Equiangular lines over finite fields

Joseph W. Iverson

Department of Mathematics Iowa State University Ames, IA, USA

Open Problems in Algebraic Combinatorics Online Workshop May 4, 2021

Collaborators

Gary R.W. Greaves Nanyang Technological University

John Jasper South Dakota State University

Dustin G. Mixon The Ohio State University

Outline

Context: Real and complex equiangular lines

Equiangular lines in orthogonal geometry

Equiangular lines in unitary geometry

Outline

Context: Real and complex equiangular lines

Equiangular lines in orthogonal geometry

Equiangular lines in unitary geometry

Line packing

Problem

Pack n lines (1-dim subspaces) in \mathbb{R}^d or \mathbb{C}^d without sharp angles

► Given lines, choose unit norm reps

$$\varphi \bigvee_{\psi}^{\theta} \psi$$

$$\cos\theta = |\langle \varphi, \psi \rangle|$$

$$\Phi = \left[\begin{array}{ccc} | & & | \\ \varphi_1 & \cdots & \varphi_n \\ | & & | \end{array} \right] \in \mathbb{C}^{d \times n}$$

► To avoid sharp angles, minimize coherence

$$\mu = \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|$$

An application

Uniquely solve an underdetermined system

$$\left[\qquad \Phi \qquad \right] \left[x \right] = \left[y \right]$$

An application

Uniquely solve an underdetermined system

$$\left[\qquad \Phi \qquad \right] \left[x \right] = \left[y \right]$$

Compressed sensing

 $\Phi x = y$ has a unique **sparse** solution if

- x has a lot of zero entries, and
- the columns of Φ are "very different"

In fact, x can be found by a linear program

- ► Span lines with wide angles ⇒ "very different"
- ▶ Better coherence ⇒ fewer zeros required

Image from mylittledrummerboys.blogspot.com
Donoho & Elad, Proc. Natl. Acad. Sci. USA, 2003
Candès, Romberg & Tao, IEEE Trans. Inform. Theory, 2006

Recognizing optimal packings

Theorem (Welch bound)

Given *n* unit vectors spanning \mathbb{R}^d or \mathbb{C}^d

$$\Phi = \left[\begin{array}{ccc} \varphi_1 & \cdots & \varphi_n \end{array} \right] \in \mathbb{C}^{d \times n},$$

their coherence $\mu := \max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|$ satisfies

$$\mu \geq \sqrt{\frac{n-d}{d(n-1)}}.$$

Equality holds iff Φ is an **equiangular tight frame** (ETF):

- ▶ Equiangular: $|\langle \varphi_i, \varphi_j \rangle| = \mu$ for all $i \neq j$
- ► Tight frame: $ΦΦ^* = const \cdot I$

Proof.

$$\|\Phi \Phi^* - \frac{n}{d}I_d\|_F^2 = \sum_{i,j \in [n]} |\langle \varphi_i, \varphi_j \rangle|^2 - \frac{n^2}{d} \le (n^2 - n)\mu^2 + n - \frac{n^2}{d}$$

Welch, IEEE Trans. Inform. Theory, 1974

Image from calit2.net

Real and complex equiangular lines

Corollary (Relative bound)

Suppose $\mu^2 < \frac{1}{d}$ and there are n unit vectors

$$\Phi = \begin{bmatrix} \varphi_1 & \dots & \varphi_n \end{bmatrix}$$

in \mathbb{R}^d or \mathbb{C}^d such that $|\langle \varphi_i, \varphi_j \rangle| = \mu$ for every $i \neq j$. Then

$$n \leq \frac{d(1-\mu^2)}{1-d\mu^2}.$$

Equality holds if and only if Φ is an ETF.

J.J. Seidel

Real and complex equiangular lines

Theorem (Absolute/Gerzon bound)

If there are n unit vectors

$$\Phi = \begin{bmatrix} \varphi_1 & \dots & \varphi_n \end{bmatrix}$$

in \mathbb{R}^d or \mathbb{C}^d such that $|\langle \varphi_i, \varphi_j \rangle| = \mu$ is constant for $i \neq j$, then

$$n \le egin{cases} {d+1 \choose 2}, & \textit{real case;} \\ {d^2}, & \textit{complex case.} \end{cases}$$

Michael Gerzon

If equality holds, then Φ is an ETF.

Proof of bound.

- $[\langle \varphi_i \varphi_i^*, \varphi_j \varphi_j^* \rangle_F]_{ij} = [|\langle \varphi_i, \varphi_j \rangle|^2]_{ij} = \mu J + (1 \mu)I \text{ is invertible}$
- ▶ So $\{\varphi_j \varphi_j^*\}_{j \in [n]}$ is linearly independent in the real space of self-adjoint matrices

Major open problems

Problem (Relative bound)

For which (d, n) is there a real $d \times n$ ETF? Complex?

