Balancedly splittable orthogonal designs

Hadi Kharaghani

University of Lethbridge Department of Mathematics and Computer Science

May 4, 2021
Open Problems in Algebraic Combinatorics
Joint work with Thomas Pender and Sho Suda

Definition

An $n \times n$ (± 1) -matrix H is a Hadamard matrix if $HH^T = nI$ (i.e., its rows are pairwise orthogonal). H(n) denotes a Hadamard matrix of order n.

If there is an $\mathsf{H}(n)$, then n=1,2 or 4k, k a positive integer

The BIG open problem

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1

Definition

An $n \times n$ (± 1) -matrix H is a Hadamard matrix if $HH^T = nI$ (i.e., its rows are pairwise orthogonal). H(n) denotes a Hadamard matrix of order n.

If there is an $\mathsf{H}(n)$, then n=1,2 or 4k, k a positive integer

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an $\mathsf{H}(n)$, then n=1,2 or 4k, k a positive integer

The BIG open problems

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1

Definition

An $n\times n$ (± 1) -matrix H is a Hadamard matrix if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). H(n) denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167

The small open problem 1:

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an $\mathsf{H}(n)$, then n=1,2 or $4k,\ k$ a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167

The small open problem 1:

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1:

Definition

An $n \times n$ (± 1) -matrix H is a $\mbox{\it Hadamard matrix}$ if $HH^T=nI$ (i.e., its rows are pairwise orthogonal). $\mbox{\it H}(n)$ denotes a Hadamard matrix of order n.

If there is an H(n), then n = 1, 2 or 4k, k a positive integer.

The BIG open problem:

Conjecture 1: There is a Hadamard matrix of order 4n for each natural number n.

Conjecture 1 is confirmed for n < 167.

The small open problem 1:

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences $\mathsf{TT}(n)$ lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences $\mathsf{TT}(n)$ lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428)

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428)

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\operatorname{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Turyn-type sequences, $\mathsf{TT}(n)$, are quadruples of (-1,1)-sequences (A;B;C;D), with lengths (n,n,n,n-1) respectively, where the sum of the non-periodic autocorrelation functions of A,B and twice that of C,D is a delta-function (i.e., vanishes everywhere except at 0).

Turyn-type sequences TT(n) lead to H(12n-4).

Turyn-type sequences TT(36) led to H(428).

The existence of TT(56) would lead to H(668)

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

Here is an example of a *frame* in \mathbb{R}^6

 $\bar{x} = -x$

The Equiangular Fame F_1 is Tight if the rows of F_1 are pairwise orthogonal, i.e. $F_1F_1^T=16I_{16}$

A Frame is called *Flat* if all the entries are of equal absolute values. A second flat ETF in \mathbb{R}^6 :

The Equiangular Fame F_1 is Tight if the rows of F_1 are pairwise orthogonal, i.e. $F_1F_1^T=16I_{16}$

A Frame is called *Flat* if all the entries are of equal absolute values A second flat ETF in \mathbb{R}^6 :

The Equiangular Fame F_1 is Tight if the rows of F_1 are pairwise orthogonal, i.e. $F_1F_1^T=16I_{16}$

A Frame is called *Flat* if all the entries are of equal absolute values.

A second flat ETF in \mathbb{R}^6 :

$$F_2 = \begin{bmatrix} 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 & 1 & -|1 & 1 \\ 1-1 & -|1 & 1 & -|1 & -|1 & 1 & 1 & -|1 & 1 & 1 \\ 1 & 1 & -|1 & -|1 & 1 & 1 & -|1 & 1 & 1 & 1 & -|1 \\ 1 & 1 & -|-1 & 1 & 1 & -|1 & 1 & 1 & -|1 & 1 & 1 & -|1 \\ 1 & -|-1 & 1 & -|-1 & 1 & 1 & -|-1 & 1 & 1 & 1 \\ 1 & -|-1 & -|-1 & -|-1 & 1 & 1 & -|-1 & 1 & 1 \end{bmatrix}$$

The Equiangular Fame F_1 is Tight if the rows of F_1 are pairwise orthogonal, i.e. $F_1F_1^T=16I_{16}$

A Frame is called *Flat* if all the entries are of equal absolute values. A second flat ETF in \mathbb{R}^6 :

```
F_2 = \begin{bmatrix} 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 & -|1 & 1 \\ 1-1 & -|1 & 1 & -|1 & 1 & 1 & -|1 & 1 & -|1 & 1 \\ 1 & 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 & -|1 & 1 & 1 & -|1 \\ 1 & 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 & -|1 & 1 & 1 \\ 1 & -|1 & -|1 & 1 & -|1 & 1 & 1 & -|1 & 1 & 1 \\ 1 & -|1 & -|1 & -|1 & 1 & 1 & -|1 & 1 & 1 \end{bmatrix}
```

The Equiangular Fame F_1 is Tight if the rows of F_1 are pairwise orthogonal, i.e. $F_1F_1^T=16I_{16}$

A Frame is called *Flat* if all the entries are of equal absolute values. A second flat ETF in \mathbb{R}^6 :

$$F_2 = \begin{bmatrix} 1-1 & -|1 & 1 & 1-1 & -|1 & 1 & 1--1 & 1 \\ 1-1 & -|1 & 1-1 & -|1 & 1 & 1-1 & 1 & -|1 & 1 \\ 1 & 1--|1 & -|1 & 1 & 1-|-1 & 1 & 1 & 1 & -|1 \\ 1 & 1--|1 & 1 & 1 & -|1 & 1 & 1 & -|1 & 1 & 1 \\ 1--|1 & 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 & 1 \\ 1--|1 & 1-1 & -|1 & 1 & 1 & -|1 & 1 & 1 \end{bmatrix}$$

A Balancedly Splittable Hadamard matrix of order 16

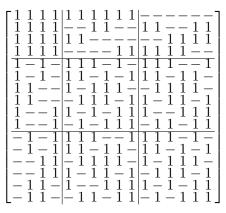
A balancedly split Hadamard matrix of order 16 containing F_1 and F_2 as submatrices:

A Balancedly Splittable Hadamard matrix of order 16

A balancedly split Hadamard matrix of order 16 containing F_1 and F_2 as submatrices:

A Balancedly Splittable Hadamard matrix of order 16

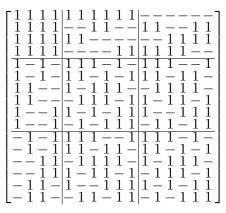
A balancedly split Hadamard matrix of order 16 containing F_1 and F_2 as submatrices:



.

