Equiangular lines over finite fields - Problem list

Joseph W. Iverson

Department of Mathematics Iowa State University Ames, IA, USA

Open Problems in Algebraic Combinatorics Online Workshop May 4, 2021

Major open problems

Problem (Relative bound)

For which (d, n) is there a real $d \times n$ ETF? Complex?

- ▶ Real case: ETFs are equivalent to SRGs with $k=2\mu$, many necessary conditions, smallest open case is 33×66 43 \times 86
- Complex case: Many examples, but nonexistence is hard

Problem (Real absolute bound)

For which d is there a real $d \times {d+1 \choose 2}$ ETF?

- ▶ Existence known only for d = 2, 3, 7, 23
- ▶ Necessary conditions: $d \le 3$ or d + 2 is an odd square
- Next open case is d = 79

Major open problems

Problem (Complex absolute bound / Zauner's conjecture)

Prove that for every $d \ge 1$, there is a complex $d \times d^2$ ETF.

- Numerical evidence for $d \le 151$ (then computers are slow)
- ▶ Known for only finitely many dimensions d (e.g. $d \le 24$)
- ▶ 2021 EUR prize for proof in infinitely many dimensions
- Seems related to Stark conjectures and Hilbert's 12th problem

Zauner, PhD Thesis, U Vienna, 1999 Golden KCIK Award, arXiv: 2002.03233

Appleby, Flammia, McConnell, Yard, Found. Phys., 2017

Kopp, Int. Math. Res. Not., 2019

Image from gerhardzauner.at

More open problems

Problem

Does every SRG arise from some kind of "ETF"?

- ▶ Brouwer's table of feasible SRG parameters: 211 known complementary pairs of parameters with $v \le 1300$
- ▶ All but 9 pairs (95%) come from finite field ETFs:

V	k	λ	μ	V	k	λ	μ		V	k	λ	μ
21	10	3	6	70	27	12	9	-	220	84	38	28
40	12	2	4	112	30	2	10		280	117	44	52
57	24	11	9	120	42	8	18		512	196	60	84

More open problems

Problem (Relative bound)

Given an orthogonal geometry on \mathbb{F}_q^d and $a,b\in\mathbb{F}_q$, find an upper bound for the size of an (a,b)-equiangular system.

- Efficient bound may disprove SRGs
- Is there a (2,1)-equiangular system with 100 vectors in an orthogonal geometry on \mathbb{F}_5^{45} ?
- ▶ If not, then Conway's 99-graph DNE

Problem

Suppose that, for infinitely many pairwise coprime q, there is a $d \times n$ ETF in a unitary geometry on $\mathbb{F}_{q^2}^d$. Is there $d \times n$ complex ETF as well?

More open problems

Problem

For which (q,d) is Gerzon's bound $n \leq d^2$ saturated by an (a,b)-equiangular system with $a^2 \neq b$ in a unitary geometry on $\mathbb{F}_{q^2}^d$?

- Zauner: For every d, there exists q
- ► Harder than Zauner to solve completely
- Easier to make progress

Problem

Generalize (doubly transitive) complex 3×9 to an infinite family over a finite field.

More problems

Problem

Is there a combinatorial description of ETFs in finite unitary geometry?

► ETFs in orthogonal geometry are equivalent to "modular SRGs"

Problem

Find necessary conditions (e.g. integrality constraints) for ETF existence in unitary geometry.

 Efficient solution may give necessary conditions for existence of complex ETFs