- ▶ Real case: ETFs are equivalent to SRGs with $k=2\mu$, many necessary conditions, smallest open case is 33×66 43 \times 86
- Complex case: Many examples, but nonexistence is hard

Major open problems

Problem (Relative bound)

For which (d, n) is there a real $d \times n$ ETF? Complex?

- ▶ Real case: ETFs are equivalent to SRGs with $k=2\mu$, many necessary conditions, smallest open case is 33×66 43 \times 86
- Complex case: Many examples, but nonexistence is hard

Problem (Real absolute bound)

For which d is there a real $d imes {d+1 \choose 2}$ ETF?

- ▶ Existence known only for d = 2, 3, 7, 23
- ▶ Necessary conditions: $d \le 3$ or d + 2 is an odd square
- Next open case is d = 79

Major open problems

Problem (Complex absolute bound / Zauner's conjecture)

Prove that for every $d \ge 1$, there is a complex $d \times d^2$ ETF.

Gerhard Zauner

- Numerical evidence for $d \le 151$ (then computers are slow)
- ▶ Known for only finitely many dimensions d (e.g. $d \le 24$)
- ▶ 2021 EUR prize for proof in infinitely many dimensions
- Seems related to Stark conjectures and Hilbert's 12th problem

Zauner, PhD Thesis, U Vienna, 1999
Golden KCIK Award, arXiv:2002.03233
Appleby, Flammia, McConnell, Yard, Found. Phys., 2017
Kopp, Int. Math. Res. Not., 2019
Image from gerhardzauner.at

This talk

Our approach

Consider finite field versions of the above problems

- ▶ Orthogonal geometry \approx finite \mathbb{R}^d
- ▶ Unitary geometry \approx finite \mathbb{C}^d

What's coming:

- Basic definitions and results
- ▶ Interactions with real/complex cases
- Connections with algebraic combinatorics
- Gerzon equality in infinitely many dimensions for both orthogonal and unitary geometry

Outline

Context: Real and complex equiangular lines

Equiangular lines in orthogonal geometry

Equiangular lines in unitary geometry

Finite orthogonal geometry

Throughout this section, $q = p^k$ is an odd prime power.

Definition

An **orthogonal geometry** on \mathbb{F}_q^d is given by a nondegenerate symmetric bilinear form $\langle \cdot, \cdot \rangle \colon \mathbb{F}_q^d \times \mathbb{F}_q^d \to \mathbb{F}_q$. That means for every x and y:

- $ightharpoonup \langle x,\cdot
 angle \colon \mathbb{F}_q^d o \mathbb{F}_q$ is linear
- ▶ if $x \neq 0$, then $\langle x, \cdot \rangle \colon \mathbb{F}_q^d \to \mathbb{F}_q$ is not the zero mapping

Examples

- \triangleright $\langle x, y \rangle = x^{\top} y$
- $lackbox{M} = M^ op \in \mathbb{F}_q^{d imes d}$ is invertible, and $\langle x, y \rangle = x^ op My$
- lacktriangle Every example takes this form with $M = \left[\langle e_i, e_j
 angle
 ight]_{ij}$

Notation:

- $ightharpoonup \mathbb{F}_q^{\times}$ is the multiplicative group of units
- $ightharpoonup \mathbb{F}_q^{ imes 2} \leq \mathbb{F}_q^{ imes}$ is the subgroup of quadratic residues (squares)

Notation:

- $ightharpoonup \mathbb{F}_q^{\times}$ is the multiplicative group of units
- lacksquare $\mathbb{F}_q^{ imes 2} \leq \mathbb{F}_q^{ imes}$ is the subgroup of quadratic residues (squares)

Change of basis:

▶ If $\langle x, y \rangle = x^\top My$ and if $B \in \mathbb{F}_q^{d \times d}$ is invertible, then $\langle Bx, By \rangle = x^\top B^\top MBy$

Notation:

- $ightharpoonup \mathbb{F}_q^{ imes}$ is the multiplicative group of units
- lacksquare $\mathbb{F}_q^{ imes 2} \leq \mathbb{F}_q^{ imes}$ is the subgroup of quadratic residues (squares)

Change of basis:

- ▶ If $\langle x, y \rangle = x^\top My$ and if $B \in \mathbb{F}_q^{d \times d}$ is invertible, then $\langle Bx, By \rangle = x^\top B^\top MBy$
- $ightharpoonup \det(B)^T MB) = \det(M) \det(B)^2 \in \det(M) \mathbb{F}_q^{\times 2}$
- ▶ $\det(M) \mathbb{F}_q^{\times 2} \in \mathbb{F}_q^{\times} / \mathbb{F}_q^{\times 2}$ is an invariant of $\langle \cdot, \cdot \rangle$

