Algebraic Aspects of *t*-Intersecting Families Open Problems in Algebraic Combinatorics Workshop

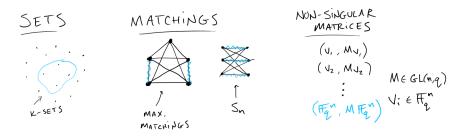
Nathan Lindzey (CU Boulder)

May 5, 2021

t-intersection

Throughout this talk, we assume that

- $ightharpoonup t \in \mathbb{N}$,
- $ightharpoonup \mathcal{X} = \{\mathcal{X}_n\}_{n=0}^{\infty}$ is a poset graded by inclusion,
- ▶ and objects $X \in \mathcal{X}_n$ are composed of atomic elements:



so there is some natural notion of t-intersection.

t-EKR Theorems

The generic *t*-EKR theorem:

If $\mathcal{F} \subseteq \mathcal{X}_n$ is t-intersecting, then $|\mathcal{F}| \leq |\mathcal{X}_{n-t}|$ for n suff. large, and the canonically t-intersecting families attain this bound:

$$\mathcal{F}_x := \{X \in \mathcal{X}_n : x \subseteq X\} \text{ for some } x \text{ s.t. } |x| = t.$$

Is there a general way of proving such results?

The Ratio Bound

Take $\Gamma_t = (\mathcal{X}_n, E)$ such that $X \sim X'$ if X, X' do not t-intersect.

Theorem (Delsarte, Hoffman)

Let $\widetilde{A}(\Gamma_t)$ be a pseudo-adjacency matrix of a regular N-vertex graph Γ_t with eigenvalues $\{\theta_i\}$ and a corresponding system of orthonormal eigenvectors $\{v_i\}$. If S is an independent set of Γ_t , then

$$\frac{|S|}{N} \le \frac{-\theta_{\min}}{\theta_{\max} - \theta_{\min}}.$$

If equality holds, then

$$1_S \in Span\{v_{\mathsf{max}}\} \oplus Span\{v_i : \theta_i = \theta_{\mathsf{min}}\}.$$

The Ratio Bound

Take $\Gamma_t = (\mathcal{X}_n, E)$ such that $X \sim X'$ if X, X' do not t-intersect.

Theorem (Delsarte, Hoffman)

Let $\widetilde{A}(\Gamma_t)$ be a pseudo-adjacency matrix of a regular N-vertex graph Γ_t with eigenvalues $\{\theta_i\}$ and a corresponding system of orthonormal eigenvectors $\{v_i\}$. If S is an independent set of Γ_t , then

$$\frac{|S|}{N} \le \frac{-\theta_{\min}}{\theta_{\max} - \theta_{\min}}.$$

If equality holds, then

$$1_S \in Span\{v_{\mathsf{max}}\} \oplus Span\{v_i : \theta_i = \theta_{\mathsf{min}}\}.$$

If equality holds, also $\alpha(\Gamma_t) = \text{Shannon cap. of } \Gamma_t = \vartheta(\Gamma_t)$.

Too many domains ${\mathcal X}$ to consider:

- 1. Multislices
- 2. Hypermatchings
- 3. Injections $[k] \hookrightarrow [n]$
- 4. Gelfand pairs of the form (GL(n,q), H(n,q))
- 5. :

Too many domains $\mathcal X$ to consider:

- 1. Multislices
- 2. Hypermatchings
- 3. Injections $[k] \hookrightarrow [n]$
- 4. Gelfand pairs of the form (GL(n,q), H(n,q))
- 5. :

Want to show Γ_t is ratio tight, but with little calculation.

Need a unifying framework.

Hecke Algebras/H.C.C.'s

Each of these domains \mathcal{X} is a homogeneous space, i.e.,

$$\mathcal{X} = \{\mathcal{X}_n\}_{n=0}^{\infty}$$
 such that $\mathcal{X}_n \cong G_n/H_n$

for some family $(G_i, H_i)_{i=0}^{\infty}$.

Let $\mathbb{C}\mathcal{X}_n$ be the space of complex-valued functions on \mathcal{X}_n . Then

$$\operatorname{End}_{G_n}\mathbb{C}\mathcal{X}_n\cong\mathbb{C}[H_n\backslash G_n/H_n].$$

The *orbitals* of \mathcal{X}_n are the orbits of diagonal action $G_n \curvearrowright \mathcal{X}_n \times \mathcal{X}_n$.

