denoted by ‖·‖2 or, sometimes, by ‖·‖. The unit ball
for the Euclidean norm is the unit ball.

If 〈·, ·〉 is a complex inner product, the function√
〈x, x〉

is a norm. Note that 〈x, x〉 is guaranteed to be real and non-negative.

Once we have a norm, we can declare that a sequence x0, x1, . . . of vectors
converges to x if the sequence of real numbers

‖x −x0‖, ‖x −x1‖, . . .

converges to 0. It is a somewhat surprising fact that if a sequence of vectors in
a finite-dimensional vector space converges with respect to one norm, then it
converges with respect to all. (This is false if the dimension is infinite, as the
exercises show.)

(1) Prove that a norm is a convex function.

(2) Let V = C [0,1], the space of continuous functions on the interval [0,1]. If
f ∈V , let ‖ f ‖ be the norm asssociated with the inner product

〈 f , g 〉 :=
∫ 1

0
f (x)g (x)d x

and let ‖ f ‖∞ be the norm defined by

‖ f ‖∞ = max{ f (x) : x ∈ [0,1]}.

(You may prove that this is a norm.) Define

gr (x) := (4x(1−x))r .

Prove that ‖gr ‖→ 0 as r →∞, but ‖gr ‖∞ = 1 for all r .
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7.4 Dual Norms

We introduce two further norms. We define ‖x‖1 by

‖x‖1 := max
i

∑
i
|xi |

and ‖x‖∞ by
‖x‖∞ := max

i
|xi |.

These are known respectively as the `1 and `∞-norms on Rn . As we saw in
the previous section, the unit ball for the `1-norm is the convex hull of the vec-
tors ±ei and the unit ball for the `∞-norm is the convex hull of the ±1 vec-
tors. (These definitions work over both R and C, we will only use them over R
though.)

If ‖·‖ is a norm, we define the dual norm ‖·‖∗ by

‖a‖∗ := max
‖x‖=1

xT a.

We leave the proof that this is a norm as an exercise. As another exercise, we
leave you to prove that ‖x‖∗∗ = ‖x‖, for any x.

By way of example, we determine the dual of the `∞-norm. Our problem
is compute the maximum value of the function xT a over the vectors x in the
unit ball of the `∞-norm. This is linear in x, and hence convex; therefore its
maximum value occurs at an extreme point of this ball. By Lemma 7.2.1, the
extreme points are the ±1-vectors and hence ‖a‖∗∞ is equal to the maximum
value of xT a, as x ranges over the set of ±1-vectors. Clearly this maximum is
realized when xi ai > 0 for each i , and therefore

‖a‖∗∞ =∑
i
|ai | = ‖a‖1.

(1) Let V be the Euclidean space Rn . Determine the largest C and the smallest
D such that

C‖x‖∞ ≤ ‖x‖ ≤ D‖x‖∞.

(2) If the function ‖·‖∗ is defined on Rn by

‖y‖∗ = max
‖x‖=1

xT y,

show that it is a norm.
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(3) Prove that ‖x‖∗∗ = ‖x‖, for any x.

(4) Prove that yT x ≤ ‖x‖‖y‖∗, and show that this bound is tight.

(5) Show that the `1-norm is dual to the `∞-norm, and vice versa.

7.5 Matrix Norms

Let B be an algebra over the reals. A norm on B is a function ‖·‖ from B to R
that is norm, when we view B as a vector space, and in addition satisfies:

‖AB‖ ≤ ‖A‖‖B‖.

If ‖·‖ is a norm on a vector space V then the unit ball

{x ∈V : ‖x‖ ≤ 1}

is a closed convex set. If ‖·‖ is a norm on an algebra then the unit ball must be
closed under multiplication, hence forms a semigroup.

Now suppose ‖·‖ is a norm on L(V ), viewed as a vector space. The unit ball
is compact and so, if A ∈ L(V ) then there is a constant γA such that, if ‖X ‖ ≤ 1,

‖AX ‖ ≤ γA.

If we define γ to be the maximum value of γA, where ‖A‖ ≤ 1, then

‖AB‖ = ‖A‖‖B‖γ.

From this it follows that γ−1‖·‖ is a norm on L(V ), viewed as an algebra. We will
refer to a norm on an algebra as an operator norm or matrix norm, according
as the elements of our algebra are linear mappings or matrices.

Let V be a normed vector space, with norm ‖ · ‖. If T is an endomorphism
of V , we define the induced norm of T by

‖T ‖ = max{‖T x‖ : ‖x‖ = 1}.

Equivalently, it is the maximum value of ‖T x‖/‖x‖, for all non-zero vectors x
in V . It is straightforward to verify that this is a norm on L(V ), with the useful
properties:

‖T x‖ ≤ ‖T ‖‖x‖
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and
‖ST ‖ ≤ ‖S‖‖T ‖.

Unless explicitly stated otherwise, we use the same symbol to denote a norm
on Rn and the norm it induces on n ×n matrices. If ‖·‖ is an induced norm,
then ‖I‖ = 1.

If ‖·‖ is an induced norm then for any matrix A and vector x, we have the
very useful inequality:

‖Ax‖ ≤ ‖A‖‖x‖.

If ‖·‖a and ‖·‖b are any two norms on a vector space, we say that ‖·‖b domi-
nates ‖·‖a if, for all v in V ,

‖v‖a ≤ ‖v‖b .

A norm is minimal if it does not dominate any other norm. Generally minimal
norms are more useful than general norms.

7.5.1 Lemma. Every matrix norm dominates an induced norm.

Proof. Suppose ‖·‖ is a matrix norm. We use this to construct a norm on Rn

whose induced norm is dominated by ‖·‖.
Let a be a fixed non-zero vector in Rn . We define ‖·‖a by

‖b‖a := ‖baT ‖.

Then
‖Ax‖a = ‖AxaT ‖ ≤ ‖A‖‖x‖a

and the matrix norm induced by ‖·‖a is dominated by ‖·‖.

7.5.2 Theorem. Let ‖·‖ be a norm on Rn with dual norm ‖·‖∗. If A is a square
matrix then ‖A‖∗ = ‖AT ‖.

Proof. We have
‖Ax‖∗ = max

‖y‖=1
yT Ax = max

‖y‖=1
xT AT y

and so
‖A‖∗ = max

‖x‖∗=1
max
‖y‖=1

xT AT y.

Now
max
‖x‖∗=1

xT b = ‖b‖∗∗ = ‖b‖
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and consequently
‖A‖∗ = max

‖y‖=1
‖AT y‖ = ‖AT ‖.

In the sequel any norm we use on matrices will be a matrix norm. If (An)n≥0

is a sequence of matrices and we write that An → 0, we mean that ‖An‖→ 0, for
some norm ‖·‖.

(1) Let ‖·‖ be a norm on Rn , and let ‖·‖ also denote the induced matrix norm.
Prove that ‖abT ‖ = ‖a‖‖b‖∗ and hence that bT a ≤ ‖abT ‖.

(2) Prove that if n ≥ 1, then ‖An‖1/n ≤ ‖A‖.

7.6 Examples

The Euclidean or trace norm of a matrix is the norm associated with the inner
product

〈A,B〉 := tr AT B.

We denote this norm by ‖·‖2 or, sometimes, by ‖·‖. Note that ‖A‖2
2 is the sum of

the squares of the entries of A. We have

‖AB‖2
2 =

∑
i , j

∣∣∣∣∑
r

Ai ,r Br, j

∣∣∣∣2

≤∑
i , j

(∑
r
|Ai ,r |2

)(∑
r
|Br, j |2

)

=
(∑

i ,r
|Ai ,r |2

)(∑
r, j

|Br, j |2
)

= ‖A‖2
2 ‖B‖2

2.

We have ‖In‖ = n and so the trace norm is not an induced norm.
We turn next to induced matrix norms. First we note that

‖Ax‖2
2 = (Ax)T Ax = xT AT Ax

and therefore
max
‖x‖2=1

‖Ax‖2

is equal to
p
ρ, where ρ is the largest eigenvalue of AT A. (But since we have not

discussed eigenvalues at any length yet, we defer any further discussion.)
Both of above norms have the useful property that, if Q is orthogonal, then

‖Q A‖ = ‖A‖.
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7.6.1 Lemma. Let A be a square matrix. Then

‖A‖∞ = max
i

‖eT
i A‖1.

Proof. The function x 7→ ‖Ax‖∞ is convex and hence realizes its maximum at
an extreme point of the unit ball relative to the `∞ norm. These extreme points
are the ±1-vectors. If x is a ±1-vector then

|(Ax)i | = |∑
j

Ai , j x j | ≤
∑

j
|Ai , j x j | ≤

∑
j
|Ai , j | = ‖eT

i A‖1.

Further, equality holds throughout if we choose x so that Ai , j x j ≥ 0. This proves
the lemma.

7.6.2 Lemma. Let A be a square matrix. Then

‖A‖1 = max
i

‖Aei‖1.

Proof. Since `1 and `∞-norms are dual, we can apply Theorem 7.5.2 to the
previous lemma, concluding that

‖A‖1 = ‖AT ‖∞ = max
i

‖eT
i AT ‖1 = max

i
‖Aei‖1.

(1) If ‖·‖ is the trace norm or the induced `2-norm, and Q is an orthogonal
matrix, show that ‖Q A‖ = ‖A‖

7.7 Matrix Functions

We say a matrix is a function of a variable t if each element of the matrix is. This
makes sense over any field, but here we work over R or C. If the matrix A(t ) is a
function of t then

d

d t
A(t )

is the matrix we get by differentiating each entry of A(t ) with respect to t .
As an example, we consider the differential equation

f ′′+a f ′+b = 0. (7.7.1)
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This is equivalent to the following pair of equations:

d

d t
f ′ =−a f ′−b,

d

d t
f = f ′,

which we can rewrite as

d

d t

(
f ′

f

)
=

(−a −b
1 0

)(
f ′

f

)
.

We can solve this using the matrix exponential.
For any square matrix A we define

exp(t A) :=
∞∑

n=0

t n

n!
An .

But we need to see that this makes sense. We have

‖An‖∞ ≤ ‖A‖n
∞

and so, if a := ‖A‖∞, each entry of An is bounded in absolute value by an . There-
fore each entry of

m∑
n=0

t n

n!
An

converges as m →∞, for any value of t . Moreover we are entitled to differenti-
ate the series term-by-term, with the result that

d

d t
exp(t A) =

∞∑
n=1

t n−1

(n −1)!
An = A exp(t A).

Now define the vector F (t ) by

F (t ) =
(

f ′

f

)
and suppose

A :=
(−a −b

1 0

)
.
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Then (7.7.1) becomes
d

d t
F (t ) = AF (t )

and it is easy to see that this has the solution

F (t ) = exp(t A)F (0).

Although this method of solving differential equations is very important, it
is of limited use as a tool for solving particular equations. It is computationally
difficult to compute exp(A) because, even though

1

n!
An → 0

as n →∞, for moderate values of n this ratio can be very large. The difficulty is
essentially the same as attempting to compute exp(100) using the power series
for the exponential.

(1) Show that

exp t (A+B) = exp(t A)exp(tB)

if and only if AB −B A = 0.

(2) If S is skew symmetric, show that exp(S) is orthogonal.

(3) If

H :=
(

0 1
−1 0

)
,

show that exp(πH) =−I .

7.8 Powers

We have seen the exponential series in a matrix A is well-defined and useful.
We will find useful to consider other power series with matrix arguments. Our
next result provides a basic tool.

7.8.1 Lemma. If A is a non-zero matrix and ‖·‖ is a matrix norm, then the se-
quence ‖An‖1/n converges to a limit ρ. Further ρ ≤ ‖An‖1/n for all n.
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Proof. By way of abbreviation, let f (n) = ‖An‖1/n . Note first that

‖Akm‖ ≤ ‖Am‖k ,

and therefore f (km) ≤ f (m). Assume n = km +`, where 0 ≤ `< m. Then

f (km +`) ≤ f (km)
km

km+` f (`)
`

km+` ≤ f (m)
km

km+` f (`)
`

km+`

Given ε> 0 and fixed m, it follows that for all but finitely many n, we have

f (n) ≤ (1+ε) f (m).

We say that f (m) is a record for f if, when k < m,

f (m) < f (k).

Consider the sequence of records for f . If it is finite, letρ denote its last member.
If it is not finite, then it is a strictly decreasing sequence, bounded below by 0
and therefore it has a limit, which we denote by ρ. From the previous paragraph
it follows that if ε > 0, then f (n) ≤ (1+ ε)ρ for all but finitely many values of n.
Consequently the sequence ‖An‖1/n converges to ρ and ρ ≤ ‖An‖1/n for all n.

This lemma does not guarantee that ρ−n An converges. For example, if

A =
(
cosθ −sinθ
sinθ cosθ

)
then

An =
(
cosnθ −sinnθ
sinnθ cosnθ

)
and, using the trace norm

‖An‖ = ‖A‖ = 2.

Therefore ‖An‖1/n = 1 but, nonetheless, the sequence (An)n≥0 does not con-
verge except in special cases.

The quantity

l i mn→∞‖An‖1/n

is known as the spectral radius of A.
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We want to work with the geometric series∑
r≥0

t r Ar .

7.8.2 Lemma. The series
∑

r≥0 t r Ar converges if and only if t n An → 0 as n →∞.
If it does converge, its limit is (I − t A)−1.

Proof. We have

(I − t A)(I + t A+·· ·+ t n−1 An−1) = I − t n An .

Suppose I − t A is not invertible. Then there is a non-zero vector u such that
(I − t A)u = 0. Therefore t Au = u and t r Ar u = u for all r . So t n An does not
converge to 0 and, since

(I + t A+·· ·+ t n−1 An−1)u = nu,

the series
∑

r≥0 t r Ar does not converge.
Hence we may suppose that I − t A is invertible and consequently

I + t A+·· ·+ t n−1 An−1 = (I − t A)−1(I − t n An).

The lemma follows immediately.

7.8.3 Corollary. Let ρ be the spectral radius of A. The series
∑

r t r Ar converges
(to (I − t A)−1) if |t | < ρ−1 and diverges if |t | > ρ−1.

Proof. We observe that t n An converges to 0 if and only if ‖t n An‖ does. By
Lemma 7.8.1 we see that t n An → 0 if |t | < ρ−1 and that it does not converge
if |t | > ρ.

This result shows that ρ−1 is the radius of convergence of the series
∑

n t n An .

7.9 Contractions

We call a linear map T a contraction relative to the norm ‖·‖ if ‖T n‖ → 0 as n
increases. Our first result shows that being a contraction is independent of the
norm we use.

7.9.1 Lemma. The linear map T is a contraction if and only if its spectral radius
is less than 1.
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Proof. Let ρ be the spectral radius of T . Let ‖·‖ be an operator norm, and sup-
pose ε> 0. By Lemma 7.8.1, for all sufficiently large values of n,

ρn ≤ ‖T n‖ ≤ (ρ+ε)n .

The result follows at once.

While this result has its uses, it does not provide an effective means of decid-
ing if a particular map is a contraction. But contractions are important, and so
we need effective ways of recognizing them. If there is an operator norm such
that ‖T ‖ < 1, then since

‖T n‖ ≤ ‖T ‖n ,

it follows that T is a contraction. Our work in this section shows that, if T is a
contraction, there is a norm ‖·‖ such that ‖T ‖ < 1.

If B is a positive definite matrix then the bilinear form

〈u, ,〉v = uT B v

is an inner product, and
p

uT Bu is a norm. (See Lemma 9.1.2.)

7.9.2 Lemma. A matrix A is a contraction if and only if there is a positive definite
matrix B such that B − AT B A is positive definite.

Proof. Suppose first that B is positive definite and B −AT B A is positive definite.
Then for any non-zero vector v ,

0 < vT (B − AT B A)v = vT B vT − vT AT B Av.

If ‖·‖B denotes the norm determined by B , this shows that, for any non-zero
vector v ,

‖Av‖B < ‖v‖B

and therefore ‖A‖B < 1.
To complete the proof, we show that if C is positive definite and the equa-

tion
X − AT X A =C (7.9.1)

has a positive definite solution X , then A is a contraction. If X satisfies (7.9.1),
then

X =C + AT X A

AT X A = AT C A+ (AT )2X A2

(AT )2X A2 = (AT )2C A2 + (AT )3X A3,
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which leads us to conjecture (and you to prove, by summing enough of these
equations) that

X − (C + AT C A+·· ·+ (AT )n−1C An−1) = (AT )nC An .

Since the right side of this identity goes to 0 as n increases, we conclude that

X = ∑
r≥0

(AT )r C Ar

is a solution to (7.9.1). Because C is positive definite, vT C v > 0 for all non-zero
vectors v , and therefore

vT (AT )r C Ar v > 0

for all non-zero vectors v . Consequently X is positive definite.

Equation (7.9.1) is known as Stein’s equation. It is a system of linear equa-
tions in the entries of X , and so can readily be solved. Since all we need of C is
that it be positive definite, we may choose C = I . The proof of the lemma shows
that if A is a contraction, then Stein’s equation has a unique solution. There-
fore we could determine if A is a contraction by solving X − AT X A = I , and
then testing whether the solution X is positive definite. (This can be decided
by Cholesky factorization.)

(1) If C is symmetric and X − AT X A = C has a solution, show that it has sym-
metric solution.

(2) Read up on Kronecker products (in Corollary ??), and then show that, if A
does not have distinct eigenvalues whose product is equal to 1, then X −
AT X A = I has a solution.

7.10 Projections

We study subspaces and projections in Rn ; our results extend to any inner prod-
uct space. Suppose U is a k-dimensional subspace of Rn , and let Y be an n ×k
matrix whose columns form a basis for U . The Gram-Schmidt algorithm im-
plies that there is a k × k upper-triangular matrix P such that the columns of
Y P are orthogonal. As Y and Y P have the same column space, it follows that
the columns of Y P form an orthonormal basis for U .
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For our purposes we may as well assume that we chose Y so that Y T Y = Ik ,
without further ado. If we define

P = Y T Y

then we see that P is symmetric and

P 2 = Y T Y Y T Y = Y T Y = P.

Hence P represents orthogonal projection onto its column space. As rkP =
rkY = k and as the column space of P is contained in the column space of Y , it
follows that the column space of P equals U . So P represents orthogonal pro-
jection onto U . One consequence of this is that the properties of the collection
of k-dimensional subspaces of Rn are mirrored by the properties of the n ×n
orthogonal projections with rank k.

Our projections are symmetric and there is a natural inner product on the
space of symmetric matrices:

〈A,B〉 = tr(AB).

If Pi = Y T
i Yi where Yi is n ×k and Y T

i Yi = Ik then

〈P1,P2〉 = tr(Y1Y T
1 Y2Y T

2 ) = tr(Y T
2 Y1Y T

1 Y2)

= tr((Y T
1 Y2)T (Y T

1 Y2))

≥ 0.

Further

〈P1 −P2,P1 −P2〉 = tr(P 2
1 −P1P2 −P2P1 +P 2

2 )

= tr(P1 +P2 −2P1P2)

= 2k −2〈P1,P2〉.

Thus the value of k − tr(P1P2) can be viewed as a measure of how close the sub-
spaces represented by P1 and P2 are.

If P and Q are projections defining two subspaces U and V of Rn and x is a
unit vector in Rn then ‖P x −Qx‖ is a measure of distance of U from V . Now

‖P x −Qx‖2 = xT (P −Q)2x,
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whence all information of this sort is contained in the matrix (P −Q)2. The
maximum value over all unit vectors x of

‖P x −Qx‖2 = xT (P −Q)2x

is the largest eigenvalue of the (real symmetric) matrix (P −Q)2. Our next result
bounds this.

7.10.1 Lemma. Let P and Q be projections. Then ‖P x−Qx‖ ≤ ‖x‖ and, if equal-
ity holds, x = P x +Qx and 〈P x,Qx〉 = 0.

Proof. The vectors P x and (I −P )x are orthogonal, so the points represented
by the vectors 0, P x and x are the vertices of a right-angled triangle with hy-
potenuse joining 0 to x. Thus (why??) they lie on the circle with this hypotenuse
as a diameter. Similarly the vectors 0, Qx and x form a second right-angled tri-
angle, and also lie on a circle. Now, if two triangles in Rn share a side then the
distance between their third vertices is maximal when they lie in the same plane
(and on opposite sides of their shared side). Hence ‖P x −Qx‖ ≤ ‖x‖; if equality
holds then the two triangles are coplanar, the two circles coincide and P x and
Qx must be diametrically opposed on the circle. Since the origin is on a circle
with the line segment from P x to Qx as a diameter, P x, 0 and Qx form a right
triangle and P x must be orthogonal to Qx. Further, 0, P x, x and Qx form the
vertices of a rectangle; by the parallelogram rule for addition of vectors in the
plane, x = P x +Qx.

(1) Show that if P and Q are projections and rkP = rkQ, then tr(P −Q)3 = 0.

(2) Show that (P −Q)2 commutes with P and Q.

7.11 Contractions

In this section, we derive the characterization of contractions in terms of eigen-
values. If M is a square matrix, we use ‖M‖1 to denote the induced `1 norm of
M—this equals the maximum value of the `1-norms of the columns of M , as
we saw in ??.

7.11.1 Theorem. Let A be a square matrix. If |θ| < 1 for all eigenvalues θ of A,
then A is a contraction.
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Proof. As a first step, we prove the theorem when A is lower triangular. Suppose
A is n×n and let D t be the n×n diagonal matrix with (D t )i ,i = t i−1. Let∆ denote
the diagonal matrix with ∆i ,i = Ai ,i . The i j -entry of D−1

t AD t is t j−i Ai , j and so

lim
t→∞D−1

t AD t =∆.