Notation:

- $ightharpoonup \mathbb{F}_q^{ imes}$ is the multiplicative group of units
- $ightharpoonup \mathbb{F}_q^{ imes 2} \leq \mathbb{F}_q^{ imes}$ is the subgroup of quadratic residues (squares)

Change of basis:

- ▶ If $\langle x, y \rangle = x^\top My$ and if $B \in \mathbb{F}_q^{d \times d}$ is invertible, then $\langle Bx, By \rangle = x^\top B^\top MBy$
- $ightharpoonup \det(B) \det(B)^2 \in \det(M) \mathbb{F}_q^{\times 2}$
- ▶ $\det(M) \mathbb{F}_q^{\times 2} \in \mathbb{F}_q^{\times} / \mathbb{F}_q^{\times 2}$ is an invariant of $\langle \cdot, \cdot \rangle$

Proposition

Up to linear isometry, there exactly two kinds of orthogonal geometry on \mathbb{F}_q^d :

- ▶ Square type: det $M \in \mathbb{F}_q^{\times 2}$ (e.g. $\langle x, y \rangle = x^\top y$)
- Nonsquare type: det $M \notin \mathbb{F}_a^{\times 2}$

Fix an orthogonal geometry on \mathbb{F}_q^d

Definition

For $a, b, c \in \mathbb{F}_q$, a sequence $\varphi_1, \ldots, \varphi_n \in \mathbb{F}_q^d$ is:

a frame if it spans \mathbb{F}_q^d ;

Fix an orthogonal geometry on \mathbb{F}_q^d

Definition

For $a, b, c \in \mathbb{F}_q$, a sequence $\varphi_1, \ldots, \varphi_n \in \mathbb{F}_q^d$ is:

- **a frame** if it spans \mathbb{F}_q^d ;
- **a** c-**tight frame** if it spans \mathbb{F}_q^d and moreover

$$\sum_{j\in[n]}\langle\varphi_j,x\rangle\varphi_j=cx$$

for every $x \in \mathbb{F}_q^d$;

Fix an orthogonal geometry on \mathbb{F}_q^d

Definition

For $a, b, c \in \mathbb{F}_q$, a sequence $\varphi_1, \ldots, \varphi_n \in \mathbb{F}_q^d$ is:

- ▶ a **frame** if it spans \mathbb{F}_q^d ;
- ▶ a c-tight frame if it spans \mathbb{F}_q^d and moreover

$$\sum_{j\in[n]}\langle\varphi_j,x\rangle\varphi_j=cx$$

for every $x \in \mathbb{F}_q^d$;

- ► an (a, b)-equiangular system if:
 - (i) $\langle \varphi_i, \varphi_i \rangle = a$ for every $i \in [n]$, and
 - (ii) $\langle \varphi_i, \varphi_j \rangle^2 = b$ for every $i \neq j$ in [n];

Fix an orthogonal geometry on \mathbb{F}_q^d

Definition

For $a,b,c\in\mathbb{F}_q$, a sequence $\varphi_1,\ldots,\varphi_n\in\mathbb{F}_q^d$ is:

- ▶ a **frame** if it spans \mathbb{F}_q^d ;
- **a** c-**tight frame** if it spans \mathbb{F}_q^d and moreover

$$\sum_{j\in[n]}\langle\varphi_j,x\rangle\varphi_j=cx$$

for every $x \in \mathbb{F}_q^d$;

- ► an (a, b)-equiangular system if:
 - (i) $\langle \varphi_i, \varphi_i \rangle = a$ for every $i \in [n]$, and
 - (ii) $\langle \varphi_i, \varphi_j \rangle^2 = b$ for every $i \neq j$ in [n];
- ➤ an (a, b, c)-equiangular tight frame (ETF) if it is an (a, b)-equiangular system and a c-tight frame.

Differences from real case

Examples of differences with
$$p = 3$$
 and $\langle x, y \rangle = x^{\top} y$

Nonzero vectors can have "norm" 0:

$$ightharpoonup x = egin{bmatrix} 1 & 1 & 1 \end{bmatrix}^ op \mathsf{has} \ \langle x, x
angle = 0$$

Differences from real case

Examples of differences with
$$p = 3$$
 and $\langle x, y \rangle = x^{\top} y$

Nonzero vectors can have "norm" 0:

$$ightharpoonup x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{ op} \mathsf{has} \ \langle x, x \rangle = 0$$

Tight frames can have constant 0:

$$lackbox{} \Phi = egin{bmatrix} 1 & 1 & 1 \end{bmatrix} \ \mathsf{has} \ \Phi \Phi^\top = 0 \emph{I}$$