The orbitals are a canonical basis of the endomorphism algebra:

$$\operatorname{\mathsf{End}}_{G_n}(\mathcal{X}_n)\cong igoplus_{i\in \mathbb{I}(\mathcal{X}_n)}\operatorname{\mathsf{Mat}}_{m_i,m_i}(\mathbb{C}).$$

Note that $\operatorname{End}_{G_n}(\mathcal{X}_n)$ is commutative if and only if $m_i = 1$ for all i.

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

Pipedream: if \mathcal{X} is "t-EKR", then for sufficiently large n there exists a matrix $\widetilde{A} \in End_{G_n}\mathbb{C}\mathcal{X}_n$ that is ratio tight.

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

Pipedream: if \mathcal{X} is "t-EKR", then for sufficiently large n there exists a matrix $\widetilde{A} \in End_{G_n}\mathbb{C}\mathcal{X}_n$ that is ratio tight.

This "t-EKR" condition should depend on just a few things, e.g.,

asymptotics of valencies of orbitals (associates),

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

Pipedream: if \mathcal{X} is "t-EKR", then for sufficiently large n there exists a matrix $\widetilde{A} \in End_{G_n}\mathbb{C}\mathcal{X}_n$ that is ratio tight.

This "t-EKR" condition should depend on just a few things, e.g.,

- asymptotics of valencies of orbitals (associates),
- \triangleright asymptotics of dimensions of G_n -irreps (multiplicities),

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

Pipedream: if \mathcal{X} is "t-EKR", then for sufficiently large n there exists a matrix $\widetilde{A} \in End_{G_n}\mathbb{C}\mathcal{X}_n$ that is ratio tight.

This "t-EKR" condition should depend on just a few things, e.g.,

- asymptotics of valencies of orbitals (associates),
- \triangleright asymptotics of dimensions of G_n -irreps (multiplicities), and
- stability/polynomiality of structure constants (∩ numbers).
 (won't have time to really discuss this.)

What conditions on $End_{G_n}\mathbb{C}\mathcal{X}_n$ guarantee Γ_t is ratio-tight?

Pipedream: if \mathcal{X} is "t-EKR", then for sufficiently large n there exists a matrix $\widetilde{A} \in End_{G_n}\mathbb{C}\mathcal{X}_n$ that is ratio tight.

This "t-EKR" condition should depend on just a few things, e.g.,

- asymptotics of valencies of orbitals (associates),
- \triangleright asymptotics of dimensions of G_n -irreps (multiplicities), and
- stability/polynomiality of structure constants (∩ numbers).
 (won't have time to really discuss this.)

"It claims to be fully automatic, but actually you have to push this little button here."

-Gentleman John Killian

Representation Theory

In general, G_n -irreducibles do not have "names", but there are some notable exceptions.

- Coxeter groups (partitions)
- Finite groups of Lie type (partition-valued functions)
- ► Abelian groups (group elements)

We require our irreducibles to have "names".

Representation Stability

When irreps have names, we can talk about representation stability.

Representation Stability

When irreps have names, we can talk about *representation stability*. <u>Ex.</u> $V_{2,n} \cong S_n \curvearrowright 2$ -matchings of K_n .

$$\begin{split} V_{2,4} &= [4] \oplus [2,2] \\ V_{2,5} &= [5] \oplus [4,1] \oplus [3,2] \oplus [2,2,1] \\ V_{2,6} &= [6] \oplus [5,1] \oplus [4,2]^2 \oplus [3,2,1] \oplus [2,2,2] \\ V_{2,7} &= [7] \oplus [6,1] \oplus [5,2]^2 \oplus [4,3] \oplus [4,2,1] \oplus [3,2,2] \\ V_{2,8} &= [8] \oplus [7,1] \oplus [6,2]^2 \oplus [5,3] \oplus [5,2,1] \oplus [4,4] \oplus [4,2,2] \\ V_{2,9} &= [9] \oplus [8,1] \oplus [7,2]^2 \oplus [6,3] \oplus [6,2,1] \oplus [5,4] \oplus [5,2,2] \\ &\vdots \\ V_{2,n} &= [n] \oplus [n-1,1] \oplus [n-2,2]^2 \oplus [n-3,3] \\ &\oplus [n-3,2,1] \oplus [n-4,4] \oplus [n-4,2,2] \\ &= \emptyset_n \oplus [1]_n \oplus [2]_n^2 \oplus [3]_n \oplus [2,1]_n \oplus [4]_n \oplus [2,2]_n \end{split}$$

where $[\lambda]_n := (n - |\lambda|, \lambda_1, \cdots, \lambda_\ell)$ provided $n \ge |\lambda| + \lambda_1$.

