Quantum Walks on Finite Groups

Peter Sin

University of Florida

U. Waterloo, May 6th, 2021 (online)

Joint work with Julien Sorci.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Continuous-time quantum walk

Let A be the adjacency matrix of a graph Γ . Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$U(t) = e^{itA}, t \in \mathbb{R},$$

acting on $\mathbb{C}V(\Gamma)$.

Continuous-time quantum walk

Let A be the adjacency matrix of a graph Γ . Then a continuous-time quantum walk on Γ is defined by the family of unitary operators

$$U(t) = e^{itA}, t \in \mathbb{R},$$

acting on $\mathbb{C}V(\Gamma)$.

Γ has **perfect state transfer** from a to $b \in V(Γ)$ at time τ if $|U(τ)_{b,a}| = 1$.

Γ has **instantaneous uniform mixing** at time τ if for all a, $b \in V(\Gamma)$ we have $|U(\tau)_{a,b}| = \frac{1}{\sqrt{|V(\Gamma)|}}$.

Basic questions: Which graphs admit PST and IUM? Examples? Nec./suff conditions?

Cay(G, S) simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G)

Cay(G, S) simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then g is i-related to h iff $g^{-1}h \in K_i$. Not symmetric but Cay(G, S) is in a symmetric subscheme.

 $\operatorname{Cay}(G,S)$ simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then g is i-related to h iff $g^{-1}h \in K_i$. Not symmetric but $\operatorname{Cay}(G,S)$ is in a symmetric subscheme. Eigenvalues come from **Irreducible characters**. $\chi \in \operatorname{Irr}(G)$ gives the eigenvalue

$$heta_{\chi} = rac{1}{\chi(1)} \sum_{oldsymbol{s} \in S} \chi(oldsymbol{s}), \qquad ext{with } heta_1 = |oldsymbol{S}|.$$

Cay(G, S) simple, normal Cayley graph, (S closed under inversion, conjugation, $1 \notin S$, connected if S generates G) **Conj. class assoc. scheme.** If K_i are the conjugacy classes, then g is i-related to h iff $g^{-1}h \in K_i$. Not symmetric but $\operatorname{Cay}(G,S)$ is in a symmetric subscheme.

Eigenvalues come from **Irreducible characters**. $\chi \in \operatorname{Irr}(G)$

Eigenvalues come from Irreducible characters. $\chi \in Irr(G)$ gives the eigenvalue

$$heta_{\chi} = rac{1}{\chi(1)} \sum_{s \in S} \chi(s), \qquad ext{with } heta_1 = |S|.$$

Idempotents of scheme. View g either as an element of $\mathbb{C}G$ or as a $|G| \times |G|$ matrix under the regular representation.

$$E_{\chi} = \frac{\chi(1)}{|G|} \sum_{g} \chi(g^{-1})g$$

For each eigenvalue θ , let $X(\theta) = \{\chi \in Irr(G) \mid \theta_{\chi} = \theta\}$. Then $\tilde{E}_{\theta} = \sum_{\chi \in X(\theta)} E_{\chi}$ is the idempotent of θ .

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$.

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$.

Necessary for PST and PGST (including discrete models).

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$. Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

Two distinct vertices g and h are **strongly cospectral** iff for all eigenvalues θ we have $\tilde{E}_{\theta}g = \pm \tilde{E}_{\theta}h$.

Necessary for PST and PGST (including discrete models). If g and h are strongly cospectral then there exists a central involution z such that h = zg.

Proof.

Suppose $\tilde{E}_{\theta}h = \sigma_{\theta}\tilde{E}_{\theta}g$, $\sigma_{\theta} \in \{1, -1\}$. Let f be a polynomial with $f(\theta) = \sigma_{\theta}$ for all eigenvalues θ . Then from

$$A = \sum_{ heta} heta ilde{\mathcal{E}}_{ heta}$$

we get

$$f(A) = \sum_{\theta} \sigma_{\theta} \tilde{E}_{\theta},$$

and so $f(A)^2 = I$ and f(A)g = h. Then $f(A) = hg^{-1} \in Z(\mathbb{C}G) \cap G$ must be a central involution.

Strong Cospectrality in terms of characters.

Theorem

Distinct elements g and h of G are strongly cospectral iff there is a central involution z such that the following hold.