A Balancedly Splittable Hadamard matrix of order 16

A balancedly split Hadamard matrix of order 16 containing F_1 and F_2 as submatrices:



.

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a.

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a.

Definition

A Hadamard matrix H of order n is balancedly splittable with the parameters (n,ℓ,a) if by suitably permuting its rows (columns) it can be transformed to

$$H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}, (H = [K_2|K_1])$$

such that H_1 (K_1) is an $\ell \times n$ $(n \times \ell)$ matrix and all off-diagonal entries of $H_1^t H_1$ $(K_1 K_1^t)$ belong to the set $\{a, -a\}$, for some positive integer a.

Let
$$H=\begin{bmatrix} H_2\\ H_1 \end{bmatrix}$$
 be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K = rac{1}{2a}(H_1^tH_1 H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right]$$

Let $H=\begin{bmatrix} H_2\\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K = rac{1}{2a}(H_1^tH_1 H_2^tH_2)$ is a Hadamard matrix
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right]$$

Let $H=\begin{bmatrix} H_2\\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

 $ightharpoonup K = rac{1}{2a}(H_1^tH_1 - H_2^tH_2)$ is a Hadamard matrix.

$$(\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right]$$

Let $H=\begin{bmatrix} H_2\\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K=rac{1}{2a}(H_1^tH_1-H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right]$$

Let $H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K=rac{1}{2a}(H_1^tH_1-H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right]$$

Let $H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K=rac{1}{2a}(H_1^tH_1-H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right],$$

Let $H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K=rac{1}{2a}(H_1^tH_1-H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right],$$

Let $H = \begin{bmatrix} H_2 \\ H_1 \end{bmatrix}$ be a balancedly splittable Hadamard matrix with the parameters (n,ℓ,a) . Then the following are equivalent.

- $ightharpoonup K=rac{1}{2a}(H_1^tH_1-H_2^tH_2)$ is a Hadamard matrix.
- $\blacktriangleright (\ell, a) = (\frac{n \pm \sqrt{n}}{2}, \frac{\sqrt{n}}{2}).$

In this case, $n=4k^2$ for some integer k, and

$$HK^t = \sqrt{n} \left[\begin{array}{c} H_1 \\ -H_2 \end{array} \right],$$

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Lemma

Any balancedly splittable Hadamard matrix with the parameters $(4n^2,\ell,a)=(4n^2,2n^2-n,n)$ is **equivalent** to a regular Hadamard matrix.

Two of the five Hadamard matrices of order 16 fail to be balancedly splittable.

Lemma

Orthogonal designs

Definition

Let n and w be positive integers. A weighing matrix W, of weight w and order n, is an $n \times n$ $(0,\pm 1)$ -matrix satisfying $WW^T = wI$. We denote such a matrix by W(n,w). (w=0) is generally not permitted.)

Definition

An orthogonal design of order n and $type\ (s_1,\ldots,s_u)$ (or with parameters s_1,\ldots,s_u), is a matrix of the form $D=x_1W_1+x_2W_2+\cdots+x_uW_u$, where x_1,\ldots,x_u are distinct commuting indeterminates, $W_i=W(n,s_i)$, $i=1,\ldots,u$, and W_i and W_j are disjoint and antiamicable, for all $1\leq i< j\leq u$. Such a design is denoted $\mathrm{OD}(n;s_1,s_2,\ldots,s_u)$. It is full if $\sum_{i=1}^u s_i=n$.

Orthogonal designs

Definition

Let n and w be positive integers. A weighing matrix W, of weight w and order n, is an $n \times n$ $(0,\pm 1)$ -matrix satisfying $WW^T = wI$. We denote such a matrix by W(n,w). (w=0 is generally not permitted.)

Definition

An orthogonal design of order n and type (s_1,\ldots,s_u) (or with parameters s_1,\ldots,s_u), is a matrix of the form $D=x_1W_1+x_2W_2+\cdots+x_uW_u$, where x_1,\ldots,x_u are distinct commuting indeterminates, $W_i=W(n,s_i)$, $i=1,\ldots,u$, and W_i and W_j are disjoint and antiamicable, for all $1\leq i< j\leq u$. Such a design is denoted $\mathrm{OD}(n;s_1,s_2,\ldots,s_u)$. It is full if $\sum_{i=1}^u s_i=n$.

$$D_{1} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad D_{3} = \begin{pmatrix} d & a & b & c \\ -a & d & c & -b \\ -b & -c & d & a \\ -c & b & -a & d \end{pmatrix}$$

$$OD(2;1,1) \qquad OD(4;1,1,1,1)$$

Here is an
$$OD(6;1)$$
, also a $W(6,5)$: $a \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & - & - & 1 \\ 1 & 1 & 0 & 1 & - & - \\ 1 & - & 1 & 0 & 1 & - \\ 1 & - & - & 1 & 0 & 1 \\ 1 & 1 & - & - & 1 & 0 \end{pmatrix}$

$$D_{1} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad D_{3} = \begin{pmatrix} d & a & b & c \\ -a & d & c & -b \\ -b & -c & d & a \\ -c & b & -a & d \end{pmatrix}$$

$$OD(2;1,1)$$

$$OD(4;1,1,1,1)$$

Here is an
$$OD(6;1)$$
, also a $W(6,5)$: $a \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & - & - & 1 \\ 1 & 1 & 0 & 1 & - & - \\ 1 & - & 1 & 0 & 1 & - \\ 1 & - & - & 1 & 0 & 1 \\ 1 & 1 & - & - & 1 & 0 \end{pmatrix}$

$$D_{1} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad D_{3} = \begin{pmatrix} d & a & b & c \\ -a & d & c & -b \\ -b & -c & d & a \\ -c & b & -a & d \end{pmatrix}$$

$$OD(2;1,1) \quad OD(4;1,1,1,1)$$

Here is an
$$OD(6;1)$$
, also a $W(6,5)$: $a \begin{vmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 1 \end{vmatrix}$

$$D_{1} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \quad D_{3} = \begin{pmatrix} d & a & b & c \\ -a & d & c & -b \\ -b & -c & d & a \\ -c & b & -a & d \end{pmatrix}$$