Representation Stability

Character Polynomials

Let
$$c_i(\sigma) := \# i$$
-cycles of $\sigma \in S_n$.

Theorem (Frobenius 1904)

For each λ , there is a unique polynomial $P_{\lambda} \in \mathbb{Q}[c_1, \cdots, c_n]$ of degree $|\lambda|$ such that

$$\chi^{[\lambda]_n}(\sigma) = P_{\lambda}(\sigma)$$
 for all $n \ge |\lambda| + \lambda_1$ and $\sigma \in S_n$.

We call these *character polynomials*.

Corollary

Let $\lambda \vdash t$. Then $\dim[\lambda]_n = poly(n, t)$.

Representation Stability in EKR

Let C be the $\mathcal{X}_n \times \mathcal{X}_{n,t}$ matrix whose columns are the canonically t-intersecting families, i.e.,

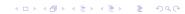
$$C_{X,x} = \begin{cases} 1 & \text{if } x \subseteq X; \\ 0 & \text{otherwise.} \end{cases}$$

The map $C: \mathbb{C}\mathcal{X}_{n,t} \to \mathbb{C}\mathcal{X}_n$ is G_n -equivariant.

By Schur's lemma, for any $V \in \mathbb{I}(\mathcal{X}_{n,t})$ the restriction $C|_V$ is the zero map or an isomorphism.

$$\mathsf{Span}\{\mathsf{canonically}\ \mathsf{t\text{--intersecting families}}\} \subseteq \bigoplus_{\lambda \le \mathsf{T}} V_\lambda \subset \mathbb{C}\mathcal{X}_n$$

where V_T is the "greatest" irreducible of $\mathbb{I}(\mathcal{X}_{n,t})$.



Ex. Symmetric Group (REU-LEX TOTAL ORDER) [u] < [u-1,1] < ... < [2,11-2] < [11] Ex. Z' ("HAMMING WEIGHT" PARTIAL ORDER) Ø < {i3 < ··· < {i3 < {1,2,..., €} "Low" "HIGH"

Low frequencies vs. High frequencies

Quick recap:

- $ightharpoonup \mathcal{X}_n \cong \mathcal{S}_n/H_n$,
- ▶ eigenspaces of \widetilde{A} ∈ End_{S_n} $\mathbb{C}X_n$ are sums of S_n -irreducibles,
- via, say, representation stability, the dimensions of the low frequencies are low-degree polynomials, i.e., O(poly(n, t)).

Low frequencies vs. High frequencies

Quick recap:

- $\triangleright \mathcal{X}_n \cong \mathcal{S}_n/\mathcal{H}_n$,
- ▶ eigenspaces of \widetilde{A} ∈ End_{S_n} $\mathbb{C}X_n$ are sums of S_n-irreducibles,
- \triangleright via, say, representation stability, the dimensions of the low frequencies are low-degree polynomials, i.e., O(poly(n, t)).

Vanishingly few S_n -irreducibles $[\lambda] \in \mathbb{I}(\mathcal{X}_n)$ are less than V_T .

Low frequencies vs. High frequencies

Quick recap:

- $\triangleright \mathcal{X}_n \cong \mathcal{S}_n/H_n$,
- ▶ eigenspaces of \widetilde{A} ∈ End_{S_n} $\mathbb{C}X_n$ are sums of S_n -irreducibles,
- \triangleright via, say, representation stability, the dimensions of the low frequencies are low-degree polynomials, i.e., O(poly(n, t)).

Vanishingly few S_n -irreducibles $[\lambda] \in \mathbb{I}(\mathcal{X}_n)$ are less than V_T .

Fortunately, the high frequencies have high dimension!

Theorem (Ellis, Friedgut, Pilpel '11) Let $t \in \mathbb{N}$. If $\lambda_1 < n-t$ and $(\lambda')_1 < n-t$, then $\dim[\lambda] = \Omega(n^{t+1})$.

Open Question: Prove a *q*-analogue of this for GL(n, q).