- (a) h = zg.
- (b) $(\forall \theta)$, $(\forall \chi, \psi \in X(\theta))$, $\chi(z)/\chi(1) = \psi(z)/\psi(1)$.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

 $\operatorname{Cay}(G,S)$ has **perfect state transfer** from g to h at time τ if $|U(\tau)_{h,g}|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

 $\operatorname{Cay}(G,S)$ has **perfect state transfer** from g to h at time τ if $|U(\tau)_{h,g}|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

 $\operatorname{Cay}(G,S)$ has **perfect state transfer** from g to h at time τ if $|U(\tau)_{h,g}|=1$. Special case of PST characterization for assoc schemes (Coutinho et.al).

Theorem

In Cay(G, S) we have PST between vertices g and h at some time if and only if the following hold.

- (a) The eigenvalues are integers.
- (b) g and h are strongly cospectral.
- (c) Let $z = hg^{-1}$ and let $\Phi^+ = \{\theta_\chi | \chi(z) > 0\}$ and $\Phi^- = \{\theta_\chi | \chi(z) < 0\}$. There is an integer N such that
 - (i) for all $\theta_{\chi} \in \Phi^{-}$, $v_{2}(\theta_{1} \theta_{\chi}) = N$; and
 - (ii) for all $\theta_{\chi} \in \Phi^+$, $v_2(\theta_1 \theta_{\chi}) > N$.

Minimum value of t for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in \operatorname{Irr}(G)\}.$

Minimum value of t for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in \operatorname{Irr}(G)\}$. g also appears in IUM.

Minimum value of t for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in \operatorname{Irr}(G)\}$. g also appears in IUM.

Minimum value of t for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in \operatorname{Irr}(G)\}$. g also appears in IUM.

Lemma

Any common divisor of the $\theta_1 - \theta_\chi$ divides |G| (as algebraic integers).

Minimum value of t for PST is $2\pi/g$, where $g = \gcd\{\theta_1 - \theta_\chi \mid \chi \in \operatorname{Irr}(G)\}$. g also appears in IUM.

Lemma

Any common divisor of the $\theta_1 - \theta_{\chi}$ divides |G| (as algebraic integers).

No assumption of integrality. Proof is similar to abelian case (Cao-Feng-Tan).

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

Extraspecial Groups

Let p be a prime. A p-group G is extraspecial if Z(G) has order p and G/Z(G) is elementary abelian. Structure is known, G is a central product of extraspecial groups of order p^3 , and for each p there are just two isomorphism types. When p=2, we have D_8 and Q_8 .

Characters

Let *G* be extraspecial of order 2^{2n+1} , with $Z(G) = \langle z \rangle$.

Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.

Characters

Let *G* be extraspecial of order 2^{2n+1} , with $Z(G) = \langle z \rangle$.

Irreducible characters of a central product are products of irreducible characters of the component groups such that the factors in the product all agree on the amalgamated central subgroup.

So G has a unique nonlinear character Ψ , and we have $\Psi(1)=2^n, \ \Psi(z)=-2^n, \ \Psi(g)=0 \ \text{if} \ g\notin Z(G).$

Character Table of D_8/Q_8

<i>X</i> .1	1	1	1	1	1
<i>X</i> .2	1	1	-1	1	-1
<i>X</i> .3	1	1	1	-1 -1	-1
<i>X</i> .4	1	1	-1	-1	1
<i>X</i> .5	2	-2	0		

Let S be a union of ℓ noncentral classes that generate G.

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g, gz\}$

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g,gz\}$ $\Phi^-=\{\theta_\Psi=0\}.$

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g,gz\}$ $\Phi^- = \{\theta_\Psi = 0\}$. $G/Z(G) \cong \mathbb{F}_2^{2n}$ and each $y \in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x) = (-1)^{x \cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y = \#\{x \in \overline{S} \mid x \cdot y = 0\}$.

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g,gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G)\cong \mathbb{F}_2^{2n}$ and each $y\in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x)=(-1)^{x\cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y=\#\{x\in \overline{S}\mid x\cdot y=0\}$. $\theta_{\lambda_y}=2\sum_{x\in \overline{S}}(-1)^{x\cdot y}=2(e_y-(\ell-e_y))=4e_y-2\ell$.

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G)\cong \mathbb{F}_2^{2n}$ and each $y\in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x)=(-1)^{x\cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y=\#\{x\in \overline{S}\mid x\cdot y=0\}$. $\theta_{\lambda_y}=2\sum_{x\in \overline{S}}(-1)^{x\cdot y}=2(e_y-(\ell-e_y))=4e_y-2\ell$.

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Condition for strong cospectrality: $e_V \neq \ell/2$.