In particular, given ε > 0, we can choose t large enough that ‖D−1
t AD t‖1 lies

within ε of ‖∆‖1. Consequently, if |θ| < 1 for each eigenvalue θ, then we can
choose t so that ‖D−1

t AD t‖1 < 1.
This implies that

‖D−1
t AnD t‖1 → 0

as n →∞. Since

‖An‖1 = ‖D−1
t D−1

t AnD t D t‖ ≤ ‖D−1
t ‖1‖D−1

t AnD t‖1‖D t‖1,

it follows that ‖An‖1 → 0 as n →∞.
If A is not triangular, then A = LT L−1, where T is triangular. Since

‖An‖ ≤ ‖L‖1‖T n‖1‖L−1‖1

and
‖T n‖1 = ‖L−1 AnL‖1 ≤ ‖L−1‖1‖An‖1‖L‖1,

we see that A is a contraction if and only if T is. To complete the proof, we recall
that A and T have the same eigenvalues.

There is another proof of this result using root vectors.

7.11.2 Lemma. Let A be an n ×n matrix over C, let θ be an eigenvalue of A and
let v be a root vector for θ. If |θ| < 1, then Am v → 0 as m →∞.

Proof. Since v is a root vector for θ, we have (A−θI )n v = 0. Then

Am = (A−θI +θI )m

and so using the binomial theorem, we find that

Am v = θm−n+1
[( m

n −1

)
(A−θI )n−1+

(
m

n −2

)
(A−θI )n−2θ+·· ·+θn−1I

]
v.

Hence we have
Am v = θm−n+1P (m)v,
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where P (m) is a matrix whose entries are polynomials in m with degree at most
n −1. Since |θ| < 1, it follows that

θm−n+1P (m) → 0

as m →∞.

Now suppose A is an n ×n matrix with all eigenvalues inside the unit circle.
Since each vector in Cn is a linear combination of root vectors, it follows that
for any vector v ,

Am v → 0

as m →∞.
We have two methods now for determining if a square matrix A is a con-

traction. We can solve Stein’s equation, as discussed in Section 7.9, or we can
compute the spectral radius from the eigenvalues of A. This second alternative
is useful if A is symmetric, or if A is real and its entries are positive.

7.12 Perron

We say a real matrix M is non-negative if all its entries are non-negative. We
write M ≥ N is M −N is non-negative. We say M is positive if all its entries are
positive. If M is a real matrix of any order, then we define |M | to be the matrix
we get by replacing each entry by its absolute value.

7.12.1 Lemma. Let A be an n ×n matrix with spectral radius ρ, and suppose A
is real and all its entries are positive. Suppose that θ is an eigenvalue such that
|θ| = ρ and let x be an eigenvector wih eigenvalue θ. Then |x| is an eigenvector
for A with eigenvalue ρ.

Proof. We have
ρ|x| = |θx| = |Ax| ≤ |A| |x|

and therefore
A|x| ≥ ρ|x|.

First, suppose there is a non-negative non-zero vector z such that Az ≥ σz
and σ> ρ. Then

An z ≥σn z

and therefore
‖An‖ ≥σn
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for all n. This implies that the spectral radius of A is at leastσ, which contradicts
the fact that the spectral radius equals ρ.

Now suppose that z is a non-negative non-zero vector such that Az ≥ ρz
and, for some index k, we have

eT
k Az > ρeT

k z.

Consider the vector z + tek , where t is small. Then

A(z + tek ) ≥ ρz + t Aek .

Since all entries of A are positive, it follows that, if i 6= k, then

eT
i A(z + tek ) > ρeT

i z = ρeT
i (z + tek ).

On the other hand

eT
k A(z + tek ) = eT

k Az + teT
k Aek > ρeT

k z + teT
k Aek

= ρeT
k (z + tek )+ t (Ak,k −1).

It follows that the are positive values of t such that

eT
k A(z + tek ) > ρeT

k (z + tek )

and, for these values of t , we have

A(z + tek ) > ρz + tek .

Since this is impossible, we are forced to conclude that Az = ρz.

7.12.2 Theorem. Let A be a real square matrix with positive entries. Then the
spectral radius of A is an eigenvalue of A with algebraic multiplicity 1, and cor-
responding eigenspace is spanned by an eigenvector with all entries positive. If
θ is an eigenvalue of A not equal to ρ, then |θ| < ρ.

Proof. We have seen that there is an eigenvector x with eigenvalue ρ and all its
entries non-negative. We show that the entries of any non-negative eigenvector
with eigenvalue ρ must all be positive. Suppose ρy = Ay and y ≥ 0. Then

ρeT
i y = eT

i Ay =∑
j

Ai , j y j .
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However all entries of A are positive and y is non-negative and not zero, so the
above sum is positive. As ρ > 0, it follows that eT

i y > 0.
Next we show that ρ has geometric multiplicity 1. Assume Ay = ρy , where

y is not a scalar multiple of x. Then there is a real number t such that x +
t y ≥ 0 and some entry of x + t y equals 0. But x + t y is an eigenvector for A
with eigenvalue ρ, and so we have a contradiction. We conclude that ρ has
geometric multiplicity 1.

Finally we show thatρ has algebraic multiplicity 1. Suppose that (A−ρI )2w =
0 and w is not in ker(A −ρI ). Then, replacing w by −w if needed, we may as-
sume that x = (A−ρI )w is a positive eigenvector for A with eigenvalue ρ. Note
now that AT is a positive matrix with spectral radius ρ. (It has the same min-
imal polynomial as A, hence has the same eigenvalues.) Let y be a positive
eigenvector for AT with eigenvalue ρ. Then yT (A−ρI ) = 0, and consequently

yT x = yT (A−ρI )w = 0.

But y and x are positive, and therefore yT x > 0. Thus we conclude that, if (A −
ρI )2w = 0 then w = 0. Therefore the algebraic multiplicity of ρ is 1.

Now suppose that θ is an eigenvalue of A distinct from ρ, and let x be an
eigenvector for θ. Then, using the triangle inequality,

|θ| |xi | = |(Ax)i | =
∣∣∣∑

j
Ai , j x j

∣∣∣≤∑
j
|Ai , j x j | = (A|x|)i .

This implies that |θ| ≤ ρ. If equality holds, then∣∣∣∑
j

Ai , j x j

∣∣∣≤∑
j
|Ai , j x j |.

Thus we have n possibly complex numbers z j := Ai , j such that∣∣∣∑
j

z j

∣∣∣≤∑
j
|z j |,

which implies that there is a root of unity ξ such that ξz j is real and positive for
all j . Therefore ξx is a positive eigenvector and θ = ρ.

If yT A = ρyT and Ax = θx, where θ 6= ρ, then yT x = 0. This implies that any
non-negative eigenvector for A must be an eigenvector for ρ.
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7.12.3 Lemma. Let A be a real square matrix with all entries positive, and let x
be a positive eigenvector for A with eigenvalue ρ, such that 1T x = 1. If u is a
non-zero non-negative vector, then

lim
n→∞

Anu

1T Anu
= x.

Proof. Let x be a positive eigenvector for A with eigenvalue ρ, and let y be a
positive eigenvector for AT with eigenvalue ρ. Let B be defined by

B := A− ρ

yT x
x yT .

If Az = θz and θ 6= ρ, then yT z = 0 and B z = θz. Also B x = 0 and therefore if θ is
an eigenvalue of B , then |θ| < ρ. Consequently ρ−1B is a contraction. Let E be
given by

E := 1

yT x
x yT .

Then E 2 = E and AE = E A and BE = EB = 0. Accordingly

(B +ρE)n = B n +ρnE

and, for any vector u,
Anu −ρnEu = B nu.

Therefore, since ρ−1B is a contraction, ρ−nB nu → 0 as n →∞ and, provided
yT u 6= 0.

lim
n→∞

Anu

1T Anu
= lim

n→∞
ρ−n Anu

ρ−n1T Anu
= 1

1T Eu
Eu = 1

1T x
x.

(1) Let A be a positive square matrix. Show that there is a non-negative vector
x such (I −A)x is non-negative and not zero if and only if A is a contraction.
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Chapter 8

Geometry

We study some geometric questions.

8.1 Semilinear Forms

A semilinear form on a vector space V is a map from V ×V to the underlying
field. It maps the pair (x, y) to 〈x, y〉, and saisfies the following:

(a) For each vector a, the map x 7→ 〈a, x〉 is linear.

(b) For each vector b, the map x 7→ 〈x,b〉 is semilinear.

It follows that for all vectors x and y and all scalars a,

〈ax, y〉 = aσ〈x, y〉.

The standard inner product on Cd is semilinear; in this case σ is complex con-
jugation. For a wider class of examples, take a square matrix A and define

〈x, y〉 = (xσ)T Ay.

(For a matrix or vector M , we use Aσ to denote the result of applying σ to each
entry of M .)

Since the map ψa : x 7→ 〈a, x〉 is a linear map from V to the 1-dimensional
space F we see that either ψa is onto and its kernel has codimension 1 in V , or
ψa is the zero map and its kernel is V . We denote the kernel of ψa by x⊥. The
radical of V (relative to our form) is the set of vectors a such that ψa is the zero
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map. It is a subspace of V . We say that the form is non-degenerate if its radical
is zero. The radical of an inner product is zero.

If U ≤V , we define
U⊥ =∩u∈U u⊥.

This is again a subspace of V .

8.1.1 Lemma. If U ≤V and our form is non-degenerate, then dim(U )+dim(U⊥) =
dim(V ).

Let u1, . . . ,uk be a basis for U and define a map ρ : U → Fk by

ρ(x) = (〈u1, x〉 . . . 〈uk , x〉) .

We see that ρ is linear and that ker(ρ) = U⊥. If ρ is not surjective, there are
scalars a1, . . . , ak such that

0 =
k∑

r=1
ar 〈ur , x〉 = 〈

k∑
r=1

ar ur , x〉.

Since our form is non-degenerate, it follows that
∑k

r=1 ar ur = 0 and, since u1, . . . ,uk

is a basis, ar = 0 for all r . We conclude that ρ is surjective, and the lemma fol-
lows from the rank-nullity theorem.

We say that a subspace U of V is isotropic if U ≤U⊥. The the zero subspace
is the only isotropic subspace of an inner product space.

8.2 The Classification of Forms

There are three classes of semilinear forms.
For the first, the associated automorphism is not trivial, and

〈y, x〉 = (〈x, y〉)σ.

In this case we have a Hermitian form. For a Hermitian form there is a matrix
H such that (Hσ)T = H and

〈x, y〉 = (xσ)T H y.

Otherwise σ is trivial. The next possibility is that

〈y, x〉 = 〈x, y〉.
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In this case we have a symmetric form, for which there is always a symmetric
matrix A such that 〈x, y〉 = xT Ay . Finally we may have an alternating form,
where

〈x, x〉 = 0

for all x. Here

0 = 〈x + y, x + y〉 = 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉

and since 〈x, x〉 = 〈y, y〉, it follows that

〈y, x,=〉−〈x, y〉

For an alternating form there is a matrix S such that ST = −S and all diagonal
entries are zero; then 〈x, y〉 = xT Sy .

Alternating forms are also known as symplectic forms. In odd characteristic
it is reasonable to describe the matrix S as skew symmetric. In even character-
istic, S is symmetric with zero diagonal.

Under natural geometric assumptions it can be shown (with some effort)
that the above three families of semilinear forms are the only interesting possi-
biities.

We say two forms 〈,〉1 and 〈,〉2 are equivalent if if there is an invertible matrix
M such that

〈x, y〉2 = 〈M x, M y〉1.

This raises the problem of determining the equivalence classes of forms of a
given type on vector space.

Over finite fields it can be shown that there is only one class of non-degenerate
Hermitian forms, and only one class of non-degenerate alternating forms. It
cannot be shown that there is only one class of non-degenerate symmetric
forms—because this is false.

8.3 Gram Matrices

It is very useful to be able to compute the vector in U closest to a given vector x.
In the previous sections, we have seen how to do this if we are given an orthog-
onal basis for U , or if the inner product is the dot product. We now develop the
tools to solve this problem in general.
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The Gram matrix G of a subset x1, . . . , xn of U is the matrix with entries given
by

Gi , j = 〈xi , x j 〉.
If aT = (a1, . . . , an)T , then

aT Ga =
〈∑

i
ai xi ,

∑
i

ai xi

〉

and therefore aT Ga > 0 for any non-zero vector a. We say a matrix G is positive
definite if it is self-adjoint and aT Ga > 0 for any non-zero vector a; if it is self-
adjoint and aT AGa ≥ 0 for all a, then G is positive semidefinite. We have just
seen that Gram matrices are positive semidefinite.

8.3.1 Lemma. A set of vectors in an inner product space is linearly independent
if and only if their Gram matrix is invertible.

Proof. Suppose G is the Gram matrix for x1, . . . , xn . Then the entries of Ga are
the inner products

〈xr ,
∑

r
ar xr 〉

Hence if U is the span of the vectors x1, . . . , xn , then Ga = 0 if and only if
∑

r ar xr =
0. Thus ker(G) is zero if and only if x1, . . . , xn are linearly independent.

8.4 Equiangular Lines

We work in the vector space V , which isRd orCd with the usual Euclidean inner
product. If x and y are nonzero vectors, the cosine of the angle between the
lines spanned by x and y is

|〈x, y〉|
‖x‖‖y‖ .

We will often work with the squared cosine

〈x, y〉〈y, x〉
〈x, x〉〈y, y〉 .

A set of lines in V is equiangular is the cosine of the angle between any two
distinct lines is the same.
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8.4.1 Theorem. The maximum size of a set of equiangular lines in Cd is d 2; in
Rd it is

(d+1
2

)
.

Proof. Suppose we have lines spanned by unit vectors x1, . . . , xm . Define matri-
ces P1, . . . ,Pm by

Pr = xr x∗
r .

Then Pr represents orthogonal projection onto the line spanned by xr , and if
r 6= s,

〈Pr ,Ps〉 = tr(Pr Ps) = 〈xr , xs ,〈〉, xs〉xr = |〈xr , xs〉|2.

We assume that α= |〈Pr ,Ps〉|. We see also that 〈Pr ,Pr 〉 = 1 for all r .
The projections Pr lie in the space of Harmitian matrices. If G is their Gram

matrix, then
G = (1−α2)I +α2 J .

We can prove, in a number of ways, that G is invertible, which implies that the
matrices P1, . . . ,Pm form a linearly independent set in the space of Hermitian
matrices. We complete the proof by noting that this space has dimension d 2

(over C) and the dimension in the real case is
(d+1

2

)
.

InR2 it is easy to find three lines with pairwise cosine 1/2, and the diagonals
of the icosahedron give six lines with pairwise cosine 1/

p
5. Examples of sets

of size
(d+1

2

)
are known in Rd when d = 7 and d = 23. In the complex case,

examples of tight sets are known for d in {1, . . . ,15,19,24,35,48}.

8.5 Tight Frames

Suppose we have a set of equiangular lines of maximum size. Then the asso-
ciated projections P1, . . . ,Pm form a basis for the space of Hermitian matrices.
Hence there are scalars cr such that

I =∑
r

cr Pr .

If we multiply both sides by Pk and take traces, we get

1 = (1−α2)ck +α2
∑

r
cr .

It follows that c1 = ·· · = cm and hence that

I = d

m

∑
r

Pr .
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In a slightly different format, we have established that if x1, . . . , xm are unit vec-
tors spanning a set of equiangular lines of maximum size, then∑

r
xr x∗

r = m

d
I .

Such a set of vectors is an example of a tight frame.
We will see that tight frames are more common than set of lines meeting the

absolute bound. Consider a set of projections P1, . . . ,Pm corresponding to a set
of equiangular lines with squared cosine α2, and define

M =∑
r

Pr − m

d
I .

Then

0 ≤ 〈M , M〉 = 〈∑
r

Pr ,
∑

r
Pr 〉− 2m

d
〈∑

r
Pr , I 〉+ d 2

m2
tr(I )

= m +m(m −1)α2 − m2

d
.

If equality holds we have

α2 = m −d

md −d
.

This yields the following, sometimes known as the relative bound.

8.5.1 Theorem. If there is a set of m lines in Fd with squared cosine α2, where
dα2 < 1, then

m ≤ d −dα2

1−dα2
.

If equality holds, then a set of unit vectors spanning the lines forms a tight
frame.

Note that if we have d 2 lines in Cd , then α2 = (d +1)−1, and for
(d+1

2

)
lines in

Rd , then α2 = (d +2)−1.

8.6 Another Gram Matrix

Suppose x1, . . . , xm form a tight frame in dimension d . Then∑
r

xr x∗
r = m

d
I .
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If U is the d ×m matri with the vectors x1, . . . , xm as its columns then we have

UU∗ =∑
r

xr x∗
r = m

d
I ,

which implies that the rows of U are orthogonal (and of the same length).
Set H =U∗U . Then

H 2 =U∗UU∗U = m

d
U∗U = m

d
H

and therefore the minimal polynomial of H divides

t
(
t − m

d

)
.

(If the minimal polynomial is a proper divisor of this polynomial that H = 0 or
H = I .) We can write H as I +αS, where S is Hermitian with diagonal entries
zero and all off-diagonal entries have absolute value 1. (In the real case, this
means the off-diagonal entries are ±1.) The eigenvalues of S are

1

α

(m

d
−1

)
, − 1

α

with respective multiplicities d and m −d .

8.7 The Orthogonal Group

Let V be a vector space with a bilinear form. We say that an endomorphism
A of V preserves the form if 〈Ax, Ay〉 = 〈x, y〉, for all x and y . If the form is
symmetric and the characteristic of our field is odd, then

〈x, y〉 = 1

2
(〈x + y, x + y〉−〈x, x〉−〈y, y〉.

Hence A preserves the form if and only if 〈Ax, Ax〉 = 〈x, x〉 for all x.
Now assume V is Rn and that our form is the dot product. A matrix which

preserves dot product is called orthogonal. If v and w are orthogonal vectors in
V and A is orthogonal, then Av and Aw are orthogonal.

8.7.1 Lemma. A matrix A is orthogonal if and only if AT A = I .
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Proof. If v1, . . . , vn is an orthogonal basis for V , then so is Av1, . . . , Avn . Since
the standard basis e1, . . . ,en for V is orthogonal, it follows that Ae1, . . . , Aen is
an orthogonal set of vectors. Therefore the columns of an orthogonal matrix A
form an orthogonal basis. This also implies that

AT A = I .

Since A is square, we see that AT = A−1 and A AT = I . Conversely, if AT = A−1,
then

〈Av, Aw〉 = (Av)T Aw = vT AT Aw = v t w = 〈v, w〉.
We see from this result that, if A is orthogonal, then it columns form an

orthonormal set. Also, if A is orthogonal, then AT = A−1 and therefore A AT = I .
Hence the rows of A also form an orthonormal set.

We consider the complex version of orthogonal matrices. A complex matrix
is unitary if it preserves the complex dot-product. This means that

y∗x = (Ay)∗(Ax) = y∗A∗Ax

for all x and y , and hence that
A∗A = I .

A real matrix is unitary if and only if it is orthogonal.

We turn to examples of orthogonal matrices. Any permutation matrix is
orthogonal, and a diagonal matrix A is orthogonal if and only if Ai ,i =±1 for all
i . The matrices (

cosθ −sinθ
sinθ cosθ

)
are orthogonal, for any value of θ. It is easy to verify that the product of two
orthogonal matrices is orthogonal, and that the inverse of an orthogonal matrix
is orthogonal. Therefore the set of all orthogonal matrices is an example of a
group, known as the orthogonal group.

8.8 Skew-Symmetric to Orthogonal

We define a matrix A to be skew symmetric if AT = −A and Ai ,i = 0 for all i .
(The last condition is only needed if our field has characteristic two.) The set of
n ×n skew-symmetric matrices is a subspace of the space of square matrices.
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8.8.1 Lemma. If S is a real skew-symmetric matrix, then (I − S)−1(I + S) is or-
thogonal.

Proof. We first show that I − S is invertible for all real t . Suppose x 6= 0 and
Ax = θx. Then

θxT x = xT Ax = (AT x)x = (−Ax)T x = (−θx)T x =−θxT x.

It follows that 0 is the only possible real eigenvalue for S. Therefore I − S is
invertible for all real t and we can define

M := (I −S)−1(I +S).

The matrices I + S and I − S commute, and from this it follows that I + S and
(I −S)−1 commute. Hence we find that

M T = (I +ST )(I −ST )−1 = (I −S)(I +S)−1

= (I +S)−1(I −S)

= M−1.

Therefore M is orthogonal.

The matrix M above is sometimes known as the Cayley transform of S. Note
that, since tS is skew-symmetric if S is, the matrix

(I − tS)−1(I + tS)

is orthogonal for real t .

(1) If H is hermitian and S = i H , show that (I −S)−1(I +S) is unitary.

8.9 Reflections

Suppose a is a fixed non-zero vector in V . Define the map ρa by

ρa(v) = v −2
〈a, v〉
〈a, a〉a.

Note that ρa is the sum of two linear mappings (the identity and a scalar multi-
ple of the orthogonal projection onto the line spanned by a) and therefore it is
linear. We check that

ρa(a) =−a
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and, using this, that
ρ2

a = I .

If v ∈ a⊥, then ρa(v) = v . It follows that ρa corresponds to the geometric opera-
tion of reflection in the hyperplane perpendicular to a.

We have

〈ρa(v),ρa(v)〉 = 〈v, v〉−4
〈a, v2〉
i paa

+4
〈a, v〉
〈a, a〉

2

〈a, a〉 = 〈v, v〉.