An Eigenvalue Bound for Association Schemes

Lemma

Let θ_i be the eigenvalue corresponding to the irrep V_i of the associate A_{Ω} with valency $|\Omega|$. Then

$$|\theta_i| \leq \sqrt{\frac{|\mathcal{X}_n||\Omega|}{\dim V_i}}.$$

An Eigenvalue Bound for Association Schemes

Lemma

Let θ_i be the eigenvalue corresponding to the irrep V_i of the associate A_{Ω} with valency $|\Omega|$. Then

$$|\theta_i| \le \sqrt{\frac{|\mathcal{X}_n||\Omega|}{\dim V_i}}.$$

Proof.

Let $\omega^i \in \mathbb{C}\mathcal{X}_n$ be the ith spherical function, so that $\theta_i = \langle \omega^i, 1_\Omega \rangle$. For any spherical function ω^i , we have $\langle \omega^i, \omega^i \rangle = \frac{|\mathcal{X}_n|}{\dim V_i}$. By Cauchy-Schwarz, we have

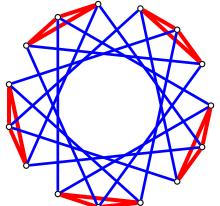
$$|\theta_i| = |\langle \omega^i, 1_\Omega \rangle| \leq \sqrt{\langle \omega^i, \omega^i \rangle \langle 1_\Omega, 1_\Omega \rangle} \leq \sqrt{\frac{|\mathcal{X}_n||\Omega|}{\dim V_i}}.$$

We also require that our orbitals have "names".

Ideally, we want orbitals to have same "names" as the irreps (duality).

The "names" of the orbitals are the *colored isomorphism types* ρ .

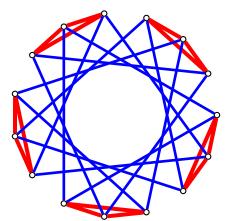
Ex.
$$G_5 = S_{15}$$
 and $H_5 = (S_3 \wr S_5)$



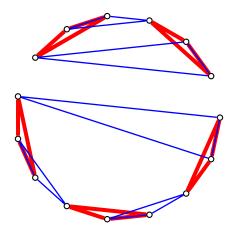
Valencies of Orbitals

Let $|\Omega_{\rho}|$ be the valency of orbital ρ . For $\sigma_{\rho} \in S_n$, we have

$$|H_n\sigma_\rho H_n| = \frac{|H_n|^2}{|H_n\cap\sigma_\rho^{-1}H_n\sigma_\rho|} \quad \text{ and } \quad |\Omega_\rho| = \frac{|H_n|}{|\underbrace{\frac{H_n\cap\sigma_\rho^{-1}H_n\sigma_\rho}{|\text{color--preserving auts"}}}}|.$$



Connected Components



$$3(3,2) = (9,6) \vdash 15$$

Take orbitals with a connected component of size $\geq n-t+1$.

Take orbitals with a connected component of size $\geq n-t+1$. These are spanning regular subgraphs of $\Gamma_t!$

Take orbitals with a connected component of size $\geq n-t+1$. These are spanning regular subgraphs of $\Gamma_t!$

The valencies of these orbitals are essentially equal as $n \to \infty$.

Take orbitals with a connected component of size $\geq n-t+1$. These are spanning regular subgraphs of $\Gamma_t!$

The valencies of these orbitals are essentially equal as $n \to \infty$.

Want the probability of $X^* \cup X$ being connected as large as possible!

Symmetric Group S_n :

$$\mathbb{P}_{\sigma,\pi}[\sigma^{-1}\pi \text{ is a } n\text{-cycle}] = \frac{1}{n}.$$

▶ Perfect Matchings of K_{2n} :

$$\mathbb{P}_{m,m'}[m \cup m' \text{ is a } 2n\text{-cycle}] \approx \frac{1}{\sqrt{n}}.$$

A Linear System of Equations for the Low Frequencies

Recall we want a $\widetilde{A}(\Gamma_t) \in \operatorname{End}_{G_n} \mathbb{C} \mathcal{X}_n$ such that

$$\frac{|\mathcal{X}_{n-t}|}{|\mathcal{X}_n|} = \frac{-\theta_{\mathsf{min}}}{\theta_{\mathsf{max}} - \theta_{\mathsf{min}}}.$$