$$OD(2;1,1) \qquad OD(4;1,1,1,1)$$

Note that $\mathbf{x} = -x$.

```
\begin{pmatrix} a & b & d & c & f & e & g & h \\ b & a & c & d & e & f & h & g \\ d & c & a & b & g & h & f & e \\ c & d & b & a & h & g & e & f \\ f & e & g & h & a & b & d & c \\ e & f & h & g & b & a & c & d \\ g & h & f & e & d & c & a & b \\ h & g & e & f & c & d & b & a \end{pmatrix}
```

```
      (a b c b a d a d c d c b c a b a d b d c a c b d b c a c b d b d c a c b d b d c a c b d b d c a c b d b d c a c b d b d c a c d b d c c a d b d c c a b d b c a c d d b a c a d b c a c d d b a b c a b d d c a d b c a b d d c a d b c a b d d c a d b c a b d d c a d b c a b d a c a d b c a b d a c a d b c a d a b c a b d a c a d b c a d a b c a d a b d c c d a d a b d c c d a d a b d c c d a d a b b c a b
```

Note that $\mathbf{x} = -x$.

```
      (a b d c f e g h)

      (b a c d e f h g)

      (d c a b g h f e)

      (c d b a h g e f)

      (f e g h a b d c)

      (e f h g b a c d)

      (g h f e d c a b)

      (h g e f c d b a)

      (a b c b a d a d c d c b)

      (c a b a d b d c a c b d

      (b c a d b a c a b d b c a c d

      (d b a b c a b d b c a c d

      (d b a b c a b d b c a b d

      (a c d b a b c a b d

      (a c d b a c a b d a c a b d a c
```

Note that $\mathbf{x} = -x$.

```
      (a b d c f e g h)
      (a b c b a d a d c d c b)

      (b a c d e f h g)
      (a c a b a d b d c a c b d)

      (b c a b a d b d c a c b d)
      (a b c a d b a c a d b d c a c b d)

      (b c a d b a c a d b d c a c d b d a c a d b d c a c d
      (a d b c a b d b c a c d)

      (a b c b a d a d c d c b d a c a d b d c a c d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d d
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       an OD(12;3,3,3,3)
```

Note that $\mathbf{x} = -x$.

```
      (a b d c f e g h)
      (a b c b a d a d c d c b)

      (b a c d e f h g)
      (a c a b a d b d c a c b d)

      (b c a b a d b d c a c b d)
      (a b c a d b a c a d b d c a c b d)

      (b c a d b a c a d b d c a c d b d a c a d b d c a c d
      (a d b c a b d b c a c d)

      (a b c b a d a d c d c b d a c a d b d c a c d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d b d a c a d d
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       an OD(12;3,3,3,3)
```

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n):=8q+2^r$ when $n=2^k\cdot p$, where positive integer p is odd, k=4q+r, and $0\leq r<4$. For odd p, $\rho(2^kp)$ depends only on k.

The first few values of $\rho(2^k)$

								7								
								16								

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n) := 8q + 2^r$ when $n = 2^k \cdot p$, where positive integer p is odd, k = 4q + r, and $0 \le r < 4$. For odd p, $\rho(2^kp)$ depends only on k.

The first few values of $\rho(2^k)$

								7								
								16								

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n) := 8q + 2^r$ when $n = 2^k \cdot p$, where positive integer p is odd, k = 4q + r, and $0 \le r < 4$. For odd p, $\rho(2^kp)$ depends only on k.

The first few values of $\rho(2^k)$

								7								
								16								

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n) := 8q + 2^r$ when $n = 2^k \cdot p$, where positive integer p is odd, k = 4q + r, and $0 \le r < 4$. For odd p, $\rho(2^k p)$ depends only on k.

The first few values of $\rho(2^k)$

					/ \											
k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\rho(2^k)$	1	2	4	8	9	10	12	16	17	18	20	24	25	26	28	32

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n):=8q+2^r$ when $n=2^k\cdot p$, where positive integer p is odd, k=4q+r, and $0\leq r<4$. For odd p, $\rho(2^kp)$ depends only on k.

The first few values of $\rho(2^k)$:

1110 mos (en Talado el p(-).																	
	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	$\rho(2^k)$	1	2	4	8	9	10	12	16	17	18	20	24	25	26	28	32

Open Problem 2

There are many open questions related to orthogonal designs and most are elusive.

Number of variables in a *full orthogonal design* (no zero entries) is restricted to the *Radon number*.

Definition

The Radon function, ρ , is defined by $\rho(n):=8q+2^r$ when $n=2^k\cdot p$, where positive integer p is odd, k=4q+r, and $0\leq r<4$. For odd p, $\rho(2^kp)$ depends only on k.

The first few values of $\rho(2^k)$:

1 110 11100 1011 101000 01 p(2).																	
	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	$\rho(2^k)$	1	2	4	8	9	10	12	16	17	18	20	24	25	26	28	32

OP2: Is there an $OD(128; 8_{16})$?

Halving an orthogonal design

Here is a halved $\emph{orthogonal design}$ of order 16 in two variables a and b.

Halving an orthogonal design

Here is a halved *orthogonal design* of order 16 in two variables a and b.

Halving an orthogonal design

Here is a halved *orthogonal design* of order 16 in two variables a and b.

Transpose of first vertical frame.

$$F_{1}^{t} = \begin{bmatrix} a \, \bar{a} \, a \, \bar{a} \, a \, a \, b \, \bar{b} \, b \, \bar{b} \, a \, a \, \bar{b} \, b \, b \, \bar{b} \\ b \, \bar{b} \, b \, \bar{b} \, \bar{b} \, b \, \bar{b} \, \bar{a} \, a \, \bar{a} \, a \, b \, b \, a \, \bar{a} \, \bar{a} \, a \\ b \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{a} \, a \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{a} \, \bar{a} \, \bar{a} \, b \\ b \, b \, \bar{b} \, \bar{b} \, \bar{a} \, a \, b \, \bar{b} \, \bar{a} \, a \, b \, \bar{b} \, \bar{a} \, \bar{a} \, \bar{b} \, b \\ b \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{a} \, a \, b \, b \, \bar{a} \, \bar{a} \, \bar{a} \, b \, b \, \bar{a} \, \bar{a} \\ a \, \bar{a} \, \bar{a} \, a \, b \, \bar{b} \, \bar{b} \, \bar{a} \, a \, \bar{b} \, b \, \bar{b} \, \bar{a} \, a \, \bar{b} \, b \, \bar{b} \, \bar{a} \, a \\ b \, \bar{b} \, \bar{b} \, \bar{b} \, \bar{a} \, a \, \bar{a} \, a \, b \, b \, \bar{a} \, \bar{a} \, \bar{a} \, a \, b \, b \, \bar{a} \, \bar{a} \, \bar{a} \, a \, b \, b \end{bmatrix}$$