Therefore ρa is orthogonal. The matrix Ra representing it is given by

Ra = I − 2

〈a, a〉aaT .

If v and w have the same length then

〈v −w, v +w〉 = 0.

Therefore Rv−w fixes v +w and maps v −w to w − v . Consequently

Rv−w (2v) = Rv−w ((v +w)+ (v −w)) = 2w,

and so, after a very modest amount of extra work, we find that Rv−w swaps v
and w .

8.9.1 Theorem. Every non-identity orthogonal matrix is a product of at most n
matrices Ra .

Proof. If A is a matrix, let F (A) be the subspace

{v ∈V : Av = v}.

We prove by induction that A is the product of at most dim(V )−dim(F (A)) ma-
trices Ra .

Suppose A is orthogonal and dim(F (A)) = k. If k = dimV , then A = I . Sup-
pose k < dimV , and let v be a vector in V such that Av 6= v . If w := Av and
Ax = x, then 〈v, x〉 = 〈w, x〉 and so 〈v −w, x〉 = 0. Therefore F (A) ⊆ (v −w)⊥, and
Rv−w fixes each vector in F (A). Now Rv−w swaps v and W , whence the product
Rv−w A fixes each vector in F (A), and fixes v . As v ∉ F (A), we see that

dim(F (Rv−w A)) > dim(F (A)).

The lemma follows.
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A matrix A is an involution if A2 = I . Diagonal matrices with diagonal en-
tries equal to ±1 provide a fairly trivial class of examples. If P is an idempotent
then

(I −2P )2 = I −4P +4P = I ,

and thus I −2P is an involution.

8.9.2 Theorem. Every orthogonal matrix is the product of two involutions.

Proof. We actually prove a stronger result: A and A−1 are similar if and only
if A is the product of two involutions. Since any square matrix is similar to its
transpose, orthogonal matrices satisfy this condition.

Suppose S2 = T 2 = I and A = ST . Then (ST )(T S) = I and

S−1 AS = S AS = S(ST )S = T S.

Therefore a product of two involutions is similar to its inverse.
So assume now that A and A−1 are similar and let F be the Frobenius normal

form of A. By ??, there is a permutation matrix T such that T 2 = I and

F−1 = T F T.

Then I = F T F T , whence F T and T are involutions whose product is F . As
any matrix that is similar to an involution is an involution, the general result
follows.
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Chapter 9

Positive Semidefinite Matrices

9.1 Factorizing Positive Semidefinite Matrices

If H is a matrix with linearly independent columns, then the product H T H is
the Gram matrix for a basis of col(H) and therefore it is positive definite. Our
next result provides a converse to this.

9.1.1 Theorem. If G is a positive definite matrix, there is a lower triangular ma-
trix L with diagonal entries equal to 1 and a diagonal matrix D with positive
diagonal entries, such that LGLT = D .

Proof. If G is positive definite, then eT
i Gei > 0 for all i ; hence the diagonal en-

tries of G are positive.
Since L and G are invertible, D = LGLT is necessarily invertible. We must

show that L exists. We write G in partitioned form:

G =
(

a bT

b G1

)
.

If we also define

L1 =
(

1 0
−a−1b I

)
then

L1GLT
1 =

(
a 0
0 G1 −a−1bbT

)
.

Note that a 6= 0, because G is positive definite. It follows from the exercises
below that G1 −a−1bbT is positive definite. By induction, we have that there is
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a lower triangular matrix L2 with diagonal entries equal to 1 such that

L2(G −a−1bbT )LT
2

is diagonal. Taking L to be given by

L :=
(
1 0
0 L2

)
L1,

our result follows.

This result implies that G = L−1DL−T . Since the diagonal entries of D are
positive, there is a unique non-negative diagonal matrix D1/2 such that (D1/2)2 =
D and therefore

G = (L−1D1/2)(L−1D1/2)T .

A factorization of a positive-definite matrix G in the form M M T , where M is
lower triangular with positive diagonal entries, is known as a Cholesky factor-
ization. Any reasonable software package for linear algebra will have a com-
mand to compute the matrix M from G .

If G is presented as a matrix X T X and LGLT = D , then

(X LT )T (X LT ) = D,

whence we see that the columns of X LT are orthogonal (with respect to the dot
product). Thus they form an orthogonal basis for col(X ), and so we may use
the Cholesky decomposition to find orthogonal bases. We illustrate this in the
next section.

We record an important property of positive definite matrices—it is basi-
cally a reformulation of the definition.

9.1.2 Lemma. If A is a positive definite matrix, the bilinear form

〈x, y〉 = xT Ay

is an inner product.

Proof. Exercise.

(1) If G is positive definite and the columns of L are linearly independent, show
that LGLT is positive definite.

(2) Show that a principal submatrix of a positive definite matrix is positive def-
inite.

(3) Prove that if G has Cholesky factorizations M M T and N N T , then M = N .
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9.2 Computing Cholesky

The Cholesky decomposition of a positive definite matrix can be useful, in par-
ticular it may be used to find orthogonal bases. In this section we describe an
algorithm for computing the Cholesky factorization using elementary row op-
erations. (But outside linear algebra courses, we recommend using methods
based on the QR-factorization, which we address later. Our point is that we can
carry out Gram-Schmidt by using Gaussian elimination.)

As a first step, we need to to note one consequence of Theorem 9.1.1. This
result shows that if G is positive definite, then by successively subracting mul-
tiples of higher rows from lower rows, we can convert G to an invertible upper
triangular matrix. The product of the elementary matrices corresponding to
these operations is the lower triangular matrix L. Our next result asserts that if
we use elementary operations as described to bring G to row echelon form, we
obtain the Cholesky factorization of G .

9.2.1 Lemma. Let G be a positive definite matrix. If K is lower triangular with
diagonal entries equal to 1 and KG is upper triangular, then KG = DK −T , where
D is a diagonal matrix with positive diagonal entries.

Proof. Suppose that K is lower triangular with diagonal entries equal to 1, and
that KG = DM , where D is diagonal and M is upper triangular, with diagonal
entries 0 or 1. Then

KGK T = DMK T .

Here the left side is a symmetric matrix, while the right side is the product of
three upper triangular matrices, and is therefore upper triangular. It follows
that MK T is diagonal. Since KGK T is invertible, both D and MK T are invertible.
Therefore MK T = I . Finally KGK T is positive definite and equal to D . So D is
positive definite, and therefore its diagonal entries are positive.

Suppose we are given a Gram matrix G . If we bring the partitioned matrix(
G I

)
to row-echelon form, then the resulting matrix equals(

LG L
)

.

As noted at the end of the previous section, if G = X T X , then the columns
of X LT are orthogonal (with respect to the dot product). The i -th column of



136 CHAPTER 9. POSITIVE SEMIDEFINITE MATRICES

X LT is a linear combination of the first i columns of X and consequently the
columns of X LT are the orthogonal set we would compute using the usual ap-
proach to Gram-Schmidt. (Using exact arithmetic—in fact we have developed
the so-called modified Gram-Schmidt method.)

We first illustrate this in Rn , with the dot product. The row echelon form of
the partitioned matrix

M = (
X T X X T

)
is (

LX T X LX T
)

and so the transposes of the rows of LX T are an orthogonal basis for the column
space of X . Suppose for example that

x1 =
1

1
0

 , x2 =
0

1
1

 , x3 =
1

0
1

 .

Let X be the matrix with x1, x2 and x3 as its columns. Then

M =
2 1 1 1 1 0

1 2 1 0 1 1
1 1 2 1 0 1


has row echelon form 2 1 1 1 1 0

0 3
2

1
2 −1

2
1
2 1

0 0 4
3

2
3 −2

3
2
3

 .

Hence

X LT =
1 −1

2
2
3

1 1
2 −2

3
0 1 2

3


and its columns are an orthogonal basis for col(X ).

9.3 Polynomial Examples

We consider the situation where we want to find an orthogonal basis for an
inner product space of polynomials. By way of example, we take V to be the
space of all polynomials, with inner product:

〈p, q〉 :=
∫ ∞

0
p(x)q(x)e−x d x.
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Let U be the subspace consisting of the polynomials with degree at most n,
let p0, . . . , pn be basis for U and let G be the Gram matrix of this basis. (Thus
the rows and columns of G are indexed by 0,1, . . . ,n, rather than 1, . . . ,n—good
news for C programmers anyway.)

If [q] denotes the coordinate vector of q in U relative to the given basis, then

[p]T G[q] = 〈p, q〉.
Suppose LGLT = D . Then

eT
i LGLT D = eT

i De j

whence the columns of LT are the coordinate vectors of an orthogonal basis for
U .

Turning to a concrete case, suppose U is the space of polynomials with de-
gree at most three. We start with the basis 1, x, x2, x3. It can be shown (by
integration by parts) that ∫ ∞

0
xne−x d x = n!,

and therefore the Gram matrix of this set of polynomials is

G =


1 1 2 6
1 2 6 24
2 6 24 120
6 24 120 720

 .

Let M be given by

M =


1 1 2 6 1 0 0 0
1 2 6 24 0 1 0 0
2 6 24 120 0 0 1 0
6 24 120 720 0 0 0 1

 .

We convert the first four columns to an upper triangular matrix:
1 1 2 6 1 0 0 0
0 1 4 18 −1 1 0 0
0 0 4 36 2 −4 1 0
0 0 0 36 −6 18 −9 1

 ,

and thus obtain the following set of four orthogonal polynomials:

1, x −1, x2 −4x +2, x3 −9x2 +18x −6.
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9.4 Positive Semidefinite Matrices

We develop some further properties of positive semidefinite matrices.

9.4.1 Lemma. If A and B are positive semidefinite, so is A +B . If A is positive
and B is positive definite, then A+B is positive definite.

We leave the proof as an exercise. Note that it implies that if A is positive
semidefinite, then A+ I is positive definite.

9.4.2 Lemma. A self-adjoint matrix is positive semidefinite if and only if its
eigenvalues are non-negative. It is positive definite if and only if its eigenval-
ues are positive.

Proof. If x is an eigenvector of A with eigenvalue θ, then xT Ax = θxT x, and
therefore if A is positive semidefinite, its eigenvalues are non-negative. If A is
positive definite then 0 is not an eigenvalue.

Suppose we have the spectral decomposition

A =∑
θ

θEθ.

Each projection Eθ is positive semidefinite, because

xT Eθx = xT E 2
θx = xT E T

θ Eθx = ‖Eθx‖2.

If each eigenvalue of A is non-negative, it follows that xT Ax is a sum of non-
negative terms θxT Eθx, and therefore xT AX ≥ 0.

If the eigenvalues of A are positive, we see that xT Ax = 0 if and only if
xT Eθx = 0 for each eigenvalue θ. Hence

0 =∑
θ

xT Eθx = xT

(∑
θ

Eθ

)
x = xT I x,

and therefore x = 0. Consequently A is positive definite.

Note that In has 2n distinct square roots, that is, there are 2n matrices S such
that S2 = I . However it has only one positive semidefinite square root. This is
typical:

9.4.3 Corollary. If A is positive semidefinite, there is a unique positive semidef-
inite matrix S such that S2 = A.
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Proof. Using the spectral decomposition we have

A =∑
θ

θEθ,

where the sum is over all eigenvalues of A. If A is positive semidefinite, its eigen-
values are non-negative and we may define S by

S =∑
θ

p
θEθ.

Since the eigenvalues of S are non-negative, it is positive semidefinite.
We turn to uniqueness. Let T be a positive semidefinite square root of A

and suppose x is an eigenvector for A. If Ax = 0 then T 2x = 0, so xT T T x = 0
and therefore T x = 0. Assume now that Ax =σ2x, where σ> 0, then

0 = (T 2 −σ2I )x = (T −σI )(T +σI )x.

If the subspace spanned by x is T -invariant, it follows that T x = ±σx and x
is an eigenvector for T . Otherwise x and T x span a T -invariant subspace on
which T acts wih minimal polynomial t 2 −σ2. If (T −σI )x 6= 0 then y = (T −
σI )x is an eigenvector for T +σI with eigenvalue −σ. Therefore if T is positive
semidefinite and Ax =σ2x, then T x =σx.

Thus we have shown that, if Ax =σ2x then T x =σx. Since the eigenvectors
of A span, this shows that T is determined by A.

The next result is known as the polar decomposition of a matrix. It is anal-
ogous to the fact that each complex number is the product of a positive real
number and a complex number with norm 1.

9.4.4 Theorem. If A is a square matrix, there is a positive semidefinite matrix M
and an orthogonal matrix Q such that A = MQ.

Proof. We use the singular value decomposition, which yields that

A = Y ΣX T ,

where X and Y are orthogonal and Σ is positive semidefinite. Hence

A = Y ΣY T Y X T ,

where Y ΣY T is positive semidefinite and Y X T is orthogonal.

Note that A AT = (MQ)(MQ)T = M 2; hence the positive definite factor in the
above theorem is unique, and the orthogonal factor is unique if A is invertible.
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Chapter 10

Tensors

10.1 Tensor Products

The tensor product U ⊗V of two vector spaces U and V over F is defined as
a quotient space. We start with the space of all finitely supported functions
FU×V , the tensor product is the quotient of this subspace modulo the subspace
spanned R by vectors of the following forms:

(a) a(u, v)− (au, v), a(u, v)− (u, av) for a ∈ F and (u, v) in U ×V .

(b) (u1 +u2, v)− (u1, v)− (u2, v) for u1,u2 ∈U , v ∈V .

(c) (u, v1 + v2)− (u, v1)− (u, v2) for u ∈U , v1, v2 ∈V .

(Here we are using formal sum of finitely many terms to represent elements of
FU⊗V .) We denote the image of (u, v) in U ⊗V by u ⊗ v . The map that sends
(u, v) to u ⊗ v is bilinear.

For finite-dimensional vector spaces, there is no harm in identifying the ten-
sor product with Kronecker product.

The tensor product is not commutative, the spaces U ⊗V and V ⊗U are
isomorphic but not equal. The tensor product is associative, in that

(U ⊗V )⊗W ∼=U ⊗ (V ⊗W ).

The vectors of the form u ⊗ v are known as pure tensors ; they span U ⊗V
but do not form a basis. We note that a scalar times a pure tensor is a pure
tensor, and so any element of U ⊗V can be expressed as a sum of pure tensors.
If α ∈U ⊗V , we define the tensor rank of α to be the least integer r such that α
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can be expressed as the sum of r pure tensors, that is, the least integer r such
that

α=
r∑

i=1
ui ⊗ vi .

The key property of the tensor product is that it allows us to deal with linear
maps in place of multilinear maps (at the cost of increasing dimensions). Thus
if we have a bilinear map

β : U ×V →W,

then there is a linear map β̂ from U ⊗V to W such that

β̂(u ⊗ v) =β(u, v).

If A and B are linear maps defined on U and V respectively, we define their
tensor product A⊗B by

(A⊗B)(u ⊗ v) = Au ⊗B v.

If we have inner products defined on U and V , we can define

〈(u1 ⊗ v1), (u2 ⊗ v2)〉 = 〈u1,u2〉〈v1, v2〉.

This is a consequence of our definition of the tensor products of maps, because
the maps 〈u1, ?〉 and 〈u2, ?〉 are elements of U∗.

The field F is a 1-dimensional vector space and so the tensor product F⊗V
is defined. The map that sends 1⊗ v to v is an isomorphism. If ψ ∈ U∗, then
ψ× I is a linear map from U ⊗V to F⊗V , and hence it determines a linear map
from U ⊗V to V . We will usually identify these two maps.

10.2 Quadratic Tensors

We investigate properties of elements of the tensor product U ⊗V .

10.2.1 Lemma. If α ∈ U ⊗V has tensor rank r and α = ∑r
i=1 ui ⊗ vi for some

vectors u1, . . . ,ur and v1, . . . , vr , then both of these sets of vectors are linearly
independent.

We leave the proof of this as an exercise.
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10.2.2 Lemma. If α ∈U ⊗V has tensor rank r and

α=
r∑

i=1
ui ⊗ vi =

r∑
i=1

xi ⊗ yi

then

span{u1, . . . ,ur } = span{x1, . . . , xr }, span{v1, . . . , vr } = span{y1, . . . , yr }.

Proof. There are vectors ψ1, . . . ,ψr in U∗ such that ψi (u j ) = δi , j . So the image
of α under the map ψk ⊗1 is vk , according to the first expression for α, and its
image is

r∑
i=1

ψi (xi )yi .

This shows that vk ∈ span{y1, . . . , yr }, and now everything follows.

The previous results are analagous to properties of the usual rank of a ma-
trix. This is no accident:

10.2.3 Theorem. For any two vector spaces U and V , the spaces Lin(U ,V ) and
U∗⊗V are isomorphic. Under this isomorphism elements of U∗⊗V with tensor
rank r map to operators with rank r .

Proof. If ψ ∈U∗ and v ∈V , let the map λψ,v be given by

λψ,v (u) =ψ(u)v.

This assigns a linear map to each pure tensor in U∗⊗V and hence gives us a
linear map from U∗⊗V to Lin(U ,V ). Denote this map by Λ.

We show that Λ is onto. The first step is to show that each linear map in
Lin(U ,V ) with rank one is the image of a pure tensor. We leave this as an exer-
cise.

The second step is to show that any m×n matrix can be written as a sum of
rank-one matrices. Suppose A is m ×n. If A 6= 0, there are vectors x and y such
that xT Ay 6= 0, and so we may assume that we have vectors x and y such that
xT Ay = 1. Define

B = A− Ax yT AT .

Each column of Ax yT AT is a scalar multiple of Ax, and it follows that the col-
umn space of B is contained in the column space of A. Next, Ax 6= 0 but

B x = Ax − Ax yT AT x = Ax − (xT Ay)Ax = 0.
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Therefore the column space of B is a proper subspace of the column space of A
and so rk(B) < rk(A). On the other hand

rk(A) = rk(B + Ax yT A) ≤ rk(B)+ rk(Ax yT AT ) ≤ rk(B)+1

and we conclude that rk(B) = rk(A)− 1. It follows by induction that A can be
expressed as the sum of r rank-one matrices.

Note that it is imediate that a matrix with m rows is the sum of m rank-one
matrices, and we can use this to provide a simple proof of the isomorphism in
the above theorem. However the relation between tensor rank and the usual
rank is inmportant.

10.2.4 Theorem. We have

dim(U ⊗V ) = dim(U )dim(V ).

Proof. If u1, . . . ,um and v1, . . . , vn are basis for U and V respectively, then the
pure tensors ui ⊗ v j span U ⊗V . This shows that

dim(U ⊗V ) ≤ dim)(U )dim(V ).

Proof. Suppose that the pure tensors ui ⊗v j are linearly dependent. Then there
linearly independent vectors u1, . . . ,ur in U and vectors w1, . . . , wr in V such
that

0 =
r∑

i=1
ui ⊗wi .

As before, choose elements f1, . . . , fr in U∗ such that ψi (u j ) = δi , j . If we apply
ψk ⊗1 to each side of the above expression, we get

0 = wk .

10.3 Cubic Tensors

Consider a tensor α in U ⊗V ⊗W given by

α=
r∑

i=1
ui ⊗βi

where β1, . . . ,βr ∈V ⊗W . The subspace C (α) of V ⊗W spanned by the tensors
β1, . . . ,βr is an invariant of α. Define the order of a subspace of V ⊗W to be the
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least integer s such that it is contained in the span of s pure tensors. If C (α) has
order s, then there are vectors v1, . . . , vs in V and pure tensors γ1, . . . ,γs in V ⊗W
such that

α=
s∑

i=1
xi ⊗γi

Hence the tensor rank of α is at most s. Since no proper subset of γ1, . . . ,γs

spans C (α), it follows that s is the tensor rank of α.
We give one example of the order of a subspace. Identify V ⊗W with the

vector space of matrices of order dim(V ) times dim(W ). If C is the space of
upper-triangular 2×2 matrices then C has dimension three and order four.

For quadratic tensors, we have the following theorem.

10.3.1 Theorem. For vector spaces V and W , the set

Sk := {T ∈V ⊗W |r k(T ) ≤ k}

is closed; i.e., if limi→∞ Ti = T and r k(Ti ) ≤ k, then r k(T ) ≤ k.

Proof. Each T ∈V ⊗W is associated with a matrix A whose rank is equal to the
tensor rank of T . Hence the sets Sk are determined by algebraic equations and
are closed.

The set of matrix of rank at most r is a closed set, and so the limit of any
sequence of matrices with rank at most r is a matrix with rank at most r . Tensor
rank is in general less well behaved. Let V be R2 with the standard basis e1, e2.

10.3.2 Lemma. The element

T := e1 ⊗e1 ⊗e1 +e1 ⊗e2 ⊗e2 +e2 ⊗e1 ⊗e2

of R2 ⊗R2 ⊗R2 has tensor rank three, but is the limit of a sequence of tensors
with rank at most two.

Proof. Define

Tλ :=λ−1[e1 ⊗e1 ⊗ (−e2 +λe1)+ (e1 +λe2)⊗ (e1 +λe2)⊗e2)].

Then
Tλ−T =λe2 ⊗e2 ⊗e2,

whence Tλ converges to T as λ→ 0.
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The only difficulty is to verify that T has tensor rank three. Suppose by way
of contradiction that

T = (α1e1 +α2e2)⊗b ⊗ c + (µ1e1 +µ2e2)⊗ v ⊗w.

Then
T = e1 ⊗ (α1b ⊗ c +µ1v ⊗w)+e2 ⊗ (α2b ⊗ c +µ2v ⊗w).