Differences from real case

Examples of differences with
$$p = 3$$
 and $\langle x, y \rangle = x^{\top} y$

Nonzero vectors can have "norm" 0:

$$ightharpoonup x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\top} \text{ has } \langle x, x \rangle = 0$$

Tight frames can have constant 0:

$$lackbox{\Phi} = egin{bmatrix} 1 & 1 & 1 \end{bmatrix} \ \mathsf{has} \ \Phi \Phi^\top = \mathsf{O} I$$

Spectral theorem fails:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}^2 = 0, \text{ so } \sigma(J_3) = \{0^2\} \text{ and } J_3 \text{ is not diagonalizable }$$

Example:
$$4 \times 10 = \binom{4+1}{2}$$
 ETF

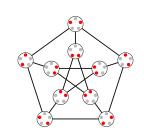
$$p = 3$$
, $M = diag(1, 1, 1, 2)$

is an ETF with (a, b, c) = (0, 1, 0) since rank $\Phi = 4$, $\Phi \Phi^{\top} M = 0$,

Example:
$$4 \times 10 = \binom{4+1}{2}$$
 ETF

$$p = 3$$
, $M = diag(1, 1, 1, 2)$

is an ETF with (a, b, c) = (0, 1, 0) since rank $\Phi = 4$, $\Phi \Phi^{\top} M = 0$,



Frames from Gram matrices

Suppose $\langle x, y \rangle = x^{\top} M y$.

If $\varphi_1,\ldots,\varphi_n\in\mathbb{F}_q^d$ spans, then it contains a basis, and a principal submatrix of $\left[\langle \varphi_i,\varphi_j\rangle\right]_{ij}$ is a Gram matrix for $\langle\cdot,\cdot\rangle$.

Frames from Gram matrices

Suppose $\langle x, y \rangle = x^{\top} M y$.

If $\varphi_1, \ldots, \varphi_n \in \mathbb{F}_q^d$ spans, then it contains a basis, and a principal submatrix of $\left[\langle \varphi_i, \varphi_j \rangle \right]_{ii}$ is a Gram matrix for $\langle \cdot, \cdot \rangle$.

Theorem

Given $G \in \mathbb{F}_q^{n \times n}$, choose columns that form a basis for Col G, and let G_b be the corresponding principal submatrix. There exists a spanning set $\varphi_1, \ldots, \varphi_n \in \mathbb{F}_q^d$ such that $G = \left[\langle \varphi_i, \varphi_j \rangle \right]_{ii}$ iff:

- (i) $G^{\top} = G$,
- (ii) rank G = d,
- (iii) $\det(G_b) \in \det(M) \mathbb{F}_q^{\times 2}$.
 - Every symmetric matrix is a Gram matrix in some geometry

ETFs from Gram matrices

Corollary

Suppose $G \in \mathbb{F}_q^{n \times n}$ has rank G = d. Then G is the Gram matrix of an (a, b, c)-ETF in an orthogonal geometry on \mathbb{F}_q^d iff:

- (i) $G = G^{\top}$,
- (ii) $G_{ii} = a$ for every $i \in [n]$,
- (iii) $(G_{ij})^2 = b$ for every $i \neq j$ in [n],
- (iv) $G^2 = cG$.

$$G = \begin{bmatrix} 0 & - & + & + & - & - & + & + & + & + \\ - & 0 & - & + & + & - & + & + & + \\ + & - & 0 & - & + & + & - & + & + \\ + & + & 0 & - & + & + & + & - & + \\ - & + & + & - & 0 & + & + & + & + & - \\ - & + & + & + & + & 0 & + & - & - & + \\ + & - & + & + & + & 0 & + & - & - \\ + & + & - & + & + & - & + & 0 & + \\ - & + & + & - & + & - & + & 0 & + \\ + & + & + & - & + & - & - & + & 0 \end{bmatrix}, G^2 = 0 \qquad \Longrightarrow \qquad \Phi = \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 0 & 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 2 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 & 2 & 1 & 1 & 0 & 1 & 0 \end{bmatrix},$$

$$(a, b, c) = (0, 1, 0)$$

Overlap with the real case

Recall $q = p^k$ is an odd prime power.

Proposition

Suppose there is a real $d \times n$ ETF with n > d + 1, and either

- (i) $n \neq 2d$ and $p \nmid \sqrt{\frac{d(n-1)}{n-d}}$; or
- (ii) n = 2d and $n 1 \in \mathbb{F}_q^{\times 2}$.

Then there is a $d \times n$ ETF in an orthogonal geometry on \mathbb{F}_q^d .

Proposition

Suppose there is a $d \times n$ ETF in an orthogonal geometry on \mathbb{F}_q^d . If p > 2n - 5, then there is a real $d \times n$ ETF.

