Open problems related to balancedly splittable orthogonal designs

Hadi Kharaghani

University of Lethbridge Department of Mathematics and Computer Science

May 4, 2021

Open Problems in Algebraic Combinatorics

Joint work with Thomas Pender and Sho Suda

Hadamard matrix

Definition

An $n \times n$ (± 1)-matrix H is a Hadamard matrix if $HH^T = nI$. H(n) denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1:

OP1: There is a Hadamard matrix of order 4(167) = 668.

Comments on OP1

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Refer to: https://www.cs.uleth.ca/ hadi/research/KlaTurTyp.pdf

Balancedly splittable Hadamard matrices

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a.

OP2: Is there is a balancedly splittable Hadamard matrix of order 144?

Refer to: https://arxiv.org/abs/2103.04571

Orthogonal designs

Definition

An orthogonal design of order n and type (s_1,\ldots,s_t) in indeterminants x_1,\ldots,x_t is a matrix $D=[d_{ij}],\ d_{ij}\in\{0,x_1,\ldots,x_t\}$ Such that $DD^t=(sum_{i=1}^{i=t}s_ix_i^2)I_n.$

Number of variables in a *any orthogonal design* is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n) := 8q + 2^r$ when $n = 2^k \cdot p$, where positive integer p is odd, k = 4q + r, and $0 \le r < 4$. For odd p, $\rho(2^kp)$ depends only on k.

OP3: Is there an $OD(128; 8_{16})$?

Balancedly splittable Hadamard matrices

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a.

OP4: Is there a balancedly splittable Hadamard matrix of order 144?

Refer to: https://arxiv.org/abs/1806.00165

Balancedly splittable Hadamard matrices and MU Hadamard matrices

Theorem

Let $H=\begin{bmatrix} H_2\\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K = rac{1}{2a}(H_1^tH_1 H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right],$$

and thus the Hadamard matrices H and K are **unbiased**.

OP5: What is the largest number of Mutually Unbiased Hadamard matrices which is obtained from all balancedly splittable

Hadamard matrices of the same order?

Regular Hadamard matrices

A Hadamard matrix of order n is said to be *regular* if the row sums are all the same and equal to \sqrt{n} . In this case n must be square. A *Menon design* is a SBIBD $(4m^2, 2m^2 \pm m, m^2 \pm m)$.

A Graphical Hadamard matrix is a symmetric Hadamard matrix with constant diagonal. It is known that regular Graphical Hadamard matrices exist of order $4n^4$ for any natural number n.

OP6: Is there a Menon design SBIBD $(4m^2, 2m^2 \pm m, m^2 \pm m)$ for each natural number m?

Refer to: Muzychuk, Mikhail; Xiang, Qing, Symmetric Bush-type Hadamard matrices of order $4m^4$ exist for all odd m. Proc. Amer. Math. Soc. 134 (2006), no. 8, 2197–2204.