Some Open Questions in Erdős-Ko-Rado Combinatorics

Nathan Lindzey

Department of Computer Science University of Colorado nathan.lindzey@colorado.edu

Abstract

Some open questions related to Erdős-Ko-Rado combinatorics for the "Open Problems in Algebraic Combinatorics Workshop".

1-Skeletons

For any graph G = (V, E), let PM(G) denote the perfect matching polytope of G. The 1-skeleton of a polytope is graph given by the vertices and edges of the polytope. It is well-known that two perfect matchings m, m' of G are joined by an edge in PM(G) if and only if their symmetric difference $m\Delta m'$ is a single cycle. If $G = K_{2n}$, then the 1-skeleton Γ of $PM(K_{2n})$ is a union of associates of the perfect matching association scheme

$$\Gamma = \sum_{k=0}^{n-2} A_{(n-k,1^k)}.$$

Open Question 1: What is the independence number of Γ ?

This question is inspired by Kane et al.'s work on the independence number of the 1-skeleton of $PM(K_{n,n})$. Graphs coming from polytopes tend to have nice expansion and pseudorandomness properties, which doesn't work well with the Delsarte-Hoffman ratio bound. Structure vs. randomness techniques are better suited for this task, giving significantly better upper bounds. Constructing large independent sets in Γ is also a difficult question.

The associate $A_{(2,1^{n-2})}$ is sometimes called the perfect matching "flip graph". Determining the chromatic number $\chi(A_{(2,1^{n-2})})$ of this graph has received some attention (see, for example, Fabila-Monroy et al. and Cioaba et al.). Fabila-Monroy et al. also pose the question of determining $\chi(\Gamma)$. A good upper bound on the independence number of Γ would make progress on this question.

Open Question 2: What is the clique number of Γ ?

This doesn't seem any easier, but finding large cliques would make progress on Open Question 1 via the clique-coclique bound.

Erdős-Ko-Rado for Tabloids

Let $\lambda = (\lambda_1, \dots, \lambda_\ell) \vdash n$ be an integer partition of n. A λ -tabloid is an ordered partition of $\{1, 2, \dots, n\}$ into ℓ sets such that the first set has size λ_1 , the second set has size λ_2 , and so on. For example, we can represent k-sets, partial permutations (injections), and full permutations as (n-k, k)-tabloids, $(n-k, 1^k)$ -tabloids, and (1^n) -tabloids respectively.

Open Question 3: Give an Erdős-Ko-Rado Theorem for λ -tabloids for all $\lambda \vdash n$, and show that the largest intersecting families are the canonically intersecting families.

If one can give an algebraic proof of this via the ratio bound, then there should be a cute proof of the characterization of the extremal families via the b-matching polytope of $K_{n,n}$ where the b-vector depends on λ (see Godsil and Meagher's textbook for more details).

t-Intersecting Families and q-Analogues

Open Question 4: Give t-intersecting Erdős-Ko-Rado results for q-analogues of domains for which t-intersecting Erdős-Ko-Rado results hold for sufficiently large n (e.g., permutations, perfect matchings).

This question was the main focus of my talk, so see my slides for more details.