Comparing this with the definition of T , we deduce that

e1 ⊗e1 +e2 ⊗e2 =α1b ⊗ c +µ1v ⊗w

e1 ⊗e2 =α2b ⊗ c +µ2v ⊗w.

The two vectors on the left in these expressions are linearly independent, and
therefore these equations imply that b ⊗ c and v ⊗w are linearly independent
and that they are linear combinations of the vectors on the left

Now we use the isomorphism between R2⊗R2 and Mat2×2(R). The image of
the span of the vectors on the left consists of all matrices of the form(

x y
0 x

)
All rank-one matrices of this form must have x equal to 0, and so the rank-one
matrices of this form span a 1-dimensional space. It follows that b⊗c and v⊗w
are linearly dependent. This the contradiction we wanted—we conclude that
the tensor rank of T is three.

10.4 Multiplication

Let M be the space of n ×n matrices over some field. Matrix multiplication
defines a linear map from V ⊗V to V . By Theorem 10.2.3 we have

L (V ⊗V ,V ) ∼= M∗⊗M∗⊗M ,

and so matrix multiplication can be viewed as a particular element of this space.
More concretely, if the elements Ei , j form a basis for M and εi , j denotes the
element of M∗ that sends a matrix to its i j -entry, then

AB = ∑
i , j ,k

εi , j (A)ε j ,k (B)Ei ,k
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and so matrix multiplication corresponds to the tensor∑
i , j ,k

εi , j ⊗ε j ,k ⊗Ei ,k .

This is a sum of n3 terms, which reflects the fact that the implies algorithm for
the product of two n ×n matrices requires n3 multiplications of scalars. It is
surprising and significant that the rank of this tensor is less than n3. Strassen
proved that when n = 2, its rank is at most seven, and this has lead to algorithms
for matrix multiplication that, for large values of n, are substantially faster than
the natural one.

For further information, start with Prasolov.
In the most general sense, an algebra is a vector space V with a bilinear

multiplication µ defined on it. As above we can identify µ with a cubic tensor.
For is v1, . . . , vd is a basis for V and γi is the element of V ∗ that maps a vector v
to its i -th coordinate, then for x and y in V , we have

µ(x, y) =
d∑

i , j=1
γi (x)γ j (y)µ(vi , v j ).

and so we can identify µ with the element∑
i , j
γi ⊗γ j ⊗µ(vi , v j )

of V ∗⊗V ∗⊗V or, if we willing to be flexible, with an element of V ⊗3.

10.5 Semifields

We consider the problem of deciding which cubic tensors determine something
like a field.

(1) Suppose T ∈ End(V ) and rk(T ) = 1. Prove that there is f in V ∗ and v in V
such that T x = f (x)v .
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Chapter 11

Control

We think a linear system as a kind of ‘black box’. At time intervals t = 1, . . . it
receives an input, returns an output and moves to a new state. The states are el-
ements of its state space, the inputs come from an input space and the outputs
belong to the output space. If these elements are represented by vectors x(i ),
u(i ) and y(i ) respectively, then they are related by the system of equations

x(n +1) = Ax(n)+Bu(n),

y(n) =C x(n)+Du(n),

for all non-negative integers n. Thus the behaviour of the system is governed
by the four matrices A, B , C and D , which we often write as a 2×2 matrix:(

A B
C D

)
.

We will call this the state-space description of our system. The state-space ma-
trix need not be square, but A must be.

What we have just described is more usually known as a discrete linear sys-
tem. Since we will not consider continuous systems at any length, dropping the
adjective should not cause problems.

11.1 Buffalos

By way of a first example, we consider a model for the US buffalo population,
from J. J. Truxal “Introductory System Engineering”, (McGraw-Hill, New York)
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1972. In this section we describe the underlying uncontrolled system; in the
next section we consider the controlled version.

Let ci and bi respectively denote the number of female and male buffalo
at the start of year i . We assume that buffalo are mature at age 2, and that
each year five percent of the adults die. Female buffalo start breeding at age 2;
the number of female calves born in year i is 0.12ci−2, the number of males is
0.14ci−2. Thus the population is governed by the two recurrences:

cn = 0.95cn−1 +0.12cn−2

bn = 0.95bn−1 +0.14cn−2

We analyse the female population. If we define

Cn :=
(

cn

cn−1

)
,

then

Cn+1 =
(
0.95 0.12

1 0

)
Cn .

Suppose

A :=
(
0.95 0.12

1 0

)
.

Then the minimal polynomial of A is

t 2 −0.95t −0.12,

which has distinct roots. Hence we can compute the spectral decomposition of
A, with the result that

An = (1.0629)nE1 + (−0.1122)nE2,

where

E1 =
(
0.9040 0.1021
0.8505 0.0960

)
, E2 =

(
0.0960 −0.1021
−0.8505 0.9040

)
.

(The matrices E1 and E2 are idempotent and E1E2 = E2E1 = 0.) From this we
learn that, in the long term, the number of female buffalo will increase annually
by 6.29%. The actual numbers at the end of year n will be closely approximated
by the vector

(1.0629)n−1(0.9040c2 +0.1021c1).
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This shows that even though the size of the population is sensitive to the initial
conditions, even though the growth rate is not.

We now consider the males too. Suppose

Dn :=
 cn

cn−1

bn

 .

Then

Dn+1 =
0.95 0.12 0

1 0 0
0 0.14 0.95

Dn .

Here the coefficient matrix is block-triangular, and its minimal polynomial is

(t −0.95)(t 2 −0.95t −0.12).

(1) Show that the male population grows as a power of 1.0629.

(2) What is the asymptotic ratio of males to females? (It can be determined
from an idempotent.)

11.2 Burgers

We continue with the model of the previous section, but we assume that each
year a certain number hn of the adult females are harvested. The equations
describing the female population become

cn = 0.95cn−1 +0.12cn−2 −hn

bn = 0.95bn−1 +0.14cn−2

which we write in matrix form as

Cn+1 = ACn −hn

(
1
0

)
.

Let us assume that hn = hcn , for some constant h. Then we can write the result-
ing system as

Cn+1 = A(h)Cn ,
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where

A(h) =
(
0.95−h 0.12

1 0

)
.

The minimal polynomial of Ah is

t 2 − (0.95−h)t −0.12. (11.2.1)

Given our model, we must have 0 ≤ h ≤ 0.95. Let θh and τh denote the eigenval-
ues of A(h). Then θhτh =−0.12, since this is the constant term of the minimal
polynomial. It follows that θh and τh are distinct. Therefore A(h) is diagonaliz-
able, for all h. For small values of h, we see that the minimal polynomial of A(h)
we may assume θh ≈ 1 and τh is small and negative. The population will grow
as a power in θh , and will be asymptotically constant if and only if θh = 1. If this
happens, then

1− (0.95−h)−0.12 = 0,

implying that h = 0.07. In this case the eigenvalues are 1 and −0.12, and idem-
potent corresponding to 1 is (

0.8929 0.1071
0.8929 0.1071

)
.

(1) Explain why the female population can stay constant when we harvest 7%
of the animals annually, even though the uncontrolled growth rate is only
6.3%.

11.3 Controllability

Consider the linear system given by(
A B
C D

)
,

where A is n ×n and B is n ×k. If the initial state of the system is x(0), then we
have the equations

x(1) = Ax(0)+Bu(0)

x(2) = A2x(0)+ ABu(0)+Bu(1)
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which leads us to the general formula

x(n) = An x(0)+
n∑

i=1
An−i Bu(i −1).

Thus the state at time n is the sum of two terms, namely the state of the uncon-
trolled system at time n and the state of the controlled system with zero initial
state. (This decomposition is an important property of linear systems.)

Define the controllability matrix to be

R = (
B AB · · · An−1B

)
.

Since A is n ×n, its minimal polynomial has degree at most n, and so if i ≥ 0,
then An+i is a linear combination of

I , A, . . . , An−1.

Therefore the column space of R is the sum of the subspaces Ar col(B), where
0 ≤ r < n. It follows that if our initial state is zero, then the state of the system is
always an element of col(C M).

We say the pair (A,B) is controllable if, given any vector v in Fn and starting
with x(0) = 0, we can choose inputs u(0),u(1), . . . ,u(n −1) so that x(n) = v . We
will call the system itself controllable if (A,B) is.

11.3.1 Theorem. For a linear system, the following are equivalent:

(a) The pair (A,B) is controllable.

(b) The rows of the controllability matrix are linearly independent.

(c) The only A-invariant subspace that contains col(B) is Rn .

(d) No non-zero subspace of ker(B T ) is AT -invariant.

Proof. By the previous lemma, (a) and (b) are equivalent. The column space of
the controllability matrix is the smallest A-invariant subspace that contains the
columns of B , hence (b) holds if and only if (c) holds. We show that (c) and (d)
are equivalent too.

Suppose rk(R) < n. Then there is a non-zero vector f such that f T R = 0,
and so

f T Ar B = 0, r = 0,1, . . . ,n −1.

Consequently f T Ar B = 0 for all non-negative r , and therefore the AT -invariant
subspace generated by f lies in ker(B T ).

Conversely, if the AT -invariant subspace generated by the non-zero vector
f in ker(B T ) is contained in ker(B T ), that f T Ar B = 0 for all r , and rk(R) < n.
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11.3.2 Corollary. If B is n ×1 and (A,B) is controllable, then the minimal poly-
nomial of A has degree n.

There is another concept related to controllability, sometimes called con-
trollability to the origin. Suppose our system starts in some state x(0) and we
wish to know if there is a sequence of inputs which will drive it to the zero state.

Now the state at time r will be

Ar x(0)+
n∑

i=1
Ar−i Bu(i ).

Since
n∑

i=1
Ar−i Bu(i ) ∈ col(R),

we see that if there is a sequence of inputs that takes the state to zero in r steps,
then Ar x(0) must lie in col(R). If r ≥ n and Ar x(0) ∈ col)R), then there is a
sequence of inputs of length r that sends the system to zero.

Thus we see, for example, that if rkR = n, then we can bring the system to
rest in n steps. To be more precise, we investigate the range of A. We note that

col(Ar )

is a nested sequence of A-invariant subspaces which is first strictly deceasing,
then constant. Since dim(col(A)) ≤ n, it follows that when r ≥ n,

col(Ar ) = col(An).

We conclude that our system can be brought to rest in n steps if and only if
An x(0) ∈ col(R). Further it can be brought to rest in n steps no matter what the
initial state is, if and only if

col(An) ⊆ colR.

We conclude that any controllable system is controllable to the origin, but
the latter condition is weaker.

(1) Show that (A,B) is controllable if and only if R has a right inverse.

(2) Show that the column space of R is the smallest A-invariant subspace of
Fn that contains the columns of B .

(3) If A is invertible, show that (A,B) is controllable to the origin if and only if
it is controllable.
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11.4 Observability

Consider the linear system given by the matrix(
A BRC D

)
.

We consider the problem of determining the initial state from the observed val-
ues of y . We have

x(r +1) = Ax(r )+Bu(r ), y(r ) =C x(r )+Du(r ).

Since we know the values of the input vectors u(r ), our problem reduces to that
of reconstructing x(0) from the vectors C x(r ). Now

x(r +1) = Ar x(0)+
r∑

i=1
Ar−i Bu(i );

since the vectors Ar−i Bu(i ) are known, the final form of our problem is to re-
construct x(0) from the sequence C Ar x(0) for r = 0,1, . . .. Since A is n ×n, it
follows that the first n values of this sequence determine the rest.

We say that the pair (C , A) is observable if the sequence

C x,C Ax, . . . ,C An−1x

determines x (in all cases). The system itself is observable if (C , A) is. Define
the observability matrix O by

O :=


C

C A
...

C An−1

 .

11.4.1 Theorem. The pair (C , A) is observable if and only if the columns of the
observability matrix are linearly independent.

Proof. If the columns of O are linearly independent, then it has a left inverse N .
So NOx = x, and thus we recover x.

11.4.2 Corollary. The pair (C , A) is observable if and only if (AT ,C T ) is control-
lable.

This implies for example, that (C , A) is observable if and only if no subspace
of ker(C ) is A-invariant.
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11.5 Feedback and Controllability

Consider the system
x(n +1) = Ax(n)+Bu(n).

If we take u to be given by

u(n) = K x(n)+ v(n),

then our system becomes

x(n +1) = (A+BK )x(n)+B v(n).

The K x(n) term is called feedback ; the behaviour of the original system is gov-
erned by A, the behaviour of the system with feedback is governed by the matrix
A+BK . We show that feedback does not effect controllability.

11.5.1 Lemma. Suppose A is n ×n and B is n ×k. Then for any k ×n matrix K ,
the pair (A,B) is controllable if and only if (A+BK ,B) is.

Proof. We show that col(R(A+BK ,B) ⊆ col(R(A,B). Since

A = (A+BK )+B(−K ),

it follows that these two column spaces are equal.
If v ∈ col(R), then Av ∈ col(R) and

BK v ∈ col(B) ⊆ col(R),

whence (A + BK )v ∈ col(R). It follows that col(R) is an (A + BK )-invariant
subspace that contains col(B), and therefore it contains the column space of
R(A+BK ,B).

11.5.2 Lemma. If (A,B) is controllable and b is a non-zero column of B , then
there is a matrix K such that (A+BK ,b) is controllable.

Proof. Assume A is n ×n and that (A,B) is controllable. We aim first to find
columns b1, . . . ,bk of B and integers r1, . . . ,rk , such that the union of the sets

S(bi ,ri ) := {bi , Abi , . . . , Ari−1bi }
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is a basis for Fn . This is straightforward. Choose b1 equal to b and choose r1 to
be the greatest integer such that the vectors

b1, Ab1, . . . , Ar1−1b1

are linearly independent. Next, assume inductively that we have found b1, . . . ,b j−1

and r1, . . . ,r j−1 such that ⋃
i< j

S(bi ,ri )

is linearly independent. The span of this set of vectors in A-invariant and so,
if this set contains fewer than n vectors, there must be a column of B which it
does not contain. Take b j to be such a vector, and let r j be the greatest integer
such that the span of S(b j ,r j ) contains no non-zero vectors from the span of
the above union.

There is a unique linear mapping L such that

L (A j bi ) =
{

bi+1, if j = ri −1;

0, otherwise.

Let L be the matrix representing L . We claim that the vectors

b, (A+L)b, . . . , (A+L)n−1b

are linearly independent.
Since L Ai b1 = 0 if i < r1 −1 and L Ar1−1b1 = b2, we see that if i > 1, then

(A+L)r1−i b = Ar1−i b = Ar1−i b1

and
(A+L)r1 b = Ar1 b1 +b2.

Starting from this, a reasonably easy induction argument, which we omit, shows
that the span of the m vectors

(A+L)i b, i = 0,1, . . . ,m −1

is equal to the span of the first m vectors from

S(b1,r1)∪·· ·∪S(bk ,rk ).

This proves our claim.
To complete the proof, we note that the image of L is spanned by columns

of B , and therefore there is a matrix K such that L = BK .
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11.5.3 Corollary. Let b be a non-zero column of B . The pair (A,B) is control-
lable if and only if there is a matrix K such that (A+BK ,b) is controllable.

Proof. The previous lemma shows that if (A,B) is controllable and b is a non-
zero column of B , then there is a matrix K such that (A + BK ,b) is control-
lable. For the converse we note that if (A+BK ,b) is controllable, then certainly
(A +BK ,B) is controllable. By Lemma 11.5.1, this implies that (A,B) is control-
lable.

(1) Let b be a non-zero element of colB . Show that (A,B) is controllable if and
only if there is a matrix K such that (A+BK ,b) is controllable.

11.6 Canonical Forms

We consider first the general system

x(n +1) = Ax(n)+Bu(n),

y(n) =C x(n)+Du(n).

Suppose M is invertible and x(n) = M z(n) for all non-negative n. Then we
rewrite our system as

z(n +1) = M−1 AM z(n)+M−1Bu(n),

y(n) = MC z(n)+Du(n).

These two systems correspond respectively to the block matrices(
A B
C D

)
,

(
M−1 AM M−1B

MC D

)
.

We say two systems related in this way are equivalent. We will also say that the
pairs (A,B) and (M−1 AM , M−1B) are equivalent.

We now confine ourselves to the single-input case, where B is n×1. Suppose
A is n ×n and set M =R(A,b). Then

AM = (
Ab A2b · · · Anb

)= MP,

where F is the companion matrix ofψb , the minimal polynomial of A relative to
b. If (A,b) is controllable, then rk(M) = n, and so M is invertible. It follows that
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M−1 AM = F . Since R(A,b)e1 = b, we also find that M−1B = e1. We conclude
that if a pair (A,b) is controllable, then our original system is equivalent to the
system (

F e1

C M D

)
.

where F is the companion matrix of the minimal polynomial of A. If we also
have a single output, that is, if C is 1×n, then C = cT and

cT M = (
cT b cT Ab · · · cT An−1b

)
.

It follows that our system is determined by the minimal polynomial of A and
the entries of this vector.

From ??, we know that if F is a companion matrix of order n ×n, there is
an symmetric invertible matrix Q such that Q−1FQ = F T . We see that Qen = e1,
and therefore the pair (F,e1) is equivalent to the pair (F T ,en). The pairs (C ,e1)
and (C T ,en) are called the controllability canonical forms of the pair (A,b).

There are analogous canonical forms for observable pairs (cT , A), but these
can be deduced from our work above, applied to the controllable pair (AT ,c).

11.7 Eigenvalues and Controllability

In this section our matrices are real matrices, but our subspaces may be com-
plex. (For example, eigenspaces.)

11.7.1 Lemma. The pair (A,B) is controllable if and only if the rows of
(

A−λI B
)

are linearly independent for all complex numbers λ.

Proof. First suppose z 6= 0 and

z∗ (
A−λI B

)= 0. (11.7.1)

Then z∗Ar = λr z∗ and z∗B = 0, so z∗R = 0. Hence the rows of the controllabil-
ity matrix are linearly dependent, and therefore (A,B) is not controllable.

On the other hand if (A,B) is not controllable, then by Theorem 11.3.1 there
is an AT -invariant subspace of ker(B T ), and this subspace must contain an
eigenvector z of AT . If the eigenvalue belonging to z is λ, then (11.7.1) is sat-
isfied.
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The spectrum of a matrix is the multiset formed by its eigenvalues, and their
algebraic multiplicities. The spectrum of a real-matrix is conjugate closed—if
θ is an eigenvalue, then its complex conjugate θ̄ is an eigenvalue with the same
algebraic multiplicity.

11.7.2 Theorem. Let A be an n ×n real matrix. The pair (A,B) is controllable
if and only each conjugate-closed multiset of complex numbers with size n oc-
curs as the spectrum of some matrix A+BK .

Proof. Assume first that we can choose K so that A+BK has any given conjugate-
closed set of complex numbers as its eigenvalues.

Suppose there is a vector z such that

zT (
B AB · · · An−1B

)= 0.

Then, for all r and any K ,

zT (A+BK )r = zT Ar

and therefore
zT [(A+BK0)r − (A+BK1)r ] = 0.

Choose K0 so that all eigenvalues of A+BK0 lie inside the unit circle, and choose
K1 so that the eigenvalues of A+BK1 are the distinct n-th roots of unity. Then

(A+BK1)ns = I

for all non-negative integers s, while

(A+BK0)ns → 0

as s →∞. It follows that z = 0, whence the rows of R(A,B) are linearly indepen-
dent, and (A,B) is controllable.

We turn to the converse. We first prove the result holds in the single-input
case. Suppose (A,b) is a controllable pair. We work with the equivalent canon-
ical form (F T ,en), where F T is the transpose of the companion matrix of the
minimal polynomial of A. If K is a 1×n matrix, then enK is an n ×n matrix
with its first n −1 rows zero, and with last row equal to K . Therefore F T + enK
is also the transpose of a companion matrix. By varying our choice of K , we
can arrange to the last row of F T + enK to be any desired vector, and so force
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F T + enK to have any desired conjugate-closed set of complex numbers as its
eigenvalues.

We consider the general case. Suppose (A,B) is controllable and b is a non-
zero column of B . Then by Lemma 11.5.2 there is a matrix K such that (A +
BK ,b) is controllable. By what we have just proved, for each conjugate-closed
set of complex numbers, there is a 1×n matrix K1 such that

A+BK +bK1

has this set as its eigenvalues. But b = Ber for some r , and so

BK +bK1 = BK +Ber K1 = B(K +er K1),

and so our result is proved.

11.8 Observers

Consider the discrete dynamical system given by the equations

x(n +1) = Ax(n)+Bu(n)

y(n) =C x(n)+Du(n).

We want to construct a second system which will accept both the input and the
output of the first system as its inputs, and as produce as its own output at least
an approximation to the state of our first system. To construct such a system,
we consider a second system based on the one above:

x̂(n +1) = Ax̂(n)+Bu(n)+L(y(n)− ŷ(n))

ŷ(n) =C x̂(n)+Du(n).

If this system has the property that x(n) − x̂(n) → 0 as n → ∞, we call it an
asymptotic observer. If A is m ×m and x(n) = x̂(n) when n > m, we call it an
exact observer. The choice of L is up to us. We calculate

x(n +1)− x̂(n +1) = A(x(n)− x̂(n))−L(y(n)− ŷ(n))

= A(x(n)− x̂(n))−L(C x(n)−C x̂(n))

= (A−LC )(x(n)− x̂(n)).
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Now the initial difference x(0)− x̂(0) can be any vector, so we conclude that we
have an asymptotic observer if and only if A−LC is a contraction, and an exact
observer if and only if A−LC is nilpotent.