Transpose of second vertical frame.

$$F_{2}^{t} = \begin{bmatrix} \bar{a} \ a \ \bar{a} \ a \ a \ a \ \bar{b} \ b \ b \ \bar{b} \ a \ a \ b \ \bar{b} \ b \ \bar{b} \\ \bar{b} \ \bar{b} \ b \ b \ \bar{b} \ a \ a \ \bar{b} \ \bar{b} \ b \ \bar{b} \ a \ a \ b \ \bar{b} \\ \bar{b} \ \bar{b} \ b \ b \ \bar{a} \ a \ a \ b \ \bar{b} \ a \ a \ b \ \bar{b} \ \bar{a} \ a \ b \\ \bar{b} \ \bar{b} \ b \ \bar{b} \ a \ \bar{a} \ \bar{a} \ a \ b \ \bar{b} \ \bar{a} \ a \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ a \ \bar{b} \ b \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ b \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ b \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{b} \ b \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{a} \ \bar{b} \$$

$$F_2F_2^t = (a^2 + b^2)$$

Definition

The orthogonal design X_n is said to be balancedly splittable if X_n contains an $m \times n$ submatrix X_1 such that all of the off diagonal entries of $X_1^*X_1$ are in the set

$$\{\pm c\sigma \mid \sigma = \sum_{\ell=1}^{u} s_{\ell} |x_{\ell}|^2\},\,$$

for some constant c.

Definition

The orthogonal design X_n is said to be balancedly splittable if X_n contains an $m \times n$ submatrix X_1 such that all of the off diagonal entries of $X_1^*X_1$ are in the set

$$\{\pm c\sigma \mid \sigma = \sum_{\ell=1}^{u} s_{\ell} |x_{\ell}|^2\},\,$$

for some constant c.

Definition

The orthogonal design X_n is said to be balancedly splittable if X_n contains an $m \times n$ submatrix X_1 such that all of the off diagonal entries of $X_1^*X_1$ are in the set

$$\{\pm c\sigma \mid \sigma = \sum_{\ell=1}^{u} s_{\ell} |x_{\ell}|^2\},\,$$

for some constant c.

 $\lceil oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} ar{a} oldsymbol{b} ar{a} ar{b} ar{a} ar{b} \rceil$ $a\ b\ a\ b\ \bar{a}\ \bar{b}\ a\ b\ \bar{a}\ \bar{b}\ a\ b\ \bar{a}\ \bar{b}\ a\ b$ $a b a b a b \bar{a} \bar{b} \bar{a} \bar{b} \bar{a} \bar{b} a b a b$ $a b a b \bar{a} \bar{b} \bar{a} \bar{b} a b a b a b \bar{a} \bar{b}$ $\overline{m{b}} \ a \ \overline{m{b}} \ a \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{a}}$ \bar{b} a \bar{b} a a b b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a $a b \bar{a} \bar{b} \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a$ $a b \bar{a} \bar{b} b \bar{a} a b b \bar{a} \bar{b} a a b b \bar{a}$ \bar{b} a b \bar{a} \bar{b} a \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a b \bar{a} b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a a b $b \bar{a} b \bar{a} a b \bar{b} a b \bar{a} a b \bar{b} a \bar{b} a$ $b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a a b b \bar{a} b \bar{a}$ $\bar{a} \bar{b} a b b \bar{a} a b \bar{b} a \bar{b} a a b \bar{b} a$ $\bar{a} \bar{b} a b \bar{b} a a b b \bar{a} b \bar{a} a b b \bar{a}$ $b \bar{a} \bar{b} a \bar{b} a b \bar{a} a b \bar{b} a \bar{b} a b$ $b \bar{a} \bar{b} a b \bar{a} \bar{b} a a b b \bar{a} b \bar{a} a b$

 $\lceil oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} oldsymbol{a} oldsymbol{b} ar{a} oldsymbol{b} ar{a} ar{b} ar{a} ar{b} \rceil$ $a\ b\ a\ b\ \bar{a}\ \bar{b}\ a\ b\ \bar{a}\ \bar{b}\ a\ b\ \bar{a}\ \bar{b}\ a\ b$ $a b a b a b \bar{a} \bar{b} \bar{a} \bar{b} \bar{a} \bar{b} a b a b$ $a b a b \bar{a} \bar{b} \bar{a} \bar{b} a b a b a b \bar{a} \bar{b}$ $\overline{m{b}} \ a \ \overline{m{b}} \ a \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{b}} \ a \ b \ \overline{m{a}}$ \bar{b} a \bar{b} a a b b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a $a b \bar{a} \bar{b} \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a$ $a b \bar{a} \bar{b} b \bar{a} a b b \bar{a} \bar{b} a a b b \bar{a}$ \bar{b} a b \bar{a} \bar{b} a \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a b \bar{a} b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a a b $b \bar{a} b \bar{a} a b \bar{b} a b \bar{a} a b \bar{b} a \bar{b} a$ $b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a a b b \bar{a} b \bar{a}$ $\bar{a} \bar{b} a b b \bar{a} a b \bar{b} a \bar{b} a a b \bar{b} a$ $\bar{a} \bar{b} a b \bar{b} a a b b \bar{a} b \bar{a} a b b \bar{a}$ $b \bar{a} \bar{b} a \bar{b} a b \bar{a} a b \bar{b} a \bar{b} a b$ $b \bar{a} \bar{b} a b \bar{a} \bar{b} a a b b \bar{a} b \bar{a} a b$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

To form the five submatrices A,B,E,F,G we start with an $\mathsf{OD}(2;1,1)$ with commuting real variables $a,b.\mathsf{Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}$$

To form the five submatrices A, B, E, F, G we start with an $\mathsf{OD}(2; 1, 1)$ with commuting real variables $a, b.\mathsf{Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows:

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}$$

To form the five submatrices A, B, E, F, G we start with an $\mathsf{OD}(2; 1, 1)$ with commuting real variables $a, b.\mathsf{Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows:

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

To form the five submatrices A, B, E, F, G we start with an $\mathsf{OD}(2; 1, 1)$ with commuting real variables $a, b.\mathsf{Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows:

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

To form the five submatrices A,B,E,F,G we start with an $\mathsf{OD}(2;1,1)$ with commuting real variables a,b. Let

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows:

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

To form the five submatrices A,B,E,F,G we start with an ${\sf OD}(2;1,1)$ with commuting real variables $a,b.{\sf Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$
.