Normalizing gives us

$$\frac{|\mathcal{X}_{n-t}|}{|\mathcal{X}_n|} = \frac{-\theta_{\min}}{1 - \theta_{\min}}.$$

Solve for θ_{\min} and let $\zeta_{n,t}$ be the solution. Note that

$$|\zeta_{n,t}| \propto \left(\frac{|\mathcal{X}_{n-t}|}{|\mathcal{X}_n|}\right) \propto 1/(n)_t.$$

A Linear System of Equations for the Low Frequencies

The A_{λ} 's are all spanning subgraphs of Γ_t with large valency.

$$\sum_{\lambda < \mathsf{T}} \theta_{triv}(A_{\lambda}) x_{\lambda} = 1 \tag{1}$$

$$\sum_{\lambda < \mathsf{T}} \theta_{\mu}(A_{\lambda}) x_{\lambda} = \zeta_{n,t} \quad \forall \text{ non-triv eigenspaces } \mu < \mathsf{T} \qquad (2)$$

$$\sum_{\lambda < \mathsf{T}} \theta_{\mu}(A_{\lambda}) \mathsf{x}_{\lambda} = \zeta_{\mathsf{n},\mathsf{t}} \quad \mathbf{\mu} = \mathsf{T} \tag{3}$$

One more equation than there are unknowns!

But if a solution x^* exists, then

$$\widetilde{A}(\Gamma_t) = \sum_{\lambda < \Gamma} x_{\lambda}^* A_{\lambda}$$

gives us a pseudo-adjacency matrix with the desired eigenvalues on the low frequencies.

$$(1)$$
 and $(2) \Rightarrow (3)$

$$\alpha := |\mathcal{X}_{n-t}|/|\mathcal{X}_n|.$$

$$(1)$$
 and $(2) \Rightarrow (3)$

$$\alpha := |\mathcal{X}_{n-t}|/|\mathcal{X}_n|.$$

Since S is independent and supported on the low frequencies,

$$0 = \mathbf{1}_{S}^{\top} \widetilde{A}(\Gamma_{t}) \mathbf{1}_{S} = \sum_{\lambda \leq \mathsf{T}} \theta_{\lambda} \underbrace{W(\lambda)}_{\lambda - \mathit{mass}}.$$

$$(1)$$
 and $(2) \Rightarrow (3)$

$$\alpha := |\mathcal{X}_{n-t}|/|\mathcal{X}_n|.$$

Since S is independent and supported on the low frequencies,

$$0 = \mathbf{1}_{S}^{\top} \widetilde{A}(\Gamma_{t}) \mathbf{1}_{S} = \sum_{\lambda \leq T} \theta_{\lambda} \underbrace{W(\lambda)}_{\lambda - \textit{mass}}.$$

Plugging in the low frequency eigenvalues on the RHS gives

$$0 = \sum_{\lambda \leq \mathsf{T}} \theta_{\lambda} \underbrace{W(\lambda)}_{\lambda - mass} = \alpha^2 + \zeta_{n,t} (\alpha - \alpha^2 - W(\mathsf{T})) + \theta_{\mathsf{T}} W(\mathsf{T}).$$

$$(1)$$
 and $(2) \Rightarrow (3)$

$$\alpha := |\mathcal{X}_{n-t}|/|\mathcal{X}_n|.$$

Since S is independent and supported on the low frequencies,

$$0 = \mathbf{1}_{S}^{\top} \widetilde{A}(\Gamma_{t}) \mathbf{1}_{S} = \sum_{\lambda \leq T} \theta_{\lambda} \underbrace{\mathcal{W}(\lambda)}_{\lambda - \textit{mass}}.$$

Plugging in the low frequency eigenvalues on the RHS gives

$$0 = \sum_{\lambda \leq \mathsf{T}} \theta_{\lambda} \underbrace{W(\lambda)}_{\lambda - mass} = \alpha^2 + \zeta_{n,t}(\alpha - \alpha^2 - W(\mathsf{T})) + \theta_{\mathsf{T}} W(\mathsf{T}).$$

We have $\zeta_{n,t}(\alpha - \alpha^2) = -\alpha^2$, so it must be that $\theta_T = \zeta_{n,t}$.

Inequalities for the High Frequencies

We need to be sure that $\zeta_{n,t}$ is in fact the least eigenvalue!