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G)\cong \mathbb{F}_2^{2n}$ and each $y\in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x)=(-1)^{x\cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y=\#\{x\in \overline{S}\mid x\cdot y=0\}$.

$$\theta_{\lambda_y} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.$$

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Condition for strong cospectrality: $e_v \neq \ell/2$.

$$v_2(\theta_1-\theta_\Psi)=v_2(2\ell).$$

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G)\cong \mathbb{F}_2^{2n}$ and each $y\in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x)=(-1)^{x\cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y=\#\{x\in \overline{S}\mid x\cdot y=0\}$.

$$\theta_{\lambda_y} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.$$

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Condition for strong cospectrality: $e_V \neq \ell/2$.

$$v_2(\theta_1-\theta_\Psi)=v_2(2\ell).$$

$$v_2(\theta_1 - \theta_{\lambda_y}) = 4\ell - 4e_y.$$

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G. Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G)\cong \mathbb{F}_2^{2n}$ and each $y\in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x)=(-1)^{x\cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_y=\#\{x\in \overline{S}\mid x\cdot y=0\}$.

$$\theta_{\lambda_y} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.$$

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Condition for strong cospectrality: $e_y \neq \ell/2$.

$$v_2(\theta_1-\theta_\Psi)=v_2(2\ell).$$

$$v_2(\theta_1-\theta_{\lambda_y})=4\ell-4e_y.$$

If ℓ is odd, the we have PST in Cay(G, S).

Check PST conditions

Let S be a union of ℓ noncentral classes that generate G.

Noncentral conjugacy classes are of form $\{g, gz\}$

$$\Phi^- = \{\theta_{\Psi} = 0\}.$$

 $G/Z(G) \cong \mathbb{F}_2^{2n}$ and each $y \in \mathbb{F}_2^{2n}$ gives a character $\lambda_y(x) = (-1)^{x \cdot y}$. Let \overline{S} be the image of S in G/Z(G). Let $e_v = \#\{x \in \overline{S} \mid x \cdot y = 0\}$.

$$\theta_{\lambda_y} = 2\sum_{x \in \overline{S}} (-1)^{x \cdot y} = 2(e_y - (\ell - e_y)) = 4e_y - 2\ell.$$

$$\Phi^+ = \{4e_y - 2\ell \mid y \in \mathbb{F}_2^{2n}\}.$$

Condition for strong cospectrality: $e_V \neq \ell/2$.

$$v_2(\theta_1-\theta_\Psi)=v_2(2\ell).$$

$$v_2(\theta_1-\theta_{\lambda_y})=4\ell-4e_y.$$

If ℓ is odd, the we have PST in Cay(G, S).

The precise conditions on S for PST can been worked out.

Heisenberg Groups

Let $G = H_n(\mathbb{F}_q)$ be the group of matrices of the form

$$egin{bmatrix} 1 & v^t & a \ 0 & I_n & w \ 0 & 0 & 1 \end{bmatrix}, \quad v, \, w \in \mathbb{F}_q^n, \, a \in \mathbb{F}_q.$$

$$|Z(G)|=q.$$

Heisenberg Groups

Let $G = H_n(\mathbb{F}_q)$ be the group of matrices of the form

$$egin{bmatrix} 1 & v^t & a \ 0 & I_n & w \ 0 & 0 & 1 \end{bmatrix}, \quad v, \, w \in \mathbb{F}_q^n, \, a \in \mathbb{F}_q.$$

$$|Z(G)|=q.$$

Noncentral conj. classes have size q and are the cosets gZ(G)

Characters

There are two types:

► Characters of G/Z(G)

Characters

There are two types:

- ▶ Characters of G/Z(G)
- For each nonprincipal character μ of Z(G) there is a character Ψ_{μ} whose restriction to Z(G) is $q^{n}\mu$ and which vanishes on $G \setminus Z(G)$.

```
Character table of H_1(4)
                                       4
                                           4
                                               4
                                                   4
                                                       4
        2
            6 4
                   4
                       4
                           6
                              6
                                   6
          1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 2i 4g 4h 4i
X.1
            1
                1
                    1
                        1
                            1
                               1
                                   1
                                       1
                                           1
                                               1
                                                   1
                                                       1
                                                           1
                                                               1
                                                                   1
                                                                       1
                                                                           1
                                                                                   1
X.2
            1
                1
                    1
                        1
                            1
                                           1
                                               1
                                                   1 \ -1 \ -1 \ -1 \ -1 \ -1 \ -1 \ -1
                                1
                                   1
                                       1
X.3
            1
                1
                    1
                        1
                            1
                                1
                                   1 - 1
                                         -1 -1 -1
                                                       1
                                                           1
                                                               1
                                                                   1 - 1 - 1 - 1 - 1
X.4
            1
                1
                    1
                        1
                               1
                                   1 -1 -1 -1 -1 -1 -1 -1 -1
                                                                       1
                                                                           1
                                                                                   1
                            1
                                                                               1
X.5
            1
                1 - 1 - 1
                            1
                               1
                                           1 - 1 - 1
                                                       1
                                                           1 - 1 - 1
                                                                       1
                                                                           1 - 1 - 1
X.6
            1
                1 - 1 - 1
                            1
                               1
                                       1
                                            1 - 1 - 1 - 1 - 1
                                                               1
                                                                   1 - 1 - 1
                                                                               1
                                                                                   1
X.7
            1
                1 - 1 - 1
                            1
                               1
                                   1 - 1 - 1
                                               1
                                                   1
                                                       1
                                                           1 -1 -1 -1 -1
                                                                               1
                                                                                   1
X.8
            1
                1 - 1 - 1
                                   1 - 1 - 1
                                                   1 - 1 - 1
                                                                   1
                                                                       1
                            1
                               1
                                               1
                                                               1
                                                                           1 - 1 - 1
X.9
            1 - 1
                   1 - 1
                                                       1 - 1
                                                               1
                                                                 -1
                                                                       1
                                                                          -1
                            1
                               1
                                   1
                                       1 -1
                                               1 - 1
                                                                               1
                                                                                  -1
X.10
            1 - 1
                    1 - 1
                               1
                                               1
                                                 -1 -1
                                                           1
                                                             -1
                                                                   1
                                                                      -1
            1 - 1
                    1 - 1
                            1
                               1
                                           1 - 1
                                                       1 -1
                                                               1 - 1 - 1
                                                                           1 - 1
X.11
                                   1 - 1
                                                   1
                                                                                   1
X.12
            1 - 1
                    1 - 1
                            1
                                           1 - 1
                                                   1 -1
                                                           1 - 1
                               1
                                   1 - 1
                                                                   1
                                                                       1 - 1
                                                                               1 - 1
X.13
                                                                   1
                                                                       1
            1 - 1 - 1
                            1
                               1
                                   1
                                       1 - 1 - 1
                                                   1
                                                       1 - 1 - 1
                                                                          -1 -1
                        1
X.14
            1 - 1 - 1
                        1
                            1
                               1
                                   1
                                       1 - 1 - 1
                                                   1 - 1
                                                           1
                                                               1 - 1 - 1
                                                                           1
                                                                               1 - 1
X.15
            1 - 1 - 1
                                                       1 - 1 - 1
                            1
                               1
                                   1
                                      -1
                                           1
                                               1 - 1
                                                                   1 - 1
                                                                           1
                                                                               1
                        1
                                                                                  -1
X.16
            1 - 1 - 1
                        1
                            1
                               1
                                   1
                                     -1
                                           1
                                               1 - 1 - 1
                                                           1
                                                               1 - 1
                                                                       1 -1
                              -4 -4
X.17
                            4
X.18
                          -4
                             -4
                                    4
X.19
                               4 - 4
```

Assume $q=2^e$, $e\geq 2$. Pick involution $z\in Z(G)$. Take $S=\{z\}\cup$ (self-inverse union of ℓ noncentral classes that generate G).

```
Assume q=2^e, e\geq 2.

Pick involution z\in Z(G). Take S=\{z\}\cup

(self-inverse union of \ell noncentral classes that generate G).

\theta_1=q\ell+1
```

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$ (self-inverse union of ℓ noncentral classes that generate G).

$$\theta_1 = q\ell + 1$$

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

Assume $q=2^e,\ e\geq 2$.

Pick involution $z\in Z(G)$. Take $S=\{z\}\cup$ (self-inverse union of ℓ noncentral classes that generate G). $\theta_1=q\ell+1$ For characters λ of G/Z(G) we have $\theta_\lambda\equiv 1\pmod q$. If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_\Psi=1$.

Assume $q=2^e,\ e\geq 2$.