If A is n×n and B is n×m, we say that the pair (A,B) is stabilizable if there is
an m×n matrix K such that all eigenvalues of A+BK lie inside the unit circle. (In
other terms, A+BK is a contraction.) Every controllable pair is stabilizable. If C
is `×n, we say that (C , A) is detectable if (AT ,C T ) is stabilizable or, equivalently,
if there is a matrix L such that A+LC is a contraction.

11.8.1 Theorem. An asymptotic observer exists if and only if (C , A) is detectable.
An observer exists if and only if (C , A) is observable.

11.9 Transfer Matrices

We introduce a very important tool in the study of discrete dynamical systems:
transfer matrices.

We first present this in a special case, coming from coding theory. We sup-
pose that a sequence (ui )i≥0 of binary vectors is encoded by a device as a sec-
ond sequence (yi )i≥0 of binary vectors. In the simplest case, we have a matrix D
and ui is mapped to Dui . But we are going to assume that our device has a state
xi (another binary vector) and that yi is computed according to the system

xi+1 = Axi +Bui (11.9.1)

yi =C xi +Dui . (11.9.2)

Here A, B , C and D are binary matrices and A is square. (For a coding theorist it
might be natural to assume D is n×k; the matrix A is square.) The first problem
that arises is to reconstruct the inputs ui given the outputs yi (and the four
matrices A, B , C , D . In the real applications, the vectors yi are corrupted by
noise, and we also have the harder task of first determining the uncorrupted
values of the outputs.

We say that the system described by the four matrices is a convolutional
encoder. The space of possible output sequences is a convolutional code. Con-
volutional codes are important in practice.

To make further progress, we introduce generating functions. A convolu-
tional encoder takes an input sequence

u0,u1,u2, . . .
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and converts it to an output sequence

y0, y1, y2, . . . .

In any practical situation, the vectors ui will be zero for all sufficiently large i ,
but we defer imposing this as a requirement. One standard way to deal with
infinite sequences is to encode them as formal power series, and so we define

U (z) := ∑
i≥0

z−i ui , Y (t ) := ∑
i≥0

z−i yi .

These can be viewed as formal power series in the variable z−1 with vectors
as coefficients, or as vectors whose entries are formal power series of F. (We
tend to prefer the latter view.) We say that U (z) is a generating function for the
sequence (ui )i≥0.

Next we assume that x0 = 0 and introduce the generating function X (t ). The
defining equations for our encoder give us

z X (z) = AX (t )+BU (t ), Y (t ) =C X (t )+DU (t ),

and consequently
Y (z) = (D +C (zI − A)−1B)U (z).

It follows that our encoder is completely specified by the proper rational matrix

G(z) := D +C (zI − A)−1B.

If we have a discrete dynamical system over a field F, given by the matrix(
A B
C D

)
(11.9.3)

we define the transfer matrix of the system to be

D +C (zI − A)−1B.

The transfer matrix completely determines the response of our system to a
given input sequence (given that x0 = 0). If ei denotes the i -th standard ba-
sis vector, then the generating function of the output sequence corresponding
to the input sequence

ei ,0,0, . . .
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is the i -th column of G(z). This provides a very natural interpretation of the
columns of G(z), and shows that we can find the transfer matrix of a system by
determining its response to each of the above input sequences. In particular
it is not unusual to be given the transfer matrix of a system, rather than the
state-space description.

It may seem more natural to use formal power series in z rather than z−1,
but the above choice is standard in control theory.



Chapter 12

The Smith Normal Form

In this chapter we study some linear algebra over rings. The most important
rings we use are Z and F[x].

12.1 Domains

Let R be a commutative ring. We say that an element a of R divides an element
b if b = ax for some x. We call R a domain if it has no divisors of zero, that is,
if a,b ∈ R and ab = 0 then a = 0 or b = 0. Clearly any field is a domain. Further
examples are provided by the integers Z and F[x], the ring of polynomials in x
with coefficients from F.

An ideal of R is a non-empty subset I such that if a ∈ I and r ∈ R, then
r a ∈ I . The even integers form an ideal in Z. The polynomials p in F[x] such
that p(1) = 0 provide a second example. If I and J are subsets of R, then I J is
given by

I J := {ab : a ∈ I , b ∈ J }.

Thus the subset I of R is an ideal if RI ⊆ I . The only ideal of R that contains 1
is R itself. It follows that a proper ideal cannot contain an invertible element
of R. If S ⊆ R, then the set SR is an ideal; we call it the ideal generated by S. It
consists of all R-linear combinations of the elements of S. An ideal generated
by a single element is called a principal ideal. For example, the even integers
2Z form a principal ideal in Z. If I is the principal ideal generated by d , then I
consists of the elements of R that are divisible by d . A principal ideal domain is
a ring in which every ideal is principal. Both Z and F[x] are examples.

165
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An ideal I is prime if it is a proper ideal and, whenever ab ∈ I , either a or b
lies in I . If m ∈Z, then mZ is a prime ideal if and only if m is a prime. A ring is
a domain if and only if the sero ideal is prime.

Suppose R is a principal ideal domain and a,b ∈ R. The ideal generated by
a and b is generated by some element d , which divides both a and b. Since this
ideal consists of the R-linear combinations of a and b, there are elements r and
s of R such that

d = r a + sb.

It follows that if c divides a and b, then c divides d and therefore d is a greatest
common divisor of a and b.

If d divides e and e divides d , we have

d = d1e, e = e1d

whence d = d1e1d . Therefore

(1−d1e1)d = 0

and so d1e1 = 1; hence both d1 and e1 are units of R. It follows that, in a princi-
pal ideal domain, any two non-zero elements have a greatest common divisor,
which is unique up to multiplication by a unit.

It can be difficult to verify that a given ring is a principal ideal domain. There
is one case where it is easy. We say R is a Euclidean domain if there is a function
ρ from R \0 toN such that

(a) If a,b ∈ R then ρ(ab) ≥ ρ(a).

(b) If a,b ∈ R, there are elements q and r such that b = qa + r and ρ(r ) < ρ(a).

The advantage of Euclidean domains is that we can compute the greatest com-
mon divisor of any two elements using the usual Euclidean algorithm. Also, a
Euclidean domain is a principal ideal domain.

We consider examples. If R = Z, take ρ(a) to be |x|. If R = F[x], use ρ(p) =
deg(p). If p, q ∈ F[x], we say the rational function p/q is proper if deg(p) <
deg(q). If we define ρ by

ρ

(
p

q

)
:= deg(q)−deg(p).

The set of proper rational functions over F, with this function ρ, forms a Eu-
clidean domain. If F = C, the strictly proper rational functions are the rational
functions that are bounded at infinity.
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1. Prove that a finite domain is a field.

2. If (R,ρ) is a Euclidean domain and x is a unit in R, show that ρ(ax) = ρ(a)
for all a in R.

12.2 Localization

Let R be a domain. A subset S of R is multiplicatively closed if

(a) 0 ∉ S and 1 ∈ S,

(b) If a,b ∈ S, then ab ∈ S.

In Z, the set of integers not divisible by a given prime is multiplicatively closed.
The set of non-zero elements of R is also multiplicatively closed.

Using S, we can construct a new ring, denoted R[S−1]. It elements are equiv-
alence classes of ordered pairs from R×S. We define (a, s) and (b, t ) to be equiv-
alent if there is an element x of R such that b = ax and t = sx. The product of
the pairs (a, s) and (b, t ) is (ab, st ); their sum is

(at +bs, st ).

These definitions will seem more familiar if we write our pairs as ratios a/s. We
then see that if R = Z and S consists of the non-zero integers, R[S−1] = Q. If
R = F[x] and S consists of all powers of x, then R[S−1] is known as the ring of
Laurent polynomials. It consists of the rational functions of the form xk p(x),
where p ∈ F[x] and k ∈Z.

If S = R\0, then the ring R[S−1] is called the quotient field of R. The quotient
field ofZ isQ, as we have just noted. The quotient field of F[x] is ring of rational
functions in x, denoted F(x).

We can view R[S−1] as being constructed by adjoining the multiplicative
inverse of each element of S to R. The element of R[S−1] of the form a/1 form
a subring isomorphic to R. If a ∈ R and s ∈ S, then a/1 and a/s generate the
same ideal. It follows from this that ideals of R[S−1] correspond to the ideals I
of R such that I ∩S =;. An important consequence is that R[S−1] is a principal
ideal domain if R is.

We consider some examples. Let R = C[x] and let C be a subset of C, for
example, the unit disc. Then the polynomials p(x) with no zeros in C form a
multiplicatively closed subset S. The ring R[S−1] consists of the rational func-
tions with no pole in the unit disc.
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1. Prove that if I is an ideal of R, then R \ I is multiplicatively closed if and
only if I is prime.

2. Let S be a multiplicatively closed subset of the domain R. Prove that each
ideal of R[S−1] consists of the elements a/s, where a comes from a given
ideal I of R, and s ∈ S.

12.3 Fitting

Fitting Invariants
Let A be an m×n matrix over a ring R. We define the Fitting invariant Fk (A)

to be the ideal generated by the k × k minors of A, where 1 ≤ k ≤ min{m,n}.
Thus

Fk (A) = F1(Λk (A)).

If R is a principal ideal domain, then the ideal Fk (A) is generated by an element
fk , and so we may use the sequence of elements f1, . . . , fm∧n , rather than the
ideals Fk (A).

12.3.1 Lemma. Let A be an m ×n matrix over R, where m ≤ n. Then the follow-
ing are equivalent:

(a) A has a right inverse.

(b) Fk (A) = R for k = 1, . . . ,m.

(c) Fm(A) = R.

Proof. First suppose that B is a right inverse for A over R. Then B is m ×n and,
since AB = Im , we have

Λk (A)Λk (B) = I(m
k ).

From this we see that 1 is an R-linear combination of elements of each row of
Λk (A), and consequently Fk (A) = R.

Now assume that Fm(A) = R. Let S be a set of m columns of A and set dS

equal to det AS . Let M be the n ×m matrix such that MS = adj(AS) and Mei = 0
if i ∉ S. Then

AM = dS I .
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If T is a second subset of m columns of A and N is constructed analogously to
M , then AN = dT I and therefore

A(xM + y N ) = (xdS + ydT )I .

It follows that if the minors dS generate R, then there is a right inverse for A.

One consequence of this lemma is that if A is m ×n and Fm(A) = R, then
Fk (A) = R for k = 1, . . . ,m. We recall that two matrices A and B are equivalent
over R if there are invertible matrices P and Q over R such that B = PAQ.

12.3.2 Lemma. Let A and B be two m×n matrices over R. If A and B are similar,
they have the same Fitting invariants.

Proof. By Lemma 12.3.1 it follows that Fk (P ) = R for all k. Now

Λk (PA) =Λk (P )Λk (A)

and it follows that Fk (PA) ⊆ Fk (A). Applying the same argument to the pair of
matrices P−1 and PA, we get

Fk (A) = Fk (P−1(PA)) ⊆ Fk (PA).

Accordingly Fk (PA) = Fk (A), as claimed.
In Section 12.5, we will see that if R is a principal ideal domain, then two ma-

trices of the same order are equivalent if and only if they have the same Fitting
invariants. Note that A and AT have the same Fitting invariants.

1. Let A be a m×n matrix over Z. Show that if, for each prime p, the rank of
A modulo p equals its rank over Q, then the greatest common divisor of
the m ×m minors of A is 1.

12.4 Hermite

Suppose A is a matrix over a ring R. There are three elementary row operations
we can apply to A:

(1) Multiply a row by a unit.

(2) Swap two rows.
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(3) Add a multiple of one row to another.

Similarly we have three types of elementary column operations. An elemen-
tary matrix is a matrix we get by applying an elementary row operation to the
identity. (It makes no difference if we use elementary column operations.) An
elementary matrix is invertible, and its inverse is elementary. Over a field, every
invertible matrix is a product of elementary matrices. Over rings the situation
is much more complicated, but we can deal with Euclidean domains.

The main tool is an analog of reduced row echelon form. The key observa-
tion is the following. Suppose a,b ∈ R and that d is a greatest common divisor
of a and b. Then there are elements s and t in R such that sa+ tb = d . Suppose
a = a1d and b = b1d . Then (

s t
−b1 a1

)(
a
b

)
=

(
d
0

)
.

Note the determinant of the 2×2 matrix on the left is 1, and so it is invertible.
We can use this to show that if A is a matrix over R, then there is an invertible
matrix F such that F A is in row echelon form.

If we are working over a Euclidean domain, there are two refinements. Sup-
pose R is Euclidean relative to the function ρ. Then by applying elementary row
operations to the row echelon form of A, we may convert it to a matrix B in row
echelon form such that, if the first non-zero element of row j is in column k,
then

ρ(Bi ,k ) < ρ(B j ,k ).

We say that B is in Hermite normal form.
The second refinement is the following result.

12.4.1 Lemma. Suppose that R is a Euclidean domain. If a and b are elements
of R with a greatest common divisor d , there is a product E of elementary ma-
trices such that

E

(
a
b

)
=

(
d
0

)
.

Proof. We prove this by using the Euclidean algorithm. First, premultiplying by
a permutation matrix if needed, we may assume that ρ(a) ≥ ρ(b). Then

a = q1b + r1,
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where ρ(r1) < ρ(b). We have (
0 1
1 −q1

)(
a
b

)
=

(
b
r1

)
.

Now (
0 1
1 −q1

)
=

(
0 1
1 0

)(
1 −q1

0 1

)
and so we have converted

(a
b

)
to

(b
r

)
by premultiplying it by two elementary ma-

trices. If r1 = 0, we are done. If r1 6= 0, there is an element q2 in R such that(
0 1
1 −q2

)(
b
r1

)
=

(
r1

r2

)
and ρ(r2) < ρ(r1). Thus each step of the Euclidean algorithm is equivalent to
multiplying an element of R2 by two elementary matrices, and the lemma fol-
lows.

We summarise our conclusions.

12.4.2 Theorem. If A is a matrix over a Euclidean domain R, it can be converted
to Hermite normal form by elementary column operations.

1. Show that over a Euclidean domain, each invertible matrix is a product of
elementary matrices.

2. Suppose B and C are m ×n matrices over a Eucliean domain in Hermite
normal form, with linearly independent columns. If B =CG , show that G
is diagonal. (Hint: first show that G is lower triangular.)

12.5 Smith Normal Form

Let A and B be two m×n matrices over a commutative ring R. (ThinkZ[x].) We
say that A and B are equivalent over R if there are invertible matrices P and Q
such that PAQ = B . We want to decide if two given matrices are equivalent.

12.5.1 Theorem. Let A be a matrix over a principal ideal domain R. Then there
is a unique matrix D over R which is equivalent to A such that Di j = 0 if i 6= j
and Di ,i divides Di+1,i+1 for i = 1, . . . ,n −1.
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Proof. Although it is not strictly necessary, we first show that A is equivalent to
a matrix D such that Di j = 0 if i 6= j , and only then show that D can be arranged
to have the form stated.

Suppose a and b are two elements of R, and suppose that the ideal they
generate is generated by d . Then there must be elements s and t of R such that
sa+tb = d . Further, there are elements a1 and b1 such that a = a1d and b = b1d .
Hence (

s t
−b1 a1

)(
a
b

)
=

(
d
0

)
.

As sa1 + tb1 = 1 the determinant of(
s t

−b1 a1

)
is 1 and therefore this matrix is invertible.

If the i -th of A is x and the j -th row is y and we may replace x be sx+t y and
y by −b1x +a1 y , the resulting matrix is equivalent to A.

We may permute the columns of A so that any zero columns are last. Having
done this, we may convert A to an equivalent matrix where A1,1 = a 6= 0 and
Ai ,1 = 0 if i > 1. If a divides each entry of the first row of A then A is equivalent
to a matrix of the form (

a 0
0 A1

)
and we can prove our claim by induction.

If a does not divide each entry in the first row, then we may operate on the
columns of A, converting it to an equivalent matrix with A1,1 = a′ and A1, j = 0
if j > 1. Further the ideal generated by a is properly contained in the ideal
generated by a′. We hope now that a′ divides each entry in the first column
of A. If so then we reduce to the previous induction. If not, we operate on
the rows again. Since at each stage the ideal generated by A1,1, and since R
does not contain an infinite increasing sequence of ideals, we conclude that A
is equivalent to a matrix with Ai ,1 = 0 when i > 1 and A1, j = 0 when j > 1. This
proves our claim.

To reduce R to the required form, we observe that the two matrices(
a 0
0 b

)
,

(
a 0

sa + tb b

)
are equivalent; given this it is easy to see R is equivalent to a matrix satisfying
the divisibility condition we gave.
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The problem left is to prove that R is unique. This follows because A and D
have the same Fitting ideals, and because a diagonal matrix which satisfies our
divisibility condition is determined by its Fitting ideals.

If R is a Euclidean domain, then we can use elementary row and column
operations rather than the 2×2 matrices we described.

The matrix R whose existence is guaranteed by the theorem is called the
Smith normal form of A. If A is square then det(A) is a unit times det(R). Com-
puting the Smith normal form, even over Z, is one of the more difficult prob-
lems in linear algebra. If implemented as described then the number of digits
in an entry can double at each step.

Generally one only meets the Smith normal form for matrices over Z and
over F[z]; there are a number of interesting Euclidean domains that arise in
control theory, related to rational functions. Call a rational function p/q in F(z)
bounded if deg p ≤ deg q . If we define

ρ1(p/q) = deg q −deg p,

the bounded rational functions form a Euclidean domain relative to the func-
tion ρ1.

For a second example, let S be a subset of the complex plane, and call a
polynomial stable if its zeros all lie in S. The set of stable polynomials is mul-
tiplicatively closed, and so the rational functions p/q where q is stable form a
ring. If we define ρ2(p/q) to be the number of zeros of p not in S then this ring
is a Euclidean domain relative to ρ2.

The intersection of these two rings has the baroque denotation RH∞+ . If,
as is standard, S is the open left half-plane, this ring consists of the rational
functions that are uniformly bounded on the closed right half-plane. It is a
Euclidean domain relative to the function ρ1 +ρ2.
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Chapter 13

Polynomial and Rational Matrices

A polynomial matrix is a matrix whose entries come from the ring F[z]. A ratio-
nal matrix is a matrix whose entries come from the field of rational functions
F(z). We will also have occasion to consider matrices whose entries are formal
power series or Laurent series, but we will not assign names to these. Any ma-
trix polynomial A(z) can be written as a polynomial in z with coefficients Ai

from Matm×n(F):
A(z) =∑

i
Ai zi .

(This encodes an isomorphism between the ring of polynomial matrices, and
the ring of polynomials with matrix coefficients, which goes beyond the level
of sophistication to which we aspire.) The degree of a matrix polynomial is the
maximum degree of an entry. We will also be concerned with the degrees of
the rows and/or columns of polynomial matrices. The key here is to note that
each column of a polynomial matrix is a polynomial matrix, and so has a well-
defined degree.

We consider one pertinent example. If A is n×n, then t I −A is a polynomial
matrix with degree one. We have

(zI − A)adj(zI − A) = det(zI − A)I .

Here adj(zI − A) is also a matrix polynomial, with degree n −1, and

(zI − A)−1 = 1

det(zI − A)
adj(A).

In this chapter, we will study the basic properties of polynomial and rational
matrices.

175
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13.1 Series

A rational function is proper if its numerator and denominator have the same
degree, and strictly proper if the degree of its numerator is less than the degree
of its denominator. A rational matrix is proper if its elements are proper and
strictly proper if they are strictly proper. The proper rational matrices form a
ring, and the strictly proper rational matrices form a proper ideal in this ring.

We can view the ring of polynomials F[z] as a subring of the ring of formal
power series F[[z]]. This has some use, for example if p(z) is a polynomial and
p(0) 6= 0, then p(z) has a multiplicative inverse in F[[z]]. In a similar way, we
can represent rational functions by formal Laurent series.

Suppose
p(z) = zn +p1zn−1 +·· ·+pn .

Then

p(z)−1 = z−n
(
1+ p1

z
+·· ·+ pn

zn

)−1

Hence p(z)−1 has a formal power series expansion in z−1, and it follows that
any rational function has an expansion as a formal Laurent series in z−1. If
p(z)/q(z) is a rational function then

p(z)

q(z)
=

∞∑
i=−k

ai z−i ,

where k = deg(p)−deg(k). Hence the ring of rational functions in z is isomor-
phic to a subring of the ring of Laurent series in z−1, and the image of the proper
rational functions under this isomorphism is the ring of formal power series in
z. The strictly proper rational functions map to the formal power series with
contstant term equal to 0.

Since we have used nothing more than the geometric series expansion, ev-
erything goes over to matrix rational functions: these are isomorphic to a sub-
ring of the ring of Laurent series in z−1 with matrix coefficients, proper rational
matrices correspond to formal power series and strictly proper rational matri-
ces to formal power series with constant term equal to 0. From this we see, for
example, that the proper rational matrices form a ring, and the strictly proper
rational functions form an ideal in this ring. We note one other property we will
need.

13.1.1 Lemma. If M(z) is a strictly proper rational matrix, then I +M(z) is in-
vertible, and its inverse is a proper rational matrix.
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Proof. Since M(z) is strictly proper it has a series expansion

M(z) = ∑
i≥0

Mi z−i

Hence I +M(z) is a formal power series with constant term I , and therefore it
has a multiplicative inverse, which is again a formal power series with constant
term I .