- ► Moral: Lots of overlap with the real case
- Caveat: Weird stuff in the cracks!

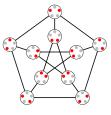
Strongly regular graphs

Definition

A (simple, undirected) graph is **strongly regular** if it is neither edgeless nor complete, and there are parameters k, λ, μ such that:

- every vertex has exactly k neighbors,
- ightharpoonup every pair of adjacent vertices have exactly λ neighbors in common, and
- every pair of distinct nonadjacent vertices have exactly μ neighbors in common.

If there are v vertices, then we call it a (v, k, λ, μ) -SRG.



Petersen graph: v = 10, k = 3, $\lambda = 0, \mu = 1$

SRG notation

Given a (v, k, λ, μ) -SRG:

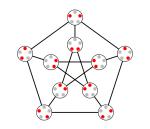
- ► The $\{0,1\}$ -adjacency matrix A has $\sigma(A) =: \{k^1, r^f, s^g\}$, where r > 0 > s
- ► Each of r, s, f, g is a function of (v, k, λ, μ)

SRG notation

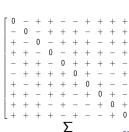
Given a (v, k, λ, μ) -SRG:

- ► The $\{0,1\}$ -adjacency matrix A has $\sigma(A) =: \{k^1, r^f, s^g\}$, where r > 0 > s
- ► Each of r, s, f, g is a function of (v, k, λ, μ)
- ► The Seidel adjacency matrix $\Sigma := J 2A I$ has $\sigma(\Sigma) = \{(v 2k 1)^1, (-2r 1)^f, (-2s 1)^g\}$

$$\Sigma_{ij} = \begin{cases} -1, & \text{if } i \sim j; \\ 1, & \text{if } i \nsim j \text{ and } i \neq j; \\ 0, & \text{if } i = j \end{cases}$$



Γ0	1	0	0	1	1	0	0	0	0 -
1	0	1	0	0	0	1	0	0	0
0	1	0	1	0	0	0	1	0	0
0	0	1	0	1	0	0	0	1	0
1	0	0	1	0	0	0	0	0	1
1	0	0	0	0	0	0	1	1	0
0	1	0	0	0	0	0	0	1	1
0	0	1	0	0	1	0	0	0	1
0	0	0	1	0	1	1	0	0	0
Lο	0	0	0	1	0	1	1	0	0 .



SRGs and ETFs

Notation: For $M \in \mathbb{Z}^{n \times n}$, $\overline{M} \in \mathbb{F}_p^{n \times n}$ is its image mod p

Theorem

Given an SRG with $f \neq g$, define $G := \Sigma + (2r+1)I$ and $d := \operatorname{rank}_p \overline{G}$. If p divides $v - 4k + 2\lambda + 2\mu$, then \overline{G} is the Gram matrix of a (2r+1,1,2r-2s)-ETF with size $d \times v$ in an orthogonal geometry on \mathbb{F}_p^d . Furthermore:

- (a) If $r \not\equiv_p s$ and $v 2k + 2r \not\equiv_p 0$, then d = g + 1.
- (b) If $r \not\equiv_p s$ and $v 2k + 2r \equiv_p 0$, then d = g.
- (c) If $r \equiv_p s$, then $d \leq \min\{f+1, g+1\}$.
- (d) Let p^m be the largest power of p that divides v. If p^{m+1} divides v 2k + 2r, then $d \le g$.

More SRGs and ETFs

Theorem

Given an SRG with $f \neq g$, define $d := \operatorname{rank}_p \overline{\Sigma + (2r+1)I}$, n := v + 1, and

$$G := \left[\begin{array}{cc} 2r+1 & \mathbf{1}_{v}^{\top} \\ \mathbf{1}_{v} & \Sigma + (2r+1)I \end{array} \right] \in \mathbb{Z}^{n \times n},$$

If p divides both $k-2\mu$ and $v-3k+2\lambda+1$, then $\overline{G} \in \mathbb{F}_p^{n \times n}$ is the Gram matrix of a (2r+1,1,2r-2s)-ETF with size $d \times n$ in an orthogonal geometry on \mathbb{F}_p^d . Furthermore:

- (a) If $r \not\equiv_p s$, then d = g + 1.
- (b) If $r \equiv_p s$, then $d \leq \min\{f+1, g+1\}$.

SRGs from ETFs

Corollary

A (v, k, λ, μ) -SRG comes from a finite field ETF unless **both** of $|v - 4k + 2\lambda + 2\mu|$ and $\gcd(k - 2\mu, v - 3k + 2\lambda + 1)$

are powers of 2.