No control over signs of eigenvalues either, so we must show:

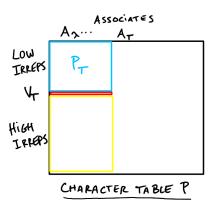
$$\sum_{\lambda < \mathsf{T}} \theta_{triv}(A_{\lambda}) x_{\lambda} = 1 \tag{4}$$

$$\sum_{\lambda < \mathsf{T}} \theta_{\mu}(A_{\lambda}) x_{\lambda} = \zeta_{n,t} \quad \forall \text{ eigenspaces } \mu < \mathsf{T}$$
 (5)

$$\left| \sum_{\lambda < \mathsf{T}} \theta_{\rho}(A_{\lambda}) x_{\lambda} \right| \le |\zeta_{n,t}| \quad \forall \text{ eigenspaces } \rho > \mathsf{T}$$
 (6)

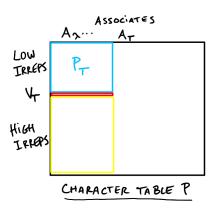
Keep in mind the dimensions of the eigenspaces > T are $\Omega(n^{t+1})$.

Solving the Linear System



 P_{T} must be invertible!

Solving the Linear System



 P_{T} must be invertible!

If P = LU, then all leading principal minors of P are nonzero.

Character tables often admit LU-factorizations!

Bounding the High Frequencies

Let x^* be the solution to the linear system. Then

$$\begin{split} |\theta_{\rho}| &= \left| \sum_{\lambda < \mathsf{T}} x_{\lambda}^{*} \theta_{\rho}(A_{\lambda}) \right| \\ &\leq O(1) \max_{\lambda} |x_{\lambda}^{*}| \max_{\lambda} |\theta_{\rho}(A_{\lambda})| \\ &\leq O(1) \max_{\lambda} |x_{\lambda}^{*}| \sqrt{\frac{|\mathcal{X}_{n}||\Omega_{\lambda}|}{n^{t+1}}} \\ &\leq \frac{O(1)}{|\Omega_{\lambda}|} \sqrt{\frac{|\mathcal{X}_{n}||\Omega_{\lambda}|}{n^{t+1}}} \\ &\leq \sqrt{\frac{O(|\mathcal{X}_{n}|/|\Omega_{\lambda}|)}{n^{t+1}}} \end{split}$$

If $O(|\mathcal{X}_n|/|\Omega_{\lambda}|)$ is small enough, i.e., the probability of $X^* \cup X$ connected is large enough, then since $|\zeta_{n,t}| \propto 1/(n)_t$, we have

$$|\theta_{\rho}| = o(|\zeta_{n,t}|).$$

Open Problems

There's a nascent rep. stability theory for finite groups of Lie type.

- ▶ t-EKR for GL(n,q) via SL(n,q)? PGL(n,q) via PSL(n,q)?
- ► t-EKR for the Gelfand pair (GL(2n, q), Sp(2n, q)), i.e., symplectic forms over \mathbb{F}_q^{2n} ?

Open Problems

There's a nascent rep. stability theory for finite groups of Lie type.

- ▶ t-EKR for GL(n,q) via SL(n,q)? PGL(n,q) via PSL(n,q)?
- ▶ t-EKR for the Gelfand pair (GL(2n, q), Sp(2n, q)), i.e., symplectic forms over \mathbb{F}_q^{2n} ?

Orbital valencies seem to have the right asymptotics.

Is there a rev-lex-like ordering of the conjugacy-classes and irreps of the SL(n, q) character table C such that C = LU?

Is commutativity of the Hecke algebra needed?

ightharpoonup t-EKR for $\mathcal X$ with a non-commutative Hecke algebra?

Open Problems

There's a nascent rep. stability theory for finite groups of Lie type.

- ▶ t-EKR for GL(n,q) via SL(n,q)? PGL(n,q) via PSL(n,q)?
- ▶ t-EKR for the Gelfand pair (GL(2n, q), Sp(2n, q)), i.e., symplectic forms over \mathbb{F}_q^{2n} ?

Orbital valencies seem to have the right asymptotics.

Is there a rev-lex-like ordering of the conjugacy-classes and irreps of the SL(n, q) character table C such that C = LU?

Is commutativity of the Hecke algebra needed?

▶ t-EKR for \mathcal{X} with a non-commutative Hecke algebra?

Can we beat Cauchy-Schwartz for the eigenvalue bound? (weak!)

That's all. Thanks!