Theorem

If there is an $OD(n; s_1, ..., s_u)$, then there is a balancedly splittable $OD(4n^2; 4ns_1, 4ns_2, ..., 4ns_u)$.

There are nine submatrices forming the desired matrix as follows:

$$\begin{bmatrix} G & F & -F \\ E & A & B \\ -E & B & A \end{bmatrix}.$$

To form the five submatrices A,B,E,F,G we start with an ${\sf OD}(2;1,1)$ with commuting real variables $a,b.{\sf Let}$

$$X_2 = \begin{bmatrix} a & b \\ b & \bar{a} \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$$
.

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

 $C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1 C_2 \bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1 C_2 \bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

 $C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1 C_2 \bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

 $C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1 C_2 \bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

 $C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1 C_2 \bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}$$

The two auxiliary matrices C_1 and C_2 corresponding to X_2 are defined by

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1C_2\bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}.$$

The two auxiliary matrices C_1 and C_2 corresponding to X_2 are defined by

$$C_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 \\ - \end{bmatrix} \begin{bmatrix} b & \bar{a} \end{bmatrix} = \begin{bmatrix} b & \bar{a} \\ \bar{b} & a \end{bmatrix}.$$

The four rows of $H_2 \otimes X_2$ is used in forming E, G, and F.

$$A = circ(C_1C_2C_2) = \begin{bmatrix} C_1 & C_2 & C_2 \\ C_2 & C_1 & C_2 \\ C_2 & C_2 & C_1 \end{bmatrix}$$

$$B = circ(C_1C_2\bar{C}_2) = \begin{bmatrix} C_1 & C_2 & \bar{C}_2 \\ \bar{C}_2 & C_1 & C_2 \\ C_2 & \bar{C}_2 & C_1 \end{bmatrix}.$$

We get:

$$E = \begin{bmatrix} b \ \bar{a} \ b \ \bar{a} \\ b \ \bar{a} \ b \ \bar{a} \\ a \ b \ \bar{a} \ \bar{b} \\ a \ b \ \bar{a} \ \bar{b} \\ b \ \bar{a} \ \bar{b} \ a \\ b \ \bar{a} \ \bar{b} \ a \end{bmatrix} \qquad A = \begin{bmatrix} a \ b & b \ \bar{a} & b \ \bar{a} \\ a \ b & \bar{a} & \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ a \ b & \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ a \ b & \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ a \ b & \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ a \ b & \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ b \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ b \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & b & \bar{a} & \bar{b} & a \\ a & b & \bar{b} & a & b & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & \bar{a} \\ b & \bar{a} & a & b & \bar{b} & a \\ \bar{b} & \bar{a} & \bar{b} & \bar{a} & a & b \\ \bar{b} & a & b & \bar{a} & a & b \end{bmatrix}$$

The first horizontal frame is now constructed

$$\begin{bmatrix} E & A & B \end{bmatrix}$$

The second horizontal frame is at hand too

$$\begin{bmatrix} -E & B & A \end{bmatrix}$$

We get:

$$E = \begin{bmatrix} b \ \bar{a} \ b \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ a \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ a \\ b \ \bar{a} \ \bar{b} \ \bar{a} \ a \ b \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ a \ b \end{bmatrix} \qquad B = \begin{bmatrix} a \ b \ b \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a}}{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a}}{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{b} \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & b & \bar{a} & \bar{b} & a \\ \underline{a} & b & \bar{b} & a & b & \bar{a} \\ \overline{b} & a & a & b & \bar{b} & \bar{a} \\ \underline{b} & \bar{a} & a & b & \bar{b} & a \\ \overline{b} & \bar{a} & \bar{b} & \bar{a} & a & b \\ \bar{b} & a & b & \bar{a} & a & b \end{bmatrix}$$

The first horizontal frame is now constructed:

$$\begin{bmatrix} E & A & B \end{bmatrix}$$

$$\begin{bmatrix} -E & B & A \end{bmatrix}$$

We get:

$$E = \begin{bmatrix} b \ \bar{a} \ b \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ a \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ b \ \bar{a} \ a \ b \\ \frac{b}{b} \ \bar{a} \ a \ b \\ \frac{b}{b} \ \bar{a} \ a \ b \end{bmatrix} \qquad B = \begin{bmatrix} a \ b \ b \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ b \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ a \ b \\ \bar{b} \ \bar{a} \ a \ b \end{bmatrix} \qquad B = \begin{bmatrix} a \ b \ b \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a} \ b \ \bar{a} \\ \bar{b} \ \bar{a} \ b \ \bar{b} \ \bar{a} \\ \frac{b \ \bar{a} \ \bar{a} \ b \ \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ b \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{b} \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & b & \bar{a} & \bar{b} & a \\ a & b & \bar{b} & a & b & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & \bar{a} \\ b & \bar{a} & a & b & \bar{b} & a \\ \bar{b} & \bar{a} & \bar{b} & \bar{a} & a & b \\ \bar{b} & a & b & \bar{a} & a & b \end{bmatrix}$$