- ▶ Brouwer's table of feasible SRG parameters: 211 known complementary pairs of parameters with $v \le 1300$
- ▶ All but 9 pairs (95%) come from finite field ETFs:

V	k	λ	μ		V	k	λ	μ		V	k	λ	μ
21	10	3	6	-	70	27	12	9	_	220	84	38	28
40	12	2	4	1.	L2	30	2	10		280	117	44	52
57	24	11	9	12	20	42	8	18		512	196	60	84

(a, 1, c)-ETFs from SRGs

, — , .	' / -		-		 									
р	d	n	а	С	р	d	n	а	С	p	d	n	a	c
3	4	10	0	0	3	22	100	1	1	5	23	144	2	1
3	9	25	0	1	3	22	145	0	0	5	24	101	0	0
3	9	37	0	1	3	22	243	1	0	5	25	81	0	2
3	10	37	0	0	3	22	253	0	0	5	25	101	0	2
3	10	55	0	0	3	22	253	1	1	5	25	170	2	4
3	12	36	1	0	3	22	276	1	0	5	25	300	2	4
3	12	49	0	1	3	24	117	1	0	7	12	66	3	6
3	12	67	0	1	3	24	169	0	1	7	13	79	3	1
3	13	91	0	0	3	24	277	0	1	7	14	105	3	5
3	14	36	1	0	3	25	101	1	2	7	16	50	0	0
3	14	45	1	0	3	25	325	0	0	7	17	81	3	4
3	15	64	0	1	5	9	26	0	0	7	19	101	3	6
3	15	106	0	1	5	10	45	2	4	7	19	171	3	6
3	16	82	0	0	5	11	56	2	2	7	20	121	3	1
3	16	136	0	0	5	12	26	0	0	7	20	191	3	1
3	18	81	1	0	5	12	78	2	3	7	21	77	2	5
3	18	100	0	1	5	13	49	2	1	7	21	231	3	5
3	18	154	0	1	5	15	65	2	4	7	24	50	0	0
3	19	49	1	1	5	15	105	2	4	7	24	100	2	6
3	19	65	1	2	5	16	81	2	2	11	16	120	3	6
3	19	81	1	0	5	16	121	2	2	11	17	137	3	8
3	19	105	1	0	5	17	153	2	3	11	18	171	3	1
3	19	190	0	0	5	19	126	0	0	11	25	169	3	4
3	20	46	0	0	5	20	56	0	2	13	18	153	3	6
3	20	57	1	0	5	20	81	0	2	13	19	172	3	8
3	21	81	1	0	5	20	190	2	4	13	20	210	3	12
3	21	121	0	1	5	21	51	0	0	17	22	231	3	6
3	21	162	1	0	5	21	176	0	0	17	23	254	3	8
3	21	211	0	1	5	21	211	2	2	17	24	300	3	12
3	22	50	1	2	5	22	253	2	3	19	24	276	3	6
3	22	65	1	2	5	23	101	0	0	19	25	301	3	8
3	22	77	1	2										

Necessary conditions for SRGs

If the SRG exists, then so does the (a, 1, c)-ETF

								,	/ /	,						
v	k	λ	P	d	n	a	c		V	k	λ	P	d	n	a	c
69	48	32	13	24	69	5	3		176	25	0	7	56	176	0	6
85	54	33	7	35	85	0	4		176	25	0	17	56	177	7	3
85	70	57	5	35	86	0	4		176	70	24	5	56	177	4	3
85	70	57	13	35	85	5	1		183	52	11	5	61	184	4	1
88	27	6	5	32	88	2	3		183	52	11	29	60	183	9	26
99	14	1	5	45	100	2	4		189	128	82	11	29	189	5	3
100	33	8	3	34	101	1	2		189	140	103	5	91	189	1	4
111	30	5	19	36	111	7	1		190	144	108	5	76	191	4	4
112	36	10	3	48	112	0	2		196	39	2	3	49	197	1	2
115	18	1	3	46	115	1	1		196	39	2	7	49	197	0	5
115	18	1	17	45	115	7	16		196	39	2	31	48	196	7	26
120	34	8	7	52	121	2	6		196	45	4	3	46	196	1	1
120	84	58	3	57	121	0	2		196	75	26	3	76	197	2	1
121	36	7	3	37	121	1	1		196	114	59	5	25	196	0	2
121	36	7	5	36	121	2	2		204	28	2	13	84	204	9	7
121	48	17	3	48	121	0	1		204	140	94	3	69	205	0	1
133	32	6	3	57	133	0	2		205	68	15	3	40	205	1	1
133	32	6	11	56	133	9	9		205	68	15	5	40	205	2	4
133	88	57	3	57	133	0	1		208	45	8	5	91	209	1	4
133	88	57	5	56	133	4	2		209	156	115	5	76	209	4	1
133	108	87	5	57	133	2	3		209	156	115	7	77	210	2	5
133	108	87	11	56	133	7	7		209	156	115	11	77	209	9	4
136	105	80	3	52	137	1	2		210	33	0	5	55	210	2	4
136	105	80	11	52	136	7	9		210	33	0	7	56	211	0	3
162	21	0	5	57	163	2	3		210	76	26	5	96	211	3	3
162	21	0	7	56	162	0	4		210	132	82	3	100	211	1	1
162	92	46	7	24	163	5	1		216	129	72	13	44	217	7	10
162	112	76	13	64	162	9	11		216	172	136	5	86	216	4	4
162	138	117	7	70	162	0	4		217	128	72	3	63	217	0	2
162	138	117	17	70	163	7	1		220	72	22	3	100	220	1	1
169	42	5	3	43	170	1	2		225	48	3	7	49	225	0	2
169	42	5	5	43	169	2	1		225	64	13	7	64	225	2	2
169	42	5	7	42	169	0	5		225	128	64	5	25	226	0	3
169	56	15	3	57	169	0	2		231	160	110	5	111	231	3	3
169	56	15	5	56	169	4	1		232	33	2	3	87	232	0	1
169	70	27	3	70	169	2	2		232	33	2	19	88	232	9	3
175	108	63	13	43	175	7	4		232	33	2	23	88	233	9	22
176	25	0	3	55	176	1	2		232	63	14	3	88	233	2	1