Pick involution $z\in Z(G)$. Take $S=\{z\}\cup$ (self-inverse union of ℓ noncentral classes that generate G). $\theta_1=q\ell+1$ For characters λ of G/Z(G) we have $\theta_\lambda\equiv 1\pmod q$. If Ψ is nonlinear and $\Psi(z)>0$, then $\theta_\Psi=1$. If Ψ is nonlinear and $\Psi(z)<0$, then $\theta_\Psi=-1$.

```
Assume q = 2^e, e \ge 2.
```

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup$ (self-inverse union of ℓ noncentral classes that generate G).

$$\theta_1 = q\ell + 1$$

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

If Ψ is nonlinear and $\Psi(z) < 0$, then $\theta_{\Psi} = -1$.

Condition for strong cospectrality holds.

Assume $q = 2^e$, $e \ge 2$.

Pick involution $z \in Z(G)$. Take $S = \{z\} \cup \{$ (self-inverse union of ℓ noncentral classes that generate G).

$$\theta_1 = q\ell + 1$$

For characters λ of G/Z(G) we have $\theta_{\lambda} \equiv 1 \pmod{q}$.

If Ψ is nonlinear and $\Psi(z) > 0$, then $\theta_{\Psi} = 1$.

If Ψ is nonlinear and $\Psi(z) < 0$, then $\theta_{\Psi} = -1$.

Condition for strong cospectrality holds.

$$heta_1 - heta_\chi \equiv egin{cases} 0 & (mod \ q) & if heta_\chi \in \Phi^+ \ 2 & (mod \ q) & if heta_\chi \in \Phi^- \end{cases}$$

Hence condition for PST is satisfied.

Suzuki 2-groups

Let n=2m+1 be odd and let $F \in \operatorname{Aut}(\mathbb{F}_{2^n})$ be the Frobenius map $F(x)=x^2$ Then $\sigma=F^{m+1}$ satisfies $\sigma^2=F$. Let $G=S(2^n)$ be the group of matrices

$$\begin{bmatrix} 1 & x & y \\ 0 & 1 & \sigma(x) \\ 0 & 0 & 1 \end{bmatrix}, \quad x \in \mathbb{F}_{2^n}.$$

 $|Z(G)| = |G/Z(G)| = 2^n$, all involutions lie in Z(G). Similar analysis to Heisenberg case shows that PST holds for many sets S. (Exercise)

Character table of S(8) 2 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 4d 4e 4f 4g 4h 4i 4j 4k 4l 4m 4n X.1 X.2 1 1 1 1 1 1 1 1 1 1 - 1 - 11 1 -1 -1 -1 -1 -1 1 **X.**3 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -11 1 1 - 1 - 11 X.4 1 1 1 1 1 1 1 1 - 1 - 11 1 -1 -1 -1 -1 -1 1 1 X.5 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 - 1 - 1X.6 1 1 1 1 - 1 - 11 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 X.7 1 1 1 1 1 1 - 1 - 11 1 1 - 1 - 11 1 1 1 1 -1 -1 -1 -11 1 1 1 1 -1 -1 -1 1 1 1 X.8 1 1 1 1 - 1 - 11 1 - 1 - 1X.9 2 2 - 2 - 2 - 22 2 - 2A - AX.10 2 - 2 - 2 - 22 2 - 2. -A Α . . • 2 - 22 - 22 - 2 - 2X.11 2 A - AX.12 -2 2 - 22 - 2 - 2-AΑ X.13 2 - 2 - 2 - 22 2 - 22 X.14 2 - 2 - 2 - 22 - 22 2 A - A2 -2 -2 -2X.15 2 2 - 2-AΑ 2 -2 -2 -2X.16 2 2 2 -2 Α -AX.17 2 - 22 - 2 - 2 - 22 2 -AΑ X.18 2 - 22 - 2 - 2 - 22 A - AX.19 2 - 22 - 2 - 2 - 22 2 A - AX.20 2 - 22 - 2 - 2 - 22 2

 $A = 2 \times E(4) = 2 \times Sqrt(-1) = 2i$

2 - 2 - 2

2 -2 -2

X.21

X.22

2

2

2 - 2

2 -2

2 -2

2 - 2

990

. -A

Α -A

Α

-A

Α

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

$$U(t) = e^{itA} = \sum e^{it heta_\chi} E_\chi$$

$$\begin{array}{l} U(t) = e^{itA} = \sum_{i} e^{it\theta_{\chi}} E_{\chi} \\ U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1) \chi(x^{-1}y). \end{array}$$

$$U(t) = e^{itA} = \sum_{x} e^{it\theta_{\chi}} E_{\chi}$$

$$U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1) \chi(x^{-1}y).$$

IUM occurs at time τ iff

$$(\forall g \in G) \quad |\sum_{\chi} e^{i\tau\theta_{\chi}} \chi(1)\chi(g)| = \sqrt{|G|}.$$
 (1)

$$U(t) = e^{itA} = \sum_{x} e^{it\theta_{\chi}} E_{\chi}$$

$$U(t)_{x,y} = (e^{itA})_{x,y} = \frac{1}{|G|} \sum_{\chi} e^{it\theta_{\chi}} \chi(1) \chi(x^{-1}y).$$