13.2 Polynomial Matrices

We develop some of the basic properties of polynomial matrices.
Every polynomial matrix is a rational matrix. Since

A(z)adj(A(z)) = det(A(z))I

we see that if det(A(z)) 6= 0, then

1

det(A(z))
adj(A(z))

is the inverse of A(z) in the ring of rational matrices. Thus a polynomial matrix
A(z) has a rational inverse if and only if its determinant is not zero, although
A(z) may not be invertible for certain values of z in F. A polynomial matrix
has a polynomial inverse if and only if its determinant is a non-zero constant.
We say that a square matrix over a ring is unimodular if its determinant is a
unit. Since the units in F[x] are the non-zero constants, a polynomial matrix is
unimodular if and only if it has a polynomial inverse. More generally, we recall
from Section 12.3 that an m×n matrix A over a ring R has a right inverse if and
only if the ideal generated by the m ×m minors of A is equal to R.

Suppose A(z) is an m×n polynomial matrix with linearly independent rows
that is not right invertible. Then the greatest common divisor of the m × m
minors of A(z) is a polynomial of positive degree. It follows that there are values
of z in the algebraic closure of F such that rk(A(z)) < m.

We may write any m ×n polynomial matrix A(z) in the form

A(z) = HS(z)+L(z),

where S(z) is diagonal with i -th diagonal entry equal to zdi and L(z) is a matrix
whose column degrees are each less than the column degrees of A(z). We call H
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the leading coefficient matrix of A(z), and we define A(z) to be column reduced
if the columns of H are linearly independent.

By way of example, if A is square matrix over F, then zI − A is column re-
duced. If A(z) is invertible and in Hermite normal form, then H = I and so A(z)
is column reduced. A square polynomial matrix

d∑
i=0

Ai zi

is said to be regular if Ad is invertible. A regular polynomial matrix is column
reduced, but the converse fails. (Find an example.)

13.2.1 Lemma. Let A(z) be a polynomial matrix with linearly independent columns.
Then there is a product of elementary matrices E(z) such that A(z)E(z) is col-
umn reduced, and the degree of each column of A(z)E(z) is no greater than that
of the corresponding column of A(z).

Proof. Suppose some set of columns of H is linearly dependent. Choose a min-
imal such subset C , and from this choose a column, i say, with largest possible
degree. Then the i -th column is a linear combination of the remaining columns
in C , and so there is a product E(z) of elementary matrices with determinant 1
such that the degree of the i -th column of A(z)E(z) is less than the degree of
the i -th column of A(z), and all other columns have the same degree in both
mstrices. We may continue reducing the degrees of columns in this way, until
we reach a matrix whose leading coefficient matrix has full rank.

13.2.2 Lemma. Let A(z) be an n ×k polynomial matrix, where n ≥ k, and let di

be the degree of its i -th column. Then the degree of a k ×k minor of A(z) is at
most

∑
i di and equality holds if and only if A(z) is column reduced.

We follow the common convention that the degree of the zero polynomial
is −∞.

13.2.3 Lemma. Let A(z) be a column-reduced m ×n polynomial matrix and let
di be the degree of its i -th column. Let p(z) be a vector of polynomials of length
n, with i -th component pi (z). Then

deg(A(z)p(z)) = max
i

{di +deg(pi (z))}.
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Proof. We write
A(z) = HS(z)+L(z),

where H is the leading coefficient matrix of A(z) and S(z) is diagonal with i -th
entry zdi . Then

A(z)p(z) = HS(z)p(z)+L(z)p(z).

The i -th entry of S(z)p(z) is zdi pi (z), and consequently

deg HS(z)p(z) ≤ deg(S(z)p(z)) = max
i

{di +deg(pi (z))}. (13.2.1)

The degree of the i -th entry of L(z)p(z) is less than di +deg(pi (z)), which proves
that the right side of (13.2.1) is an upper bound on the degree of A(z)p(z). Since
the columns of H are linearly independent, it has a left inverse, K say. Then

K HS(z)p(z) = S(z)p(z),

from which we see that

deg(HS(z)p(z)) ≥ deg(S(z)p(z)).

Hence deg(HS(z)p(z)) = deg(S(z)p(z)), and the theorem follows.

13.2.4 Theorem. Suppose A(z) and B(z) are column-reduced polynomial ma-
trices, with columns arranged in increasing order of degree. If C (z) is unimodu-
lar and A(z) = B(x)C (z), then A(z) and B(z) have the same column degrees and
C (z) is upper triangular.

Proof. Assume A(z) and B(z) are m ×n and suppose that A(z) has column de-
grees d1, . . . ,dn and B(z) has column degrees e1, . . . ,en . If p(z) is the r -th col-
umn of C (z), then the degree of B(z)p(z) is at least the maximum of the degrees
di such that pi (z) 6= 0. It follows that d1 ≥ e1. Since C (z) is unimodular, C (z)−1 is
polynomial and since B(z) = A(z)C (z)−1, we also see that e1 ≥ d1. Hence d1 = e1

and C (z)i ,1 = 0 if i > 1.
Now let A1(z) and B1(z) be the matrices we get by deleting the first column

from A(z) and B(z) respectively, and let C1(z) be the matrix we get by deleting
the first row and column from C (z). Then A1 and B1 are reduced and C1 is
unimodular, and the theorem follows by induction on m.

(1) Prove that a column-reduced matrix has a rational left inverse.
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13.3 Paraunitary Matrices

Suppose

A(z) =
m∑

r=0
Ar zr ,

where Ar ∈ Matn×n(C) and let A∗(z−1) be given by

A∗(z) =
m∑

r=0
A∗

r z−r .

We say that A(z) is paraunitary if

A(z)A∗(z−1) = I .

One consequence of this definition is that if A(z) is paraunitary, then A(z) is
unitary when ‖z‖ = 1. The product of paraunitary matrices is paraunitary.

By way of example if v ∈ Cn and ‖v‖ = 1, then an easy computation shows
that

V (z) := I − v v∗+ zv v∗

is paraunitary. We also see that V (1) = I and, with some effort, that

detV (z) = 1.

Paraunitary matrices of this type are called primitive. Note that V ∗(z) = V (z),
so V (z)V (z−1) = I .

13.3.1 Lemma. 3.1 If A(z) is paraunitary, then det A(z) = zm for some non-negative
integer m.

Proof. Suppose p(z) := det A(z), and let p(z) be the polynomial whose coeffi-
cients are the complex conjugates of those of p(z). Then p(z−1) = det A∗(z−1)
and since A(z)A∗(z−1) = I , we have

p(z)p(z−1) = det(A(z))det(A∗(z−1)) = 1.

Suppose p(z) has degree d and that ze is the highest power of z that divides
p(z) Then

p(z)p(z−1) = p(z)q(z)

zd
,

where q(z) is a polynomial of degree d −e. Therefore p(z)q(z) has degree d −e,
and the lemma follows at once.
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13.3.2 Lemma. Let A(z) be a paraunitary matrix. Then A(z) is constant if and
only if det A(z) = 1.

Proof. Suppose

A(z) =
m∑

r=0
zr Ar

and Am 6= 0. If m = 0 then A(z) is constant and det A(z) = 1.
If m > 0, then the coefficient of z−m in the product A(z)A∗(z−1) is A0 A∗

m ,
whence A0 A∗

m = 0 and A0 is singular. Then

det A(z)det(A0 + zB(z)),

where B(z) is a polynomial matrix. Therefore the constant term of det A(z) is
det A(0), which is zero. We conclude that det A(z) is a positive power of z.

13.3.3 Theorem. If A(z) is a paraunitary matrix and det A(z) = zd , then A(z) =
A(1)W (z), where W (z) is the product of d primitive paraunitary matrices.

Proof. If d = 0 then A(z) = A(1) and there is nothing to prove, so we assume
d > 0. As in the proof of the previous lemma, it follows that the constant term
A0 in A(z) is singular and therefore there is a unit vector v such that v∗A0 = 0.

Suppose A(z) =−∑m
r=0 Ar zr and

V (z) := I − v v∗+ zv v∗

and consider the product

B(z) =V (z−1)A(z) = (I − v v∗+ z−1v v∗)(A0 + A1z +·· ·+ Am zm).

Since v∗A0 = 0, we see that B(z) is a polynomial matrix and hence that is is
paraunitary.

Since V (z)B(z) = A(z) we have

z detB(z) = zd

and consequently detB(z) = zd−1. The theorem follows now by induction on
the degree of det A(z).

Paraunitary matrices play a significant role in the theory of filter banks and
in some treatments of wavelets. For the latter, see Resnikoff and Wells “Wavelet
Analysis” (Springer, New York) 1998.
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13.4 Division

If a(z) and d(z) are polynomials over a field, there are unique polynomials q(z)
and r (z) such that degr < degd and

a(z) = q(z)d(z)+ r (z).

We establish a matrix version of this.

13.4.1 Theorem. Suppose D(z) and N (z) are polynomial matrices of orders n×
n and m ×n respectively, and that D(z) is column reduced. Then N (z)D(z)−1

is strictly proper if and only if each column of N (z) has degree less than the
degree of the corresponding column of D(z).

Proof. Suppose first that G(z) = N (z)D(z)−1 is strictly proper. We have

N (z) =G(z)D(z)

and if Ni (z) and Di (z) denote the i -th columns of N (z) and D(z) respectively,

Ni (z) =G(z)Di (z).

Since G(z) is strictly proper, the degree of an element of Ni (z) is less than the
degree of the corresponding element of Di (z). (Note that for this part of the
argument we did not need D(z) to be column reduced.)

Assume now that D(z) is column reduced and that the degree of each col-
umn of N (z) is less than the degree of the corresponding column of D(z). We
may write

D(z) = HS(z)+L(z),

where H is the leading coefficient matrix of D(z). Then

D(z)−1 = S(z)−1H−1(I +L(z)S(z)−1H−1)−1

Therefore

N (z)D(z)−1 = (N (z)S(z)−1) H−1(I +L(z)S(z)−1H−1)−1

is the product of two rational matrices. The factor N (z)S(z)−1 is strictly proper
by hypothesis. Regarding the second factor, L(z)S(z)−1H−1 is strictly proper
and so by Lemma 13.1.1, we see that (I +L(z)S(z)−1H−1)−1 is a proper rational
matrix. It follows that N (z)D(z)−1 is strictly proper, as required.
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13.4.2 Theorem. Suppose D(z) and A(z) are polynomial matrices and D(z) is
invertible and column-reduced. Then there are unique polynomial matrices
Q(z) and R(z) such that for each i , the degree of the i -th column of P1 is less
than the degree of the i -th column of D , and

A(z) =Q(z)D(z)+R(z).

Proof. The matrix A(z)D(z)−1 is rational and so

A(z)D(z)−1 =Q(z)+P (z),

where P (z) is polynomial and R(z) is a strictly proper rational matrix. Hence

A(z) =Q(z)D(z)+P (Z )D(z)

and, since A(z) and Q(z)D(Z ) are polynomial matrices, so is P (z)D(z). Let
R(z) := P (z)D(z). Then R(Z )D(z)−1 is strictly proper and so by Theorem 13.4.1
the degree of each column of R(z) has degree less than the degree of the corre-
sponding column of R(z).

Now suppose
A(z) =Q1(z)D(z)+R1(z)

where P1 and Q1 are polynomial and for each i , the degree of the i -th column
of P1 is less than the degree of the i -th column of D . Then

(Q −Q1)D + (R −R1) = 0

and therefore
Q −Q1 = (R1 −R)D−1.

Here the left side is a polynomial matrix, while by Theorem 13.4.1, the right side
is a strictly proper rational matrix. Therefore both sides are zero, and therefore
Q(z) and R(z) are unique.

Note that we do not get a version of the Euclidean algorithm, because there
is no guarantee that the remainder R(z) is not a zero divisor or, if not, that it is
reduced. So we cannot expect to be able to divide Q(z) by R(z).

13.5 Cayley-Hamilton

Suppose A is square. The matrix zI − A is column reduced and linear so if we
divide by it, the remainder must be a constant matrix. We can give an explicit
formula for it.
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13.5.1 Lemma. Suppose F (z) = ∑r
i=0 Fi zi . Then remainder of F (z) on right di-

vision by zI − A is
∑

i Fi Ai .

Proof. We can write
(zI − A)−1 = z−1

∑
i≥0

Ai z−i ;

the coefficient of z−1− j in F (z)(zI − A)−1 is then

F0 A j +F1 A j+1 +·· ·+F Fr A j+r = (F0 +F1 A+·· ·+Fr Ar )A j .

Therefore the strictly proper part of F (z)(zI − A)−1 is

(zI − A)−1(F0 + AF1 +·· ·+ Ar Fr )

and the remainder on right division by (zI − A)−1 is F0 + F1 A + ·· · + Fr Ar , as
claimed.

This last result is an extension of the result that the remainder of p(z) on
division by z −a is p(a). It also implies the Cayley-Hamilton theorem. For sup-
pose thatφ(z) is the characteristic polynomial of A, and consider the remainder
on left division ofφ(z)I by zI −A. By the lemma, this remainder isφ(A). On the
other hand

(zI − A)−1φ(z)I =φ(z)−1 adj(zI − A)φ(z) = adj(zI − A).

As adj(zI − A) is a matrix polynomial, it follows that φ(A) is zero.
We write F (A) to denote the remainder of F (z) on right division by zI − A.

It follows from our results that a polynomial f (z) is satisfied by A if and only if
there is a matrix polynomial Q(z) such that

f (z)I =Q(z)(zI − A).

If φ(z) is the characteristic polynomial of A then

φ(z)I = adj(zI − A)(zI − A), (13.5.1)

which implies that φ(A) = 0. This is the Cayley-Hamilton theorem.
Let d(z) denote the greatest common divisor of the entries of adj(zI−A) and

let C (z) be the matrix polynomial

C (z) = d(z)−1 adj(zI − A).
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If p(z) is the polynomial φ(z)/d(z) then, since

φ(z)I = adj(zI − A) (zI − A)

we see that p(A) = 0. Let ψ(z) be the minimal polynomial of A and let Ψ(z) be
the matrix polynomial satisfying

ψ(z)I =Ψ(z)(zI − A).

If c(z) := p(z)/ψ(z), then

C (z)(zI − A) = p(z)I = c(z)ψ(z)I = c(z)Ψ(z)(zI − A).

As zI − A is invertible, this implies that C (z) = c(z)Ψ(z). Since the greatest com-
mon divisor of the entries if C (z) is 1, it follows that c(z) = 1. Thus we have
shown that ψ(z) =φ(z)/d(z).

13.6 Greatest Common Divisors

We say polynomial matrices A(z) and B(z) are right equivalent if there is a uni-
modular matrix C (z) such that A(z)C (z) = B(z).

If A(z), B(z) and C (z) are polynomial matrices and A(z)B(z) =C (z), we say
that A(z) is a left divisor and B(z) a right divisor of C (z). We do not insist that
divisors be square, although this will be the most important case. We will only
be interested in left divisors whose columns are linearly independent; equiva-
lently those that have a rational left inverse. If the columns of A are linearly
independent and AX = B and BY = A, then AX Y = A, and therefore X Y is uni-
modular. Hence if A is a left divisor of B and B is a left divisor of A, then B and
A are right equivalent.

We say that D(z) is a greatest common right divisor of A(z) and B(z) if D(z)
is a right divisor of any right divisor of A(z) and B(z). If D and D1 are two great-
est common right divisors of A and B then

D1 = X D, D = Y D1

and therefore D = Y X D . If the rows of D are linearly independent, it follows
that Y X = I and therefore Y and X are unimodular. Consequently D and D1

are left equivalent. Two polynomial matrices are right coprime if and only if all
their greatest common right divisors are unimodular.
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We show how to construct greatest common divisors. Let D(z) and N (z) be
respectively n×n and m×n polynomial matrices. The Hermite normal form of(

D(z)
N (z)

)
is then (

R(z)
0

)
,

where R is m ×m (and upper triangular). It follows that there is a unimodular
2×2 partitioned matrix such that(

U1,1 U2,1

U2,1 U2,2

)(
D
N

)
=

(
R
0

)
.

It follows that
U1,1D(z)+U2,1N (z) = R(z). (13.6.1)

On the other hand our 2×2 partitioned matrix is invertible, and so we have(
D
N

)
=

(
V1,1 V2,1

V2,1 V2,2

)(
R
0

)
.

This implies that
D(z) =V1,1R(z), N (z) =V2,1R(z),

and therefore R(z) is a common right divisor of D(z) and N (z). If S(z) is a com-
mon right divisor of D(z) and N (z), then it follows from (13.6.1) that S(z) is a
right divisor of R(z). Therefore R(z) is a greatest common divisor of D(z) and
N (z).

Suppose A is and n ×n matrix and B an n ×m matrix over F. The pair (A,B)
is controllable if and only

rk
(

A−λI B
)= n

for all complex numbers λ. It follows from the exercise*** below that this con-
dition is satisfied if and only if A and B are left coprime. Similarly (C , A) is ob-
servable if and only if A and C are right coprime.

This section is one place where the module approach is very useful. Let us
work with matrices over a ring R. If A and B are such matrices then AX = B
if and only if each column of B is an R-linear combination of the columns of



13.7. AN IDENTITY 187

A. Thus A is a left divisor of B if and only if the R-module generated by the
columns of B is contained in the R-module generated by the columns of A. If
the columns of B and C lie in Rn , they are left coprime if and only if the columns
of B and C together generate Rn .

(1) Prove that D(z) and N (z) are right coprime if and only if(
D(z)
N (z)

)
has a rational left inverse.

13.7 An Identity

We will need the following result.

13.7.1 Lemma. Let C = (ci , j ) be a square matrix. Then

∂

∂ci , j
(zI −C )−1 = (zI −C )−1ei eT

j (zI −C )−1.

Proof. This is an easy consequence of the following identity, which itself is easily
verified.

(zI −C )−1 − (zI −D)−1 = (zI −C )−1(C −D)(zI −D)−1.

The matrix Ψ in the proof of the next result is defined in ??.

13.7.2 Theorem. Let ψ be a polynomial of degree d , let Cψ be its companion
matrix and let Eψ(z) denote the d×d matrix with i j -entry equal toψi (z)z j−1/ψ(z).
Let N be the companion matrix of zd . Then

(zI −Cψ)−1 −Eψ(z) =
(
N + zN 2 +·· ·+ zd−2N d−1

)T
.

Proof. The right side of this identity is independent ofψ (apart from its degree).
By ??,

ψ(z)−1Ψ(z) = (zI −Cψ)−1e1

and therefore
Eψ(z) = (zI −Cψ)−1e1

(
1 z · · · zd−1

)
.
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Our strategy is to show that (zI −Cψ)−1 −Eψ(z) is independent of ψ, and
then evaluate it when ψ= zd .

Assume
ψ(z) = t d +a1t d−1 +·· ·+ad ;

then Ci ,d =−ai and, by the previous lemma

∂

∂ai
(zI −Cψ)−1 =−(zI −Cψ)−1ei eT

d (zI −Cψ)−1.

From ?? we have

eT
d (zI −Cψ)−1 =ψ(z)−1ei

(
1 z · · · zd−1

)
and therefore

∂

∂ai
(zI −Cψ)−1 =−ψ(z)−1(zI −Cψ)−1ei

(
1 z · · · zd−1

)
.

We have
∂

∂ai
Eψ(z) = ∂

∂ai
(zI −Cψ)−1e1

(
1 z · · · zd−1

)
.

Since

ei
(
1 z · · · zd−1

)
e1

(
1 z · · · zd−1

)= ei
(
1 z · · · zd−1

)
,

it follows that
∂

∂ai
(zI −Cψ)−1 = ∂

∂ai
Eψ(z).

We conclude that (zI −Cψ)−1 −Eψ(z) is independent of ψ.
Now suppose ψ(z) = zd and N =Cψ. Then N d = 0,

(zI −N )−1 = z−1(I − z−1N )−1 =
d−1∑
i=0

z−i N i ,

and (
Eψ(z)

)
i , j = z−i+ j−1.

The theorem follows at once.

(1) By setting z = 0 in Theorem 13.7.2, deduce the expression for the inverse of
an invertible companion matrix in Theorem 3.4.1.
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13.8 Resolvents

Let A be an n ×n matrix. In this section we generally work over any field that
contains all the eigenvalues of A. The resolvent R(z) of A is the matrix (zI−A)−1.
As

R(z) = 1

det(zI − A)
adj(zI − A),

each entry of R(z) is a rational function. Let θ be an eigenvalue of A with multi-
plicity m. Then there are matrices Ai such that

R(z) =
∞∑

r=−m
Ar (z −θ)r ;

we wish to determine these matrices.
The key to this is the following identity.

13.8.1 Theorem. If R(z) is the resolvent of some matrix then

R(z)−R(w) =−(z −w)R(z)R(w).

Proof. Let R(z) be the resolvent of A. Then

(zI − A)(R(z)−R(w))(w I − A) = (w I − A)− (zI − A) = (w − z)I ,

whence the result follows.

We note a simple consequence of this.

13.8.2 Lemma. If A is symmetric then all poles of the entries of R(z) are simple.

Proof. Suppose that θ is an eigenvalue of A and

R(z) = ∑
r≥−m

Ar (z −θ)r .

Here m ≥ 1 and we may assume without loss that A−m 6= 0. Then R(z)T R(z) is
equal to AT−m A−m(z −θ)2m , plus terms of higher order and, as A is symmetric,
R(z)T R(z) = R(z)2. On the other hand, from Theorem 13.8.1 we have that

d

d z
R(z) =−R(z)2.

The term of least order in R(z)′ is −m A−m(z − θ)m+1; consequently we must
have m +1 = 2m, i.e., m = 1.
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13.8.3 Lemma. Suppose that R(z) is the resolvent of A and that θ is an eigen-
value of A with multiplicity m. If R(z) =∑∞

−m Ar (z −θ)r then

Ar As =


−Ar+s+1, r, s ≥ 0;

Ar+s+1, r, s ≤−1;

0, otherwise.