Bounds on equiangular lines

Problem (Relative bound)

Given an orthogonal geometry on \mathbb{F}_q^d and $a,b\in\mathbb{F}_q$, find an upper bound for the size of an (a,b)-equiangular system.

- Efficient bound may disprove SRGs
- ▶ Is there a (2,1)-equiangular system with 100 vectors in an orthogonal geometry on \mathbb{F}_5^{45} ?
- ▶ If not, then Conway's 99-graph DNE

Bounds on equiangular lines

Problem (Relative bound)

Given an orthogonal geometry on \mathbb{F}_q^d and $a,b\in\mathbb{F}_q$, find an upper bound for the size of an (a,b)-equiangular system.

- Efficient bound may disprove SRGs
- ▶ Is there a (2,1)-equiangular system with 100 vectors in an orthogonal geometry on \mathbb{F}_5^{45} ?
- ▶ If not, then Conway's 99-graph DNE

Theorem (Gerzon; Greaves, JI, Jasper, Mixon)

If $a^2 \neq b$ and there is an (a,b)-equiangular system Φ of n vectors in an orthogonal geometry on \mathbb{F}_q^d , then $n \leq {d+1 \choose 2}$. If equality holds, then Φ is an ETF.

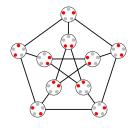
 $ightharpoonup a^2 \neq b$ avoids trivialities like an entire isotropic subspace

Attaining Gerzon's bound

Theorem (Greaves, JI, Jasper, Mixon)

For every integer d>1 and every odd prime p that divides d-7, there exists a (3,1,12)-ETF of $n=\binom{d+1}{2}$ vectors in an orthogonal geometry on \mathbb{F}_p^d . In particular, Gerzon's bound is attained in some d-dimensional orthogonal geometry provided $|d-7| \neq 2^k$.

- Complement of the triangular graph T(d+1), i.e., Kneser graph K(d+1,2)
- Add some identity to the Seidel matrix
- Take it mod p
- Factor the Gram matrix



Not attaining Gerzon's bound

Recall: We win with Gerzon if $|d-7| \neq 2^k$

Theorem (Greaves, JI, Jasper, Mixon)

For any choice of odd prime power q, there does not exist an ETF of $n=15=\binom{5+1}{2}$ vectors in any orthogonal geometry on \mathbb{F}_q^5 . In particular, Gerzon's bound is not attained in any 5-dimensional finite orthogonal geometry over a field of odd characteristic.

- ► Real 5 × 15 ETF DNE
- ▶ Overlap with real case: $p \le 25$
- ▶ Field stuff: $q = p \in \{3, 5, 7, 19\}$
- Witt extension theorem: Computationally efficient way to bound a clique number in graph of vectors with the right angle
- ightharpoonup p = 5 is a weirdo, comes down to rank condition

Outline

Context: Real and complex equiangular lines

Equiangular lines in orthogonal geometry

Equiangular lines in unitary geometry

Unitary geometry

Throughout this section, q is a prime power (possibly even)

"Complex conjugation" on \mathbb{F}_{q^2} : $x \mapsto x^q$

- Order-2 field automorphism
- ightharpoonup Fixes $\mathbb{F}_q \leq \mathbb{F}_{q^2}$

Unitary geometry

We give $\mathbb{F}_{q^2}^d$ the Hermitian form $\langle x,y\rangle:=\sum_{i\in [d]}x_i^qy_i=:x^*y$.