The first horizontal frame is now constructed:

$$\begin{bmatrix} E & A & B \end{bmatrix}$$

The second horizontal frame is at hand too:

$$\begin{bmatrix} -E & B & A \end{bmatrix}$$

We get:

$$E = \begin{bmatrix} b \ \bar{a} \ b \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ a \\ \frac{b}{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ b \ \bar{a} \ a \ b \\ \frac{b}{b} \ \bar{a} \ a \ b \\ \frac{b}{b} \ \bar{a} \ a \ b \end{bmatrix} \qquad B = \begin{bmatrix} a \ b \ b \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ b \ \bar{a} \\ \frac{b}{b} \ \bar{a} \ a \ b \\ \bar{b} \ \bar{a} \ a \ b \end{bmatrix} \qquad B = \begin{bmatrix} a \ b \ b \ \bar{a} \ \bar{b} \ \bar{a} \\ \frac{a \ b \ \bar{b} \ \bar{a} \ b \ \bar{a} \\ \bar{b} \ \bar{a} \ b \ \bar{b} \ \bar{a} \\ \frac{b \ \bar{a} \ \bar{a} \ b \ \bar{b} \ \bar{a} \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ b \\ \bar{b} \ \bar{a} \ \bar{b} \ \bar{a} \ \bar{a} \ \bar{b} \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & b & \bar{a} & \bar{b} & a \\ a & b & \bar{b} & a & b & \bar{a} \\ \bar{b} & a & a & b & \bar{b} & \bar{a} \\ b & \bar{a} & a & b & \bar{b} & a \\ \bar{b} & \bar{a} & \bar{b} & \bar{a} & a & b \\ \bar{b} & a & b & \bar{a} & a & b \end{bmatrix}$$

The first horizontal frame is now constructed:

$$\begin{bmatrix} E & A & B \end{bmatrix}$$

The second horizontal frame is at hand too:

$$\begin{bmatrix} -E & B & A \end{bmatrix}$$

It remains to complement the design by the following two matrices.

$$G = \begin{bmatrix} a & b & a & b \\ a & b & a & b \\ a & b & a & b \\ a & b & a & b \end{bmatrix} \qquad F = \begin{bmatrix} a & b & a & b & a & b \\ \bar{a} & \bar{b} & a & b & \bar{a} & \bar{b} \\ a & b & \bar{a} & \bar{b} & \bar{a} & \bar{b} \\ \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & b \end{bmatrix}$$

It remains to complement the design by the following two matrices.

$$G = \begin{bmatrix} a \ b \ a \ b \\ a \ b \ a \ b \\ a \ b \ a \ b \end{bmatrix} \qquad F = \begin{bmatrix} a \ b \ a \ b \ a \ b \\ \bar{a} \ \bar{b} \ \bar{a} \ \bar{b} \\ \bar{a} \ \bar{b} \ \bar{a} \ \bar{b} \\ \bar{a} \ \bar{b} \ \bar{a} \ \bar{b} \end{bmatrix}$$

It remains to complement the design by the following two matrices.

$$G = \begin{bmatrix} a & b & a & b \\ a & b & a & b \\ a & b & a & b \\ a & b & a & b \end{bmatrix} \qquad F = \begin{bmatrix} a & b & a & b & a & b \\ \bar{a} & \bar{b} & a & b & \bar{a} & \bar{b} \\ a & b & \bar{a} & \bar{b} & \bar{a} & \bar{b} \\ \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & b \end{bmatrix}$$

Putting these together, we obtain a balancedly splittable $\mathsf{OD}(16;8,8).$

$\lceil a\ b\ a\ b \ a\ b \ a\ b \ a\ b \ ar{a}\ ar{b}\ ar{a}\ ar{b}\ ar{a}\ ar{b}^{-}$
$ a b a b \bar{a} \bar{b} a b \bar{a} \bar{b} a b \bar{a} \bar{b} a b$
$ a b a b a b \bar{a} \bar{b} \bar{a} \bar{b} \bar{a} \bar{b} a b a b$
$ a b a b \bar{a} \bar{b} \bar{a} \bar{b} a b a b a b \bar{a} \bar{b}$
$\overline{b\ \bar{a}\ b\ \bar{a}\ a\ b\ b\ \bar{a}\ b\ \bar{a}\ b\ \bar{a}\ b\ \bar{a}\ b\ \bar{a}\ \bar{b}\ a}$
$ b \bar{a} b \bar{a} a b \bar{b} a \bar{b} a a b \bar{b} a b \bar{a} $
$ a b \bar{a} \bar{b} b \bar{a} a b b \bar{a} \bar{b} a a b b \bar{a} $
$ a b \bar{a} \bar{b} \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a$
$ b \bar{a} \bar{b} a b \bar{a} b \bar{a} a b b \bar{a} \bar{b} a a b $
$ b \bar{a} \bar{b} a \bar{b} a \bar{b} a a b \bar{b} a b \bar{a} a b $
$\overline{b} \ a \ \overline{b} \ a \ a \ b \ b \ \overline{a} \ \overline{b} \ a \ a \ b \ b \ \overline{a} \ b \ \overline{a}$
$ \bar{b} a \bar{b} a a b \bar{b} a b \bar{a} a b \bar{b} a \bar{b} a$
$ \bar{a}\bar{b}ab \bar{b}aabb\bar{a} b\bar{a}abb\bar{a} $
$ \bar{a}\bar{b}ab b\bar{a}ab\bar{b}a \bar{b}aab\bar{b}a$
$ \bar{b} a b \bar{a} b \bar{a} \bar{b} a a b b \bar{a} b \bar{a} a b$
$ig\lfloor ar{b} \ a \ b \ ar{a} igert ar{b} \ a \ b \ ar{a} \ a \ b igert ar{b} \ a \ a \ b ig floor$

Given the ${\rm COD}(2;1,1)$ $\begin{vmatrix} a & b \\ \bar{b}^* & a^* \end{vmatrix}$, we have the following balancedly split COD(16; 8, 8)

 $\begin{bmatrix} a & b & a & b & a & b & a & b & a & b & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} \\ a & b & a & b & \bar{a} & \bar{b} & a & b & \bar{a} & \bar{b} & a & b & \bar{a} & \bar{b} & a & b \\ a & b & a & b & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & a & b \\ a & b & a & b & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & \bar{a} & \bar{b} & a & b & a & b \\ a & b & a & b & \bar{a} & \bar{b} \\ a & b & \bar{a} & \bar{b} \\ \bar{b}^* & a^* & \bar{b}^* & a^* & a & b & \bar{b}^* & a^* & \bar{b} & \bar{a}^* & \bar{b} & \bar{a}^* \\ \bar{b}^* & a^* & \bar{b}^* & a^* & a & b & \bar{b}^* & a^* & b & \bar{b}^* & a^* & \bar{b} & \bar{a}^* \\ a & b & \bar{a} & \bar{b} & \bar{b}^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* \\ \bar{b}^* & a^* & b^* & \bar{a}^* & \bar{b}^* & a^* & \bar{b} & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & a^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & a^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{b}^* & \bar{a}^* & \bar{a} & b \\ \bar{b}^* & \bar{a}^* & b^* & \bar{a}^* & \bar{a} & \bar{b} & \bar{b}^* & \bar{a}^* & \bar{a} & b & \bar{b}^* & \bar{a}^* & \bar{a}^* & \bar{a}$ $\overline{b^* \overline{a}^* b^* \overline{a}^* a \ b \ \overline{b}^* a^* b^* \overline{a}^* a \ b \ \overline{b}^* a^* \overline{b}^* a^*}$