Proof. We assume that 0 is an eigenvalue of A, and seek to determine the coef-
ficients Ar in the expansion R(z) =∑

r≥−m Ar zr . From Theorem 13.8.1 we have

− ∑
r,s≥−m

Ar As zr w s =−R(z)R(w) = R(z)−R(w)

z −w
= ∑

r≥−m
Ar

zr −w r

z −w
.

The lemma follows for θ = 0 by comparing coefficients of zi w j in the two series
above, and the general result is an easy consequence of this.

From this result we see that the matrices Ai , i = −m,−m + 1, . . . commute.
We also find that:

Ar = (−1)r Ar+1
0 , if r ≥ 0,

A−r = (A−2)r−1, if r ≥ 2,

A−1 A−r = A−r , if r ≥ 0.

Therefore the coefficients in our Laurent series for R(z) are determined by A0,
A−1 and A−2, where (A−1)2 = A−1 and (A2)m = 0. Thus A−1 is idempotent and
A−2 is nilpotent, let us denote them respectively by Eθ and Nθ. Now note that

(t I − A)R(z) = ((t − z)I + zI − A)R(z) = (t − z)R(z)+ I ;

Putting t = θ in this yields

(θI − A)Ar = Ar−1, r 6= 0, (θI − A)A0 = A−1 − I . (θI − A)A−m = 0.

Hence
Nθ = (θI − A)Eθ.

Define the principal part Pθ(z) of R(z) by

Pθ(z) :=
m∑

r=1
A−r (z −θ)−r .
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Thus

Pθ(z) = (z −θ)−1Eθ+
m−1∑
r=1

N r
θ (z −θ)−r

= (z −θ)−1
m−1∑
r=0

(θI − A)r Eθ(z −θ)−r

We note that, if θ and τ are distinct eigenvalues of A, then PθPτ = 0 and so
EθEτ = 0. We have the following result, which provides a partial fraction de-
composition of the resolvent.

13.8.4 Theorem. Let R(z) be the resolvent of A and let Pθ(z) be the principal
part of R(z) at θ. Then R(z) =∑

θPθ(z).

Proof. A rational function in z is called proper if the degree of its numerator
is less than the degree of its denominator. A proper rational function with no
poles is constant. The set of proper rational functions is a vector space.

We note that the entries of R(z) and the entries of Pθ(z) are proper rational
functions. Hence each entry of the difference

R(z)−∑
θ

Pθ(z);

is a proper rational function. By the construction of Pθ(z), these rational func-
tions have no poles. As both R(z) and Pθ(z) converge to zero as z → ∞, our
theorem follows.

We know that, if m is the multiplicity of θ as an eigenvalue of A then Ar = 0
when r < −m, equivalently (θI − A)mEθ = 0. This implies that the order of the
pole of R(z) at θ is at most m.

13.8.5 Theorem. The order of the pole of R(z) at θ is equal to the multiplicity of
θ as a zero of the minimal polynomial of A.

Proof. Letψ(z) denote the minimal polynomial of A, let ν(θ) be the multiplicity
of θ as a zero of ψ(z) and suppose

ψθ(z) = ψ(z)

(z −θ)ν(θ)
.

Let Aθ denote the space spanned by the matrices (θI −A)i Eθ and let d(θ) be its
dimension. Thus d(θ) is the greatest integer such that (θI − A)d(θ)−1Eθ 6= 0.



192 CHAPTER 13. POLYNOMIAL AND RATIONAL MATRICES

As (θI − A)d(θ)Pθ(z) = 0, it follows that∏
θ

(θI − A)d(θ)R(z) = 0.

Since R(z) is invertible, this implies that∏
θ

(θI − A)d(θ) = 0.

From the definition of the minimal polynomial we then deduce that ν(θ) ≤ d(θ),
for all eigenvalues θ of A. We show next that ν(θ) = d(θ).

The matrices (θI − A)i Eθ for i = 0,1, . . . ,d(θ) − 1 form a basis for Aθ. As
ψθ(θ) 6= 0, it follows that the matrix representing the action of ψθ(A) relative
to this basis is triangular, with non-zero diagonal entries. In particular, it is in-
vertible. On the other hand, if M ∈Aθ, then

0 = (θI − A)ν(θ)ψθ(A)M =ψθ(A)(θI − A)νν(θ)M ,

and this implies that (θI − A)ν acts as the zero operator on Aθ. It follows that
ν(θ) ≥ d(θ).

13.8.6 Corollary. For each eigenvalue θ, the matrix Eθ is a polynomial in A.

Proof. Since zR(z) → I and zPθ(z) → Eθ as z →∞, Theorem 13.8.4 implies that

I =∑
θ

Eθ. (13.8.1)

It follows from the proof of Theorem 13.8.5 that ψθ(A)Eτ = 0 if τ 6= θ, whence
(13.8.1) yields that

(θI − A)iψθ(A) = (θI − A)iψθ(A)Eθ.

Referring to the proof of Theorem 13.8.5 again, we see thatψθ(A)Eθ lies in Aθ. It
is not hard to show that the matrices (θI − A)iψθ(A)Eθ for i = 0,1, . . . ,ν(θ) form
a basis for Aθ, and accordingly each matrix in Aθ must be a polynomial in A.

13.8.7 Corollary. Any square matrix A is the sum of a diagonalizable and a nilpo-
tent matrix, each of which is a polynomial in A.
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Proof. As EθEτ = 0 when θ 6= τ and E 2
θ
= Eθ, the column space of Eθ is an

eigenspace for all the idempotents Eτ. Given this, (13.8.1) implies that Fn is the
direct sum of eigenspaces of Eθ. Hence Eθ is diagonalizable; more generally any
linear combination of the matrices Eθ is diagonalizable. It is also a polynomial
in A.

As AEθ = Eθ+Nθ, it also follows from (13.8.1) that

A =∑
θ

(θEθ+Nθ) =∑
θ

θEθ+
∑
θ

Nθ.

Since NθNτ = 0 when θ 6= τ, it follows that
∑
θ Nθ is nilpotent. Since Nθ = (θI −

A)Eθ, we see that Nθ is a polynomial in A and, therefore,
∑
θ Nθ is too.

The last result implies that symmetric matrices are diagonalizable—if A is
symmetric, so is any polynomial in A, but the only symmetric nilpotent ma-
trix is the zero matrix. It is slightly more difficult to see that the only normal
nilpotent matrix is the zero matrix; from this it follows that normal matrices are
diagonalizable.

13.8.8 Corollary. Let ϕ(z) be the characteristic polynomial of A and let g (z) be
the greatest common divisor of the determinants of the (n−1)× (n−1) subma-
trices of zI − A. Then ϕ(z)/g (z) is the minimal polynomial of A.

Proof. Let θ be an eigenvalue of A, with multiplicity m, and let ν be its mul-
tiplicity as a zero of ψ(z). Let fi , j (z) be the i j -minor zI − A. It follows from
Theorem 13.8.5 that no entry of R(z) has a pole of order greater than ν(θ) at
θ, and that some entry has a pole of this order at θ. In other words (z −θ)m−ν

divides each polynomial fi , j (z), and divides one of these polynomials exactly.
The result follows immediately.
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Chapter 14

Determinants

The determinant is a function on square matrices which plays many roles. If
A is a square matrix over R, its determinant is a measure of ‘what A does to
volume’. More precisely, if S is a region in Rn with unit volume, then the volume
of set of points

{Ax : x ∈ S}

is |det(A)|. Because of this, the determinant plays an important role in integra-
tion of functions of several variables.

14.1 Permutations

Let Ω be a set. A permutation of Ω is a bijection from Ω to itself. The set of
all permutations of Ω is called the symmetric group on Ω. If |Ω| = n, then
|Sym(Ω)| = n!. We use Sym(n) to denote the set of all permutations on some
set of size n, usually {1, . . . ,n}. If i ∈ Ω and σ ∈ Sym(Ω), then we denote the
image of i under σ by iσ.

Permutations ofΩ are functions fromΩ toΩ, so if ρ andσ are permutations,
their product σρ is defined by

iσρ = (iσ)ρ.

This is again a permutation of Ω. As we will see, the order matters: usually
σρ 6= ρσ. Since a permutation is a bijection, it has an inverse. If σ ∈ Sym(Ω), we
denote the inverse of σ by σ−1. We have

σσ−1 =σ−1σ.

195
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The identity mapping on Ω is a bijection; we call it the identity permutation
and denote it by 1. Finally, if ρ, σ and τ are permutations of Ω, then

(ρσ)τ= ρ(στ).

In other words, multiplication of permutations is associative.
If Ω= {1, . . . ,n} and σ ∈Ω, we can specify σ by writing down the sequence

1σ,2σ, . . . ,nσ.

This is sometimes called the Cartesian form of the permutation. There is a sec-
ond useful way to present permutations, which we develop now. Suppose i ∈Ω
and consider the infinite sequence of elements

i , iσ, iσ
2
, . . .

by successively applying σ. Since Ω is finite there are integers r and s such that
r < s and

iσ
r = iσ

s
.

Then
i = iσ

sσ−r = iσ
s−r

.

This shows that r = 0 and that s is the least integer such that iσ
s = i . Hence the

elements
i , iσ, . . . , iσ

s−1

are distinct. We call the cyclic sequence

(i , iσ, . . . , iσ
s−1

)

the cycle of σ that contains i . We can view σ as rotating the elements of this
cycle.

We consider an example. Suppose n = 7 and the Cartesian form of σ is

2 3 1 5 6 7 4.

Then the cycle of σ that contains 1 is

(123)

and the cycle of σ that contains 5 is

(5674).
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We regard this as equal to each of the cycles

(4567), (6745), (7456).

The distinct cycles of Ω form a partition of Ω. Together they determine σ—we
can specify σ by simply listing its cycles. In the example at hand we may write

σ= (123)(4567).

The order in which we list the cycles is irrelevant. This is the cyclic form of σ. A
permutation may have cycles of length one; it is conventional to omit this from
the cyclic form if the underlying set is clear. (The cyclic form of the identity
permutation is often denoted by (1).) Note that i lies in a cycle of length one if
and only if it is fixed by σ, that is, iσ = i .

Each cycle of a permutation is a permutation in its own right, and a permu-
tation is the product of the permutations corresponding to its cycles.

A permutation is a transposition if it has one cycle of length two, and all
other cycles have length one.

14.1.1 Theorem. If σ ∈ Sym(n) and σ has exactly k cycles, then it is the product
of n −k transpositions.

We leave the proof as an exercise. By way of a hint we note that

(1234) = (12)(13)(14),

from which we see that a cycle of length m is the product of m−1 transpositions.
We must count cycles of length one.

14.2 The Sign of a Permutation

A function of x1, . . . , xn is alternating if, when τ is a transposition in Sym(n),

f τ =− f .

Thus x1 −x2 is an alternating function of two variables. If f is symmetric and g
alternating in x1, . . . , xn , then f g is alternating. Define the function V (x1, . . . , xn)
by

V (x1, . . . , xn) = ∏
i< j

(xi −x j ).
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Clearly V is alternating. Further, if σ ∈ Sym(n), then

V σ = sign(σ)V ,

where sign(σ) = ±1. The value of sign(σ) is called the sign of σ. If σ is a trans-
position, sign(σ) =−1.

14.2.1 Theorem. If σ,τ ∈ Sym(n), then sign(στ) = sign(σ)sign(τ).

Proof. We have
V στ = (sign(σ)V )τ = sign(σ)sign(τ)V

and therefore sign(στ) = sign(σ)sign(τ).

By Theorem 14.1.1, each permutation is a product of transpositions, and
therefore we have the following:

14.2.2 Corollary. If f is an alternating function of n variables and σ ∈ Sym(n),
then f σ = sign(σ) f .

The set of even permutations is known as the alternating group.
Since each permutation is a product of cycles, if we know the sign of these

cycles, we can use the previous lemma to get the sign of the permutation itself.

14.2.3 Lemma. The sign of a cycle is odd if and only if its length is even.

Proof. It follows from Theorem 14.1.1 that a cycle of length k can be written as
the product of k −1 transpositions. Since the sign of a transposition is odd, the
sign of a cycle of length k is (−1)k−1.

14.2.4 Corollary. If a permutation has exactly e even cycles, its sign is (−1)e .

14.3 Permutation Matrices

Let F be a field. If σ ∈ Sym(n), let P (σ) be the linear transformation that maps
x1

x2
...

xn

 7→


x1σ

x2σ

...
xnσ

 .
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Thus if e1, . . . ,en is the standard basis for Fn×1, then P (σ) maps e j to e jσ−1 . Hence

the coordinate matrix for P (σ) is(
e1σ−1 e2σ−1 . . . enσ−1

)
.

The inverses are annoying, it may help to note that the i -th row of this matrix is
eT

iσ . We call P (σ) are permutation operator and the matrix which represents it
is a permutation matrix.

The product of two permutation operators is a permutation operator, and
consequently the product of two permutation matrices is a permutation ma-
trix.

If P is a permutation matrix then PP T = I , and therefore P−1 = P T .
A matrix is a permutation matrix if it is a 01-matrix, and exactly one entry in

each row and column is equal to 1. We define a matrix to be a monomial matrix
there is at most one non-zero entry in each row and each column. It is not hard
to verify that a matrix M is monomial if M = PD , where P is a permutation
matrix and D is diagonal. Similarly DP is monomial. If P is a permutation
matrix and D is diagonal, then

P−1DP

is diagonal.

14.3.1 Lemma. The product of two monomial matrices of the same order is a
monomial matrix.

Proof. Suppose P1 and P2 are permutation matrices and D1 and D2 are diago-
nal. Then P1D1 and P2D2 are monomial and

(P1D1)(P2D2) = P1P2(P−1
2 D1P2)D2.

Here P1P2 is a permutation matrix and (P−1
2 D1P2)D2 is a product of diagonal

matrices, and so is diagonal. Hence (P1D1)(P2D2) is a monomial matrix.

14.4 Definition of the Determinant

In this section we define the determinant of a square matrix, and develop some
of its properties.
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For this we will use a somewhat unusual matrix product: it is commutative
and associative and distributes over addition. If A and B are m×n matrices, we
define their Schur product A ◦B by

(A ◦B)i , j = Ai , j Bi , j .

There are no difficulties in working with this product. If A and P are n ×n ma-
trices and P is a permutation matrix, then A ◦P is a monomial matrix.

The determinant is a function from the set of n×n matrices over a field (e.g.,
R or C) to the field itself. We define it in stages. If D is diagonal, then

det(D) :=
n∏

i=1
Di ,i .

If M is monomial, then M = DP where D is diagonal and P is a permutation
matrix. If P = P (σ) for some permutation σ, we define sign(P ) to be sign(σ)
and then

det(M) := det(D)sign(P ).

Note that
PD = (PDP−1)P

where PDP−1 is diagonal. Since PDP−1 is diagonal and det(PDP−1) = det(D),

det(PD) = det(PDP−1)sign(P ) = det(D)sign(P ).

It is implicit in this that, if P is a permutation matrix, then det(P ) = sign(P ).
To complete the definition of the determinant, let Perm(n) denote the set of

all n ×n permutation matrices. If A ∈ Matn×n(F), we define

det(A) := ∑
π∈Sym(n)

det(A ◦P (π)).

By way of example, if n = 2 then Perm(2) consists of the two matrices(
1 0
0 1

)
,

(
0 1
1 0

)
and so if

A =
(

a b
c d

)
,

then

det(A) = det

(
a 0
0 d

)
+det

(
0 b
c 0

)
= ad + (−1)bc = ad −bc.
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14.4.1 Lemma. Let A be an n ×n matrix. If A is lower triangular, then

det(A) =
n∏

i=1
Ai ,i .

Proof. Suppose P ∈ Perm(n). If det(A ◦P ) 6= 0, then P must be lower triangular,
but the identity matrix is the only lower triangular permutation matrix. There-
fore det(A) = det(A ◦ I ), and the lemma follows.

14.4.2 Lemma. If A is a square matrix, det(AT ) = det(A).

Proof. We note first that if M is monomial, so is M T . Further, if M = DP where
D is diagonal and P is a permutation matrix, then

det(M T ) = det(P T D) = det((P T DP )P−1),

Since P−1 = P T , we see that P T DP is diagonal, and therefore

det(M T ) = det(P T DP )sign(P−1) = det(D)sign(P ) = det(M).

Now

det(AT ) = ∑
P∈Perm(n)

det(AT ◦P )

= ∑
P∈Perm(n)

det(A ◦P T )T

= ∑
P∈Perm(n)

det(A ◦P T )

= ∑
P∈Perm(n)

det(A ◦P )

= det(A).

14.5 The Determinant is Multiplicative

The determinant is useful in particular because, if A and B are square matrices
of the same order, then det(AB) = det(A)det(B). We work towards a proof of
this.

We work with functions on n×n matrices. We may think of such a function
δ as a function of n variables, the columns of the matrix. To indicate this, if A
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is n ×n and e1, . . . ,en is the standard basis of Fn×1, we may use δ(Ae1, . . . , Aen)
in place of of δ(A). A function δ : Matn×n(F) → F is multilinear if δ(A) is a linear
function of each column of A. If δ is multilinear and Ae1 = x + y , then

δ(A) = δ(Ae1, . . . , Aen) = δ(x, Ae2, . . . , Aen)+δ(x, Ae2, . . . , Aen).

Note that trace, although it is a linear function of A, is not multilinear. How-
ever, if P is a permutation matrix then the function δP given by

δP (A) = det(A ◦P )

is multilinear. (Prove it.) If δ1 and δ2 are multilinear, then their sum, given by

(δ1 +δ2)(A) = δ1(A)+δ2(A),

is multilinear.
A functionδ : Matn×n(F) to F is alternating ifδ(A) = 0 whenever two columns

of A are equal. This usage is different from the one used in Section 14.2, but we
will see that it is consistent with it.

We need two preliminary results.

14.5.1 Lemma. If M1 and M2 are n ×n monomial matrices, then det(M1M2) =
det(M1)det(M2).

Proof. We may suppose that for i = 1,2,

Mi = Di Pi

where Di is diagonal and Pi is a permutation matrix. Then

M1M2 = D1P1D2P2 = D1(P1DP−1
1 )P1P2.

Here P1DP−1
1 is diagonal, so D1(P1DP−1

1 ) is diagonal and also P1P2 is a permu-
tation matrix. Therefore M1M2 is monomial and

det(M1M2) = det(D1(P1DP−1
1 ))sign(P1P2)

= det(D1)det(D2)sign(P1)sign(P2)

= det(D1P1)det(D2P2)

= det(M1)det(M2).

This completes the proof.
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14.5.2 Lemma. If A, B and P are n ×n matrices and P is a permutation matrix,
then (A ◦B)P = (AP )◦ (BP ).

Proof. Suppose e1, . . . ,en is the standard basis and Pei = e j . Then

((AP )◦ (BP ))ei = (AP )ei ◦ (BP )ei

= Ae j ◦Be j

= (A ◦B)e j

= (A ◦B)Pei .

Since this works for all i , we have proved the lemma.

14.5.3 Theorem. The determinant is an alternating multilinear function of the
columns of a matrix.

Proof. Since the functions δP are multilinear and since det is the sum of the
functions δP , it follows that det is multilinear.

To show that det is alternating, we first prove that if Q is a permutation ma-
trix, then det(AQ) = det(A)sign(Q). Using the previous two lemmas, we have

det(AQ) = ∑
P∈Perm(n)

det((AQ)◦P )

= ∑
P∈Perm(n)

det[(A ◦PQ−1))Q]

= ∑
P∈Perm(n)

det(A ◦ (PQ−1))det(Q)

= det(Q)
∑

P∈Perm(n)
det(A ◦ (PQ−1)).

Since

{P : P ∈ Perm(n)} = {PQ−1 : P ∈ Perm(n)},

the last sum above equals det(A), we have proved that det(AQ) = det(A)sign(Q),
as claimed.

Now suppose columns i and j of A are equal, let τ be the transposition (i j )
and let T = P (τ). Then sign(T ) =−1, T 2 = I and AT = A; hence

(A ◦P )T = (AT )◦PT = A ◦PT
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and consequently

det(A ◦P )+det(A ◦PT ) = det(A ◦P )+det((A ◦P )T )

= det(A ◦P )+det(A ◦P )det(T )

= det(A ◦P )−det(A ◦P )

= 0.

The set {P,PT } is the left coset of the subgroup {I ,T } of Perm(n). For fixed T , the
set Perm(n) can be partitioned into pairs of the form {P,PT } (prove this), and
therefore it follows that det(A) = 0.

One corollary of this proof is that if P ∈ Perm(n), then det(AP ) = det(A)sign(P ).
Hence the determinant is an alternating function in the sense we used in Sec-
tion 14.2. More generally, the same argument shows that if δ is an alternating
function on n ×n matrices and P is a permutation matrix, then

δ(AP ) = δ(A)sign(P ).

Therefore a function that is alternating in the sense of this section is alternating
in the sense we used in Section 14.2, but the current definition is more useful if
we work over fields such as Z2.

Our next result is a converse to the previous theorem.

14.5.4 Theorem. If δ is an alternating multilinear function on n ×n matrices
and δ(I ) = 1, then δ(A) = det(A) for all n ×n matrices.

Proof. We have

Ae j =
n∑

i=1
Ai , j ei .