IUM occurs at time τ iff

$$(\forall g \in G) \quad |\sum_{\chi} e^{i\tau\theta_{\chi}} \chi(1)\chi(g)| = \sqrt{|G|}.$$
 (1)

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$(\exists t_i \in \mathbb{C}, |t_i| = 1, t_{i^*} = t_i) \quad (\forall \chi) \quad \sqrt{|G|} e^{i\tau\theta_{\chi}} = \sum_i t_i \frac{\chi(K_i)}{\chi(1)}.$$
(2)

$$U(t) = e^{itA} = \sum_{X} e^{it\theta_X} E_X$$

 $U(t)_{X,y} = (e^{itA})_{X,y} = \frac{1}{|G|} \sum_{X} e^{it\theta_X} \chi(1) \chi(x^{-1}y).$

IUM occurs at time τ iff

$$(\forall g \in G) \quad |\sum_{\chi} e^{i\tau\theta_{\chi}} \chi(1)\chi(g)| = \sqrt{|G|}.$$
 (1)

The above is a condition on the columns of the character table. There is a "dual" condition on the rows (Chan): IUM occurs at time τ iff

$$(\exists t_i \in \mathbb{C}, |t_i| = 1, t_{i^*} = t_i) \quad (\forall \chi) \quad \sqrt{|G|} e^{i\tau\theta\chi} = \sum_i t_i \frac{\chi(K_i)}{\chi(1)}.$$
(2)

Conditions (1) and (2) are related: If the t_i exist then,

$$\sqrt{|G|}t_i = \sum_{\chi} e^{i\tau\theta_{\chi}}\chi(1)\chi(g_i)$$

Complex Hadamard matrices

Similarly, $Z(\mathbb{C}G)$ contains a complex Hadamard matrix iff one of the follwing dual conditions holds.

$$(\exists t_i \in \mathbb{C}, |t_i| = 1)(\forall \chi) \quad \sqrt{|G|} = |\sum_i t_i \frac{\chi(K_i)}{\chi(1)}|. \tag{3}$$

$$(\exists u_{\chi} \in \mathbb{C}, |u_{\chi}| = 1)(\forall g) \quad \sqrt{|G|} = |\sum_{\chi} u_{\chi}\chi(1)\chi(g)|.$$
 (4)

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$. Let G be an extraspecial p-group or a finite Heisenberg group. Then G has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G,S)$.

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$. Let G be an extraspecial p-group or a finite Heisenberg group. Then G has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G,S)$. Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C}G)$.

Condition (3) immediately implies $|\operatorname{Supp}(\chi)| \geq \sqrt{|G|}$. Let G be an extraspecial p-group or a finite Heisenberg group. Then G has a character supported on Z(G) and $|Z(G)| < \sqrt{|G|}$, so there is no complex Hadamard matrix in $Z(\mathbb{C}G)$, hence no IUM at any time for any $\operatorname{Cay}(G,S)$. Suzuki 2-groups cannot be eliminated this way; there is a complex Hadamard matrix in $Z(\mathbb{C}G)$. But no IUM at any time t. This is because in condition (1) χ and $\overline{\chi}$ give same eigenvalue.

What examples have been found?

Examples of IUM on Cayley graphs: cubelike graphs, halved and folded cubes (Chan) cubelike graphs from bent functions, integral abelian Cayley graphs (Cao-Feng-Tan).

No nonabelian examples known.

Overview

Background. Cayley Graphs, Characters

Strong Cospectrality

Perfect State Transfer

Examples

Uniform mixing

Open Problems

>	IUM in a	nonabelia	n group?	Infinite fa	mily o	f exa	mple	es?		
					←□→ ←	∄▶◀	 	Ţij →	=	少 Q(૧

- ► IUM in a nonabelian group? Infinite family of examples?
- ▶ Complex Hadamard matrices in $Z(\mathbb{C}G)$ for nonabelian G.

- ► IUM in a nonabelian group? Infinite family of examples?
- ▶ Complex Hadamard matrices in $Z(\mathbb{C}G)$ for nonabelian G.
- More PST examples in nonabelian groups (known in 2-groups, dihedral, direct products)