For every $x, y \in \mathbb{F}_{q^2}^d$:

- $\blacktriangleright \langle x, \cdot \rangle \colon \mathbb{F}_{q^2}^d \to \mathbb{F}_{q^2}^d$ is linear
- ▶ if $x \neq 0$, then $\langle x, \cdot \rangle : \mathbb{F}_{q^2}^d \to \mathbb{F}_{q^2}^d$ is not the zero mapping

This is the unique Hermitian form (up to isometric isomorphism).

Equiangular systems and tight frames

Definition

For $a,b,c\in\mathbb{F}_q$, a sequence $arphi_1,\ldots,arphi_n\in\mathbb{F}_{q^2}^d$ is:

- **a frame** if it spans $\mathbb{F}_{q^2}^d$;
- **a** c-**tight frame** if it spans $\mathbb{F}_{q^2}^d$ and moreover

$$\sum_{j\in[n]}\langle\varphi_j,x\rangle\varphi_j=cx$$

for every $x \in \mathbb{F}_{q^2}^d$;

- ightharpoonup an (a, b)-equiangular system if:
 - (i) $\langle \varphi_i, \varphi_i \rangle = a$ for every $i \in [n]$, and
 - (ii) $\langle \varphi_i, \varphi_j \rangle^{q+1} = b$ for every $i \neq j$ in [n];
- ➤ an (a, b, c)-equiangular tight frame (ETF) if it is an (a, b)-equiangular system and a c-tight frame.

Some examples

Example

Any ETF in an orthogonal geometry on \mathbb{F}_q^d gives one of the same size in unitary geometry on $\mathbb{F}_{q^2}^d$.

Example

q=2, $\zeta\in\mathbb{F}_{2^2}^{\times}$ is primitive.

There is a 6×27 ETF with parameters (a, b, c) = (0, 1, 1):

Its automorphism group is doubly transitive. (No doubly transitive complex ETF of this size exists.)

Projecting complex ETFs

Theorem (Greaves, JI, Jasper, Mixon)

Suppose there is a $d \times n$ complex ETF.

- (a) There is a $d \times n$ complex ETF with algebraic entries.
- (b) For infinitely many pairwise coprime q, there is a $d \times n$ ETF in a unitary geometry on $\mathbb{F}_{q^2}^d$.
 - ▶ (a) is an application of Tarski–Seidenberg
 - ▶ (b) is an application of Frobenius density theorem

Problem

Does the converse of (b) hold?

Gerzon's bound in unitary geometry

Theorem

If $a^2 \neq b$ and there is an (a, b)-equiangular system Φ of n vectors in a unitary geometry on $\mathbb{F}_{q^2}^d$, then $n \leq d^2$. If equality holds, then Φ is an ETF.

Problem

For which (q, d) is Gerzon's bound saturated?

- Zauner: For every d, there exists q
- Harder than Zauner to solve completely
- ► Easier to make progress

Time-frequency shifts

Assume d_1, \ldots, d_m all divide q + 1. Let $G = \prod_{k=1}^m \mathbb{Z}/d_k\mathbb{Z}$.

 $\mathbb{F}_{q^2}^{\mathcal{G}} \cong \mathbb{F}_{q^2}^{|\mathcal{G}|} \text{ consists of functions } \varphi \colon \mathcal{G} \to \mathbb{F}_{q^2}.$

For each k, fix a generator $\omega_k \in \mathbb{F}_{q^2}^{\times}$ for the subgroup of size d_k

Definition

For
$$x=(x_1,\ldots,x_m)$$
 and $y=(y_1,\ldots,y_m)\in G$ and $\varphi\in\mathbb{F}_{q^2}^G$,
$$(T_y\varphi)(x):=\varphi(x-y)\qquad\text{and}\qquad (M_y\varphi)(x):=\prod^m\omega_k^{x_ky_k}\cdot\varphi(x).$$

Then $T_y, M_y \colon \mathbb{F}_{a^2}^G \to \mathbb{F}_{a^2}^G$ are isometric isomorphisms.

Proposition

For any nonzero $\varphi \in \mathbb{F}_{q^2}^G$, $\{T_x M_y \varphi\}_{x,y \in G}$ is a tight frame for $\mathbb{F}_{q^2}^G$.

Attaining Gerzon's bound

Theorem (Greaves, JI, Jasper, Mixon)

Take q=3, m odd, and $d_k=2$ for $1 \leq k \leq m$, so $G=(\mathbb{Z}/2\mathbb{Z})^m$. Let $\zeta \in \mathbb{F}_{3^2}$ be primitive, and define $\varphi \in \mathbb{F}