Since δ is multilinear,

δ(A) = δ(Ae1, . . . , Aen) =
n∑

i=1
δ(Ai ,1ei , Ae2, . . . , Aen)

and, using even more subscripts,

δ(A) = ∑
1≤i1,...,in≤n

δ(Ai1,1ei1 , . . . , Ain ,nein ). (14.5.1)

Since δ is multilinear,

δ(Ai1,1ei1 , . . . , Ain ,nein ) = δ(ei1 , . . . ,ein )
n∏

k=1
Aik ,k ;
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and since δ is alternating if r < s and ir = is , then

δ(ei1 , . . . ,ein ) = 0

Hence in (14.5.1), the summands indexed by the sequences i1, . . . , in that are
not permutations are zero, and therefore

δ(A) = ∑
P∈Perm(n)

δ(A ◦P ).

This shows that δ is determined by the values it takes on monomial matrices.
If D is diagonal and P is a permutation matrix, then since δ is alternating,

δ(DP ) = δ(D)sign(P ).

Further, since δ is multilinear,

δ(D) =
n∏

i=1
Di ,iδ(I )

and therefore

δ(DP ) = det(DP )δ(I ).

This completes the argument.

14.5.5 Corollary. If A and B are n ×n matrices, then det(AB) = det(A)det(B).

Proof. Consider the function δ from Matn×n(F) to F, given by

δ(B) := det(AB).

It is easy to verify that this is alternating and multilinear, and therefore

δ(B) = cA det(B)

for some scalar cA. Taking B = I in the definition of δ, we see that cA = det(A)
and therefore det(AB) = det(A)det(B).
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14.6 The Laplace Expansion

The determinant is remarkable for the number of different ways in which we
can compute it. Here we describe an approach due to Laplace. You may be
familiar with the case when k = 1, because this is the well-known expansion by
cofactors.

If T = {t1, . . . , tk }, define ‖T ‖ by

‖T ‖ =
k∑

i=1
(ti − i ).

Let AS,T denote the submatrix of A with rows indexed by S and columns by T .
If |S| = |T | = 1, then AS,T is just an entry of A. We use S to denote the comple-
ment of S in {1, . . . ,n}. Now we can state and prove a result known as Laplace’s
expansion of the determinant.

14.6.1 Theorem. Let A be an n ×n matrix and let S and S′ be two subsets of
{1, . . . ,n}, with sizes k and n −k respectively. Then

∑
T :|T |=k

(−1)‖T ‖ det(AS,T )det(AS′,T ) =
{

(−1)‖S‖ det(A), if S′ = S;

0, otherwise.

Proof. We first consider the case where S′ = S. Let S and T be subsets of {1, . . . ,n}
with size k. Then

det A =∑
T

∑
σ:Sσ=T

det(A ◦P (σ)).

Note that if σ maps S to T then it must map S to T . Hence∑
σ:Sσ=T

det(A ◦P )(σ) = (−1)‖T ‖ det(AS,T )det(AS,T ).

Now suppose that S′ 6= ;. Let A′ be the matrix whose first k rows are the
rows of A indexed by S1, and whose last n−k rows are the rows of A indexed by
S2. Since we know that Laplace’s expansion holds when S ∩S′ =;, we see that
det(A′) is equal to the sum on the left on the statement of the theorem. On the
other hand, A′ has a repeated row, and therefore det(A′) = 0.

Let A(i | j ) denote the matrix we get from the square matrix A by deleting
row i and column j . Then (−1)i+ j det(A(i | j ) is called the i j -cofactor of A. The
following special case of the Laplace expansion is known the expansion by co-
factors of det(A). This is somtimes used as a definition of the determinant.
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14.6.2 Corollary. Let A be an n ×n matrix. Then

det(A) = (−1)i−1
n∑

j=1
(−1) j−1 Ai , j det(A(i | j )).

Let A be an n ×n matrix. We define the adjugate adj(A) of A as follows:

adj(A)i , j = (−1)i+ j det A(i | j ).

Thus if

A =
(

a b
c d

)
,

then

adj(A) =
(

d −b
−c a

)
.

If

J =
1 1 1

1 1 1
1 1 1


then adj(J ) = 0.

Applying the previous theorem with k = 1, we obtain:

14.6.3 Corollary. If A is a square matrix, then A adj(A) = det(A)I .

It is also true that adj(A)A = det(A); this can be proved using the transpose.
We leave the proof as an exercise.

14.6.4 Corollary. If A is a square matrix, then it is invertible if and only if det(A)
is.

Proof. If det(A) is invertible, the previous corollary implies that

A−1 = det(A)−1 adj(A).

If A ia invertible then

1 = det(I ) = det(A A−1) = det(A)det(A−1)

and therefore det(A) is invertible.
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The following identity is due to Jacobi.

14.6.5 Theorem. Let A be an n ×n matrix and suppose S ⊆ {1, . . . ,n}. If s = |S|,
then

det(adj(A)S,S) = det(A)n−1−s det(AS,S).

Proof. If M is n ×n, we have adj(M)M = det(M)I and, taking determinants of
both sides yields

det(adj(M))det(M) = det(M)n .

Therefore det(adj(M)) = det(M)n−1. Assume S consists of the first s elements of
{1, . . . ,n}. We have adj(A)A = det(A)I whence adj(A)Aei = det(A)ei and

adj(A)
(

Ae1 . . . Aes es+1 . . . en
)= (

det(A)Is ?
0 adj(A)S,S

)
Taking the determinant of each side, we get

det(A)n−1 det(AS,S) = det(A)s det(adj(AS,S)).

This yields the theorem.

14.7 The Characteristic Polynomial of a Matrix

If A is a square matrix then det(t I − A) is a polynomial in t . It is called the
characteristic polynomial of A. It is not too difficult to verify that if A is n ×n,
then its characteristic polynomial is a monic polynomial of degree n. If

A =
(

a b
c d

)
then

det(t I − A) = t 2 − (a + c)t + (ac −bd).

The constant term of the characteristic polynomial of A is

det(−A) = (−1)n det(A).

Suppose A = LBL−1. Then

det(t I − A) = det(t I −LBL−1) = det[L(t I −B)L−1]

= det(B)det(t I −B)det(L−1)

= det(t I −B).
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Thus we see that similar matrices have the same characteristic polynomial.
We leave the proof of the following as an exercise.

14.7.1 Lemma. If φ(t ) is the characteristic polynomial of the square matrix A,
then the coefficient of t n−1 is − tr(A).

Our next result is called the Cayley-Hamilton theorem. Cayley proved it for
2×2 and 3×3 matrices.

14.7.2 Theorem. If φ(t ) is the characteristic polynomial of the square matrix A,
then φ(A) = 0.

Proof. Each entry of adj(t I − A) is a polynomial in t with degree at most n −1.
Hence there are matrices B1, . . . ,Bn such that

adj(t I − A) = Bn + tBn−1 +·· ·+ t n−1B1

We want to show that each of the matrices B1, . . . ,Bn is a polynomial in A.
We have

(t I − A)adj(t I − A)

= t nB1 + t n−1(B2 − AB1)+·· ·+ t (Bn − ABn−1)+ (−A)Bn . (14.7.1)

Assume that
φ(t ) = t n +a1t n−1 +·· ·+an .

From Corollary 14.6.3 we have

(t I − A)adj(t I − A) = (t n +a1t n−1 +·· ·+an)I . (14.7.2)

If we equate the coefficients of the powers of t , we obtain:

B1 = I , Bi+1 = ABi +ai I (i = 1, . . . ,n −1)

whence

B1 = I

B2 = A+a1I

B3 = AB2 +a2I = A2 +a1 A+a2I



210 CHAPTER 14. DETERMINANTS

and, in general,
Bk+1 = Ak +a1 Ak−1 +·· ·+ak I .

Thus Bk is a polynomial of degree k −1 in A.
From (14.7.1) and (14.7.2), we see that an I =−ABn . So

0 = ABn +an I = A(An−1 +a1 An−2 +·· ·+an−1I )+an I

=φ(A).

This completes the proof.

It is tempting to argue that if we substitute A for t in the equation

(t I − A)adj(t I − A) =φ(t )I ,

then t I − A becomes zero, and therefore φ(A) = 0. It is true that if f (t ) is a
polynomial in t with coefficients in a field and t −a divides f (t ), then f (a) = 0.
It need not be true that if f (t ) and f1(t ) are polynomials in t with matrices as
coefficients and

(t I − A) f1(t ) = f (t )

then f (A) = 0. The basic problem is, for example, that if b is a scalar then

t 2b = tbt = bt 2,

but if A and B are square matrices, then the products A2B , AB A and B A2 can
all be different.

14.8 An Algorithm

If we attempt to compute the determinant of a matrix in Matn×n(Z) using our
definition, we may be obliged to sum n! products. This is already unpleasant
when n = 4. There is a second algorithm using elementary row operations; the
only disadvantage of this is that its intermediate stages often require the use
of rational numbers, even though the final answer is an integer. (This is the
algorithm usually taught.) We are going to describe a a third algorithm that
does not suffer from this disadvantage, and still runs in polynomial time.

Let A be an m×n matrix and suppose k ≤ m,n. We construct an (m+1−k)×
(n +1−k) matrix Dk (A) from A as follows. If k ≤ r ≤ m and k ≤ s ≤ n, there is a
unique k×k submatrix of A that contains the r s-entry of A along with all entries
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in the first k −1 rows and columns. Define Dk (A)r−k,s−k to be the determinant
of this submatrix. So D1(A) = A and if

A =
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ,

then

D2(A) =
(

a1,1a2,2 −a1,2a2,1 a1,1a2,3 −a2,1a1,3

a1,1a3,2 −a1,2a3,1 a1,1a3,3 −a3,1a1,3

)
.

If A is n ×n, then Dn(A) = det(A). For any matrix A, let dk (A) denote the de-
terminant of the submatrix formed by the first k rows and columns; we assume
d0(A) = 1.

14.8.1 Lemma. If A is an m ×n matrix, then D2(Dk (A)) = dk−1(A)Dk+1(A).

Proof. We prove the result by induction on the size of A. Since D1(A) = A, the
lemma holds when k = 1 and we assume k ≥ 2.

First we consider a special case. Suppose A is (k+1)×(k+1). Then Dk+1(A) =
det(A) and

Dk (A) =
(
det(A(k +1|k +1) det(A(k +1|k))

det(A(k|k +1)) det(A(k|k))

)
Therefore

det(Dk (A)) = det(A(k|k))det(A(k +1|k +1))

−det(A(k +1|k))det(A(k|k +1))

and so if S := 1, . . . ,k −1, then

D2(Dk (A)) = det(adj(A)S,S).

By Jacobi’s identity (Theorem 14.6.5),

det(adj(A)S,S = det(A)det(AS,S) = dk−1Dk+1(A).

Now we verify that the result follows from this special case. If i ≥ k we and B
is the matrix we get by deleting the i -th row of A, then Dk (B) is obtained from
Dk (A) by deleting its (i + 1− k)-th row. Since that Dk (AT ) = Dk (A), a similar
claim holds when we delete columns.
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If i , j ≥ k+1, then (Dk+1(M))i−k, j−k is the determinant of the submatrix M of
A formed by the intersection of rows 1 through k and i with columns 1 through
k and j . Since dk−1(A) = dk−1(M), we have

dk−1(A)Dk+1(A)i−k, j−k = dk−1(M)Dk+1(M)

= D2(Dk (M))

= D2(Dk (A))i−k, j−k

and so the result follows.

The algorithm to compute det(A) runs as follows. The input is an n ×n ma-
trix A. We also use a scalar δ, which is initially set to 1.

1. If n = 1, then det(A) = A; halt.

2. If the first row or column of A is zero, then det(A) = 0; halt.

3. If necessary, swap two columns of A so that A1,1 6= 0 and replace δ by −δ.

4. Compute δ−1D2(A) and let δ= (A)1,1. Return to the first step with δ−1D2(A)
in place of A.

After n −1 steps of this kind, we obtain Dn(A) = det(A).
We give one example. If

A :=
 x −1 0
−1 x −1
0 −1 x


then

D2(A) =
(

x2 −1 −x
−x x2

)
Since d1(A) = x,

det(A) = D3(A) = x−1(x4 −2x2) = x3 −2x.

This algorithm is sometimes attributed to C. Dodgson, better known as Lewis
Carroll.
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14.9 Summary

The most useful facts are (c), (f) and (g). You are not required to know anything
about the proofs of (f), (g), (h), (i) and (j). You might need to use them. Note that
(d) and (e) together yield an algorithm for computing the determinant, since we
can bring a matrix to triangular form by elementary row operations.

(a) Permutations, sign of a permutation, permutation and monomial matrices.

(b) Definition of determinant.

(c) det(AT ) = det(A)

(d) If A is triangular, det(A) =∏
i Ai ,i .

(e) Adding a scalar multiple of one row of A to another does not change det(A).
Swapping rows changes the sign. Ditto for columns. If we get B from A by
multiplying a column by c, then det(B) = c det(A).

(f) Multilinear and alternating functions on matrices, det(AB) = det(A)det(B).

(g) The adjugate of a matrix, A adj(A) = det(A)I .

(h) Cofactor expansion of det(A).

(i) The Cayley-Hamilton theorem.

(j) Bareiss algorithm.

(k) When the products AB and B A are both defined, det(I − AB) = det(I −B A).

(l) Binet-Cauchy.

(m) det(exp(M)) = exp(tr(M)).

(We did not treat the last three items.)
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14.10 Groups

In this chapter we met the ‘symmetric group’ and the ‘alternating group’. As
we continue with the course, we will meet other ‘groups’. For the sake of back-
ground information, we explain the terminology.

A group is a set G with a multiplication ◦ defined on it. If a,b ∈G , then a ◦b
denotes the product of a and b. (In many cases the elements of G are operations
on some structure, and a ◦b denotes “do a, then b”.) The multiplication must
satisfy the following axioms.

1. If a,b ∈G , then a ◦b ∈G .

2. If a,b,c ∈G , then (a ◦b)◦ c = a ◦ (b ◦ c).

3. There is an element θ in G such that θ ◦a = a for all a in G .

4. For each element a ∈G , there is an element a−1 in G such that a−1 ◦a = θ.

The first axiom states that G is closed under multiplication. The element θ is
the identity element of the group. The element a−1 is the inverse of a. We
do not assume that a ◦b = b ◦ a; if this does hold for all a and b the group is
commutative (or abelian).

One example of a group is the integers, with + as the ‘multiplication’. A
second example is the set of invertible n×n matrices over a field with the usual
matrix multiplication.

We usually write ab in place of a ◦b unless G is commutative, in which case
we write a+b. We usually use 1 to denote the identity unless G is commutative,
when we use 0.

Suppose a, x, y ∈G and ax = ay . Then

x = 1x = (a−1a)x = a−1(ax) = a−1(ay) = (a−1a)y = 1y = y.

Thus in a group we may ‘cancel on the left’. Since

a−1(a1) = (a−1a)1 = 12 = 1 = a−1a,

it follows (by left cancellation) that a1 = a for all a. Since

(aa−1)a = a(a−1a) = a1 = a = 1a

we also see that aa−1 = 1 for any a. Now if xa = y a, then

x = x1 = x(aa−1) = (xa)a−1 = (y a)a−1 = y(aa−1) = y1 = y ;
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therefore we may also cancel on the right.
A subset of G is a subgroup if it contains the inverse of each of its elements

and is closed under multiplication. The alternating group is a subgroup of the
symmetric group.

Finally we point out that a group is a set with three operations. A binary
operation which, given (a,b) as input, returns a ◦b. A unary operation which,
given a as input, returns a−1. And a nullary operation which, given no input,
returns the identity θ. (It may help to understand the last statement if you think
of a button on a calculator labelled π—this takes no input and returns π.)
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Chapter 15

Rings, Fields, Algebras

Thus chapter is meant to to provide some background, to help you deal with
linear algebra over fields other thanQ, R and C.

15.1 Rings

A ring R consists of a set R on which an addition operation + is defined, such
that (R,+) is a commutative group; in addition there is an associative multipli-
cation in R that satisfies the usual distributive laws relative to addition. The
multiplication is usually denoted by juxtaposition, i.e., the product of a and b
is denoted ab (and ab need not equal ba.). We always assume that there is
multiplicative identity, denoted by 1 (so 1x = x1 = x for all x in R).

The canonical examples are Z, Q, R, C. Polynomials over Q, R or C form a
ring, and so do power series. Further, matrices with entries from a ring R form a
ring which is not normally commutative. Continuous real functions on R form
a ring.

Rings were first introduced in number theory, but now it is somewhat un-
usual for a mathematician not to be working in the context of some ring.

As a general principal, any operation we can carry out on abelian groups
can be carried out on rings. So we have subrings, products and homomor-
phisms/quotients. Somewhat surprisingly, subrings do not play a big role, ex-
cept for ideals (which you can look up). Also finite rings seem to be less useful
than finite groups.

217
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15.2 Fields

A field is a ring in which every non-zero element has a multiplicative inverse.
The canonical examples are Q, R, C. We see that Z is not a field, and the rings
of polynomials we referred to above are not fields (although they can be used
to construct fields). If F is a field then F(t ), the ring of rational functions with
coefficients from F is a field.

As just defined, the multiplication in a field need not be commutative. How-
ever all fields we need are commutative and so henceforth field means commu-
tative field.

The integers modulo a prime p form a field Zp . We consider this in some
detail. Stricly speaking, the elements of Zp are equivalence classes of integers,
where integers m and n are equivalent, i.e., m ≡ n, if p divides m −n. Each
equivalence class contains exactly one element from the set of integers

]{0,1, . . . , p −1}

and so we can identify the equivalence classes with the members of this set. It is
not too difficult to show that the equivalence classes form a ring, with addition
mod p and multiplication mod p as its operations. In fact we can show that, for
any positive integer n, the set Zn forms a ring. But if n is not a prime we can
write n = ab where a and b both greater than 1, and therefore ab = 0 in Zn . It
follows that the equivalence class of a does not have a multiplicative inverse—if
xa = 1 and ab = 0 then

0 = x(ab) = (xa)b = 1b = b.

Therefore if n is not prime, then Zn is not a field.
If p is a prime then each non-zero element of Zp does have a multiplicative

inverse. For if a ∈ Zp and a 6= 0, then the gcd of a and p is 1, and hence there
are integers x and y such that

xa + y p = 1,

and therefore xa = 1. Thus we can find the multiplicative inverse of a using
the Euclidean algorithm. We have been a little sloppy here: when we apply
the Eulidean algorithm we are viewing a and p as integers, but we originally
chose a to be a non-zero element of the ring Zp . To avoid this we should use
some notation like [a] to denote the equivalence class of a, but the sloppiness
is easier, and traditional.
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We can also construct fields from rings of polynomials. Let F be a field and
let F[t ] denote the ring of polynomials with coefficients from F. If p(t ) is a
monic polynomial in F[t ], define a relation ≡ on F[t ] by declaring polynomi-
als g and h to be equivalent if their difference is divisible by p. Then this is an
equivalence relation and the equivalence classes form a ring. You may show
that this ring is a field if and only if p is irreducible over F (has no non-trivial
factors).

If we take F=R and p(t ) = t 2 +1, this construction produces a field isomor-
phic to the complex numbers. If F = Z2 and p(t ) = t 2 + t +1, we obtain a field
with four elements.

Exercise: Let E be a field and let F be the subset of E consisting of all the
elements of Ewe can get by adding 1 to itself any number of times. (By assump-
tion, 0 ∈ F ; thus F is the additive subgroup of E generated by 1.) Show that F is
a ring. If |F | is finite, prove that it is a prime, and deduce that it is a field.

15.3 Algebras

A ring R is an algebra over a field F if R is a vector space over F such that if
x, y ∈ R and a ∈ F, then

(ax)y = x(ay) = a(x y).

If 1 is the multiplicative identity in R, then the set {a1 : a ∈ F} forms a subring
of R that is isomorphic to F. Each element of this subring commutes with each
element of R (it lies in the center of R).

The term ‘algebra’ has changed its meaning over the years, and it still has
more than one interpretation. As we have just defined it, every algebra con-
tains a multiplicative unit, but, in analysis for example, this requirement can
be dropped.

The set of d ×d matrices over of field F forms an algebra. More generally,
the set of linear mappings of a vector space to itself is an algebra. The complex
numbers are an algebra over the reals.

The dimension of an algebra is its dimension as a vector space over the un-
derlying field.

Let M denote the subset of the algebra of 2×2 matrices overQ consisting of
the matrices of the form (

a 2b
b a

)
= a

(
1 0
0 1

)
+b

(
0 2
1 0

)
.
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It is not hard to show that this set is a subspace of Mat2×2(Q) and this it is
closed under multiplication. Hence it is a subalgebra of Mat2×2(Q), but you can
also show that it is commutative and that every non-zero element is invertible.
Therefore it is a field, isomorphic to the field usually denoted byQ(

p
2).

If A is an algebra of dimension d over F and M ∈ A, then the d +1 powers
I , M , . . . , M d are linearly dependent, whence there is a polynomial f such that
f (M) = 0. Consequently there is a monic polynomialψ of least degree such that
ψ(M) = 0. It is called the minimal polynomial of M and degree at most d .

Exercise: If A is a finite-dimensional algebra over F and x ∈ A, show that
multiplication by x is a linear mapping (over F).

Exercise: If A is a finite-dimensional algebra over F, prove that A is isomor-
phic to an algebra of matrices over F.

Exercise: Suppose K , L, M are fields with K ≤ L ≤ M . Then L and M are
algebras over K ; let ` and m respectively denote the dimensions of L and M
over K . Prove that ` divides m.

Exercise: Let F be a field. If S is a subspace of Matd×d (F) such that each
non-zero element is invertible, prove that dim(S) ≤ d .

Exercise: If A is a finite-dimensional algebra over a field F and each non-
zero element ofA is invertible, prove that the minimal polynomial of each non-
zero element is irreducible over F.
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