26 / 31

Consider the ${\rm COD}(2;1,1)$ given by $\begin{bmatrix} a & b \\ \bar{b}^* & a^* \end{bmatrix}$. Using the construction, we

have the following COD(16; 8, 8)

ſ	a	b	a	b	a	b	a	b	a	b	$ \bar{a} $	\bar{b}	\bar{a}	\bar{b}	\bar{a}	$ar{b}$.
	a	b	a	b	\bar{a}	\bar{b}	a	b	\bar{a}	$ar{b}$	a	b	\bar{a}	\bar{b}	a	b
İ	a	b	a	b	a	b	\bar{a}	\bar{b}	\bar{a}	\bar{b}	\bar{a}	\bar{b}	a	b	a	b
	a	b	a	b	\bar{a}	\bar{b}	\bar{a}	\bar{b}	a	b	a	b	a	b	\bar{a}	\bar{b}
	\bar{b}^*	a^*	\bar{b}^*	a^*	a	b	\bar{b}^*	a^*	\bar{b}^*	a^*	a	b	\bar{b}^*	a^*	b^*	\bar{a}^*
	\bar{b}^*	a^*	\bar{b}^*	a^*	a	b	b^*	\bar{a}^*	b^*	\bar{a}^*	a	b	b^*	\bar{a}^*	\bar{b}^*	a^*
	a	b	\bar{a}	$ar{b}$	\bar{b}^*	a^*	a	b	\bar{b}^*	a^*	b^*	\bar{a}^*	a	b	\bar{b}^*	a^*
	a	b	\bar{a}	$ar{b}$	b^*	\bar{a}^*	a	b	b^*	\bar{a}^*	$ \bar{b}^* $	a^*	a	b	b^*	\bar{a}^*
	\bar{b}^*	a^*	b^*	\bar{a}^*	\bar{b}^*	a^*	\bar{b}^*	a^*	a	b	\bar{b}^*	a^*	b^*	\bar{a}^*	a	b
	\bar{b}^*	a^*	b^*	\bar{a}^*	b^*	\bar{a}^*	b^*	\bar{a}^*	a	b	b^*	\bar{a}^*	\bar{b}^*	a^*	a	b
	$\overline{b^*}$	\bar{a}^*	b^*	\bar{a}^*	a	b	\bar{b}^*	a^*	b^*	\bar{a}^*	a	b	\bar{b}^*	a^*	\bar{b}^*	$\overline{a^*}$
	b^*	\bar{a}^*	b^*	\bar{a}^*	a	b	b^*	\bar{a}^*	\bar{b}^*	a^*	a	b	b^*	\bar{a}^*	b^*	\bar{a}^*
	\bar{a}	\bar{b}	a	b	b^*	\bar{a}^*	a	b	\bar{b}^*	a^*	$ \bar{b}^* $	a^*	a	b	\bar{b}^*	a^*
	\bar{a}	\bar{b}	a	b	\bar{b}^*	a^*	a	b	b^*	\bar{a}^*	b^*	\bar{a}^*	a	b	b^*	\bar{a}^*
	b^*	\bar{a}^*	\bar{b}^*	a^*	\bar{b}^*	a^*	b^*	\bar{a}^*	a	b	$ \bar{b}^* $	a^*	\bar{b}^*	a^*	a	b
L	b^*	\bar{a}^*	\bar{b}^*	a^*	b^*	\bar{a}^*	\bar{b}^*	a^*	a	b	b^*	\bar{a}^*	b^*	\bar{a}^*	a	b

Given the QOD(2;1,1) $\begin{bmatrix} \bar{a} & bi \\ \bar{b}j & ak \end{bmatrix}$, we have the following balancedly split QOD(16;8,8)

 $\begin{bmatrix} \bar{a} & bi & a & \bar{b}i & a & \bar{b}i \\ \bar{a} & bi & \bar{a} & bi & a & \bar{b}i & \bar{a} & bi & a & \bar{b}i & \bar{a} & bi \\ \bar{a} & bi & \bar{a} & bi & \bar{a} & bi & a & \bar{b}i & a & \bar{b}i & \bar{a} & bi \\ \bar{a} & bi & \bar{a} & bi & \bar{a} & bi & a & \bar{b}i & a & \bar{b}i & \bar{a} & bi & \bar{a} & bi \\ \bar{a} & bi & \bar{a} & bi & a & \bar{b}i & \bar{a} & bi & \bar{a} & bi & \bar{a} & bi & \bar{a} & bi \\ \bar{b}j & ak & \bar{b}j & ak & \bar{a} & bi & \bar{b}j & ak & \bar{b}j & ak & \bar{b}j & \bar{a}k \\ \hline bj & ak & \bar{b}j & ak & \bar{a} & bi & \bar{b}j & ak & \bar{b}j & ak & \bar{b}j & \bar{a}k \\ \hline \end{bmatrix}$ $\bar{b}j ak \bar{b}j ak \bar{a} bi bj \bar{a}k bj \bar{a}k \bar{a} bi bj \bar{a}k \bar{b}j ak$ \bar{a} bi a \bar{b} i \bar{b} j ak \bar{a} bi \bar{b} j ak bj \bar{a} k \bar{a} bi \bar{b} j ak \bar{a} bi a $\bar{b}i$ bj $\bar{a}k$ \bar{a} bi bj $\bar{a}k$ $\bar{b}j$ ak \bar{a} bi bj $\bar{a}k$ $\bar{b}j \, ak \, bj \, \bar{a}k \, \bar{b}j \, ak \, \bar{b}j \, ak \, \bar{a} \, bi \, \bar{b}j \, ak \, bj \, \bar{a}k \, \bar{a} \, bi$ $\bar{b}j \, ak \, bj \, \bar{a}k \, bj \, \bar{a}k \, bj \, \bar{a}k \, bj \, \bar{a}k \, \bar{b}j \, ak \, \bar{a} \, bi$ $\overline{bj} \, \overline{ak} \, bj \, \overline{ak} \, \overline{a} \, bi \, \overline{bj} \, ak \, bj \, \overline{ak} \, \overline{a} \, bi \, \overline{bj} \, ak \, \overline{bj} \, ak$ $bj \bar{a}k bj \bar{a}k \bar{a}$ bi $bj \bar{a}k \bar{b}j ak \bar{a}$ bi $bj \bar{a}k bj \bar{a}k$ $a \ \overline{b}i \ \overline{a} \ bi \ bj \ \overline{a}k \ \overline{a} \ bi \ \overline{b}j \ ak \ \overline{b}j \ ak \ \overline{a} \ bi \ \overline{b}j \ ak$ $bj\ \bar{a}k\ \bar{b}j\ ak\ \bar{b}j\ ak\ bj\ \bar{a}k\ \bar{a}\ bi\ \bar{b}j\ ak\ \bar{b}j\ ak\ \bar{a}\ bi$ $bi \bar{a}k \bar{b}j ak bj \bar{a}k \bar{b}j ak \bar{a} bi bj \bar{a}k bj \bar{a}k \bar{a} bi$

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144).

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144) .

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144) .

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144).

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144) .

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144)

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144).

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144).

Theorem

Theorem

There is a balancedly splittable Hadamard matrix with parameters $(16n^2, 2n(4n-1), 2n)$ for each n for which there is a Hadamard matrix of order 2n.

This leaves the existence of balancedly splittable Hadamard matrices of order $16n^2$, n odd, open starting from n=3.

OP3: There is (no) balancedly splittable Hadamard matrix of order $16n^2$, n odd.

The first open case is H(144).

Theorem

Let $X = \{L_1, L_2, \dots, L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i, \mathbf{u}_j \rangle| = \alpha$, for some number $0 < \alpha < 1$, $i \neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975)

Let $X\subset\mathbb{R}^m$ be a set of unit vectors such that $|\langle v,w
angle|=lpha$ for all $v,w\in X,v
eq w$. If $m<rac{1}{lpha^2}$, then

$$|X| \le \frac{m(1-\alpha^2)}{1-m\alpha^2}.\tag{1}$$

Theorem

Let $X = \{L_1, L_2, \dots, L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i, \mathbf{u}_j \rangle| = \alpha$, for some number $0 < \alpha < 1$, $i \neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975)

Let $X\subset\mathbb{R}^m$ be a set of unit vectors such that $|\langle v,w
angle|=lpha$ for all $v,w\in X,v
eq w$. If $m<rac{1}{lpha^2}$, then

$$|X| \le \frac{m(1 - \alpha^2)}{1 - m\alpha^2}.\tag{1}$$

Theorem

Let $X = \{L_1, L_2, \dots, L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i, \mathbf{u}_j \rangle| = \alpha$, for some number $0 < \alpha < 1$, $i \neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975). Let $X \subset \mathbb{R}^m$ be a set of unit vectors such that $|\langle v, w \rangle| = \alpha$ for all

 $v,w\in X,v\neq w.$ If $m<\frac{1}{\alpha^2}$, then

$$|X| \le \frac{m(1-\alpha^2)}{1-m\alpha^2}. (1)$$

Theorem

Let $X=\{L_1,L_2,\ldots,L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i,\mathbf{u}_j\rangle|=\alpha$, for some number $0<\alpha<1,\ i\neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975).

Let $X\subset\mathbb{R}^m$ be a set of unit vectors such that $|\langle v,w
angle|=lpha$ for all $v,w\in X,v
eq w$. If $m<rac{1}{lpha^2}$, then

$$|X| \le \frac{m(1 - \alpha^2)}{1 - m\alpha^2}.\tag{1}$$

Theorem

Let $X=\{L_1,L_2,\ldots,L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i,\mathbf{u}_j\rangle|=\alpha$, for some number $0<\alpha<1,\ i\neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975).

Let $X\subset\mathbb{R}^m$ be a set of unit vectors such that $|\langle v,w\rangle|=\alpha$ for all $v,w\in X,v\neq w$. If $m<\frac{1}{\alpha^2}$, then

$$|X| \le \frac{m(1 - \alpha^2)}{1 - m\alpha^2}.\tag{1}$$

Theorem

Let $X = \{L_1, L_2, \dots, L_k\}$ be a finite set of lines in \mathbb{R}^m and let the line L_i be spanned by the unit vector \mathbf{u}_i . X is said to form an equiangular lines set, if $|\langle \mathbf{u}_i, \mathbf{u}_j \rangle| = \alpha$, for some number $0 < \alpha < 1$, $i \neq j$.

The following upper bound is due to Delsarte, Goethals and Seidel (1975).

Let $X\subset\mathbb{R}^m$ be a set of unit vectors such that $|\langle v,w\rangle|=\alpha$ for all $v,w\in X,v\neq w$. If $m<\frac{1}{\alpha^2}$, then

$$|X| \le \frac{m(1 - \alpha^2)}{1 - m\alpha^2}.\tag{1}$$

Theorem

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ightharpoonup No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ightharpoonup No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- ▶ There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ▶ No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- ▶ There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ightharpoonup No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- ▶ There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ▶ No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- ▶ There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.

- ▶ There is a balancedly splittable Hadamard matrix of order $4n^2$ for any n an order of a Hadamard matrix. Case of n = 12.
- ▶ There is a twin set of flat ETF meeting the Delsarte, Goethals and Seidel bound in \mathbb{R}^{2n^2-n} for each n an order of a Hadamard matrix.
- ▶ No Hadamard matrix of order $4n^2$, n odd, is balancedly splittable.
- ▶ There is a balancedly splittable quaternary Hadamard matrix of order $16n^2$ for which there is a quaternary Hadamard matrix of order 2n. Case of n=6.
- ▶ There is a balancedly splittable complex Hadamard matrix of order $4n^2$, n odd for which there is a complex Hadamard matrix of order n. Case of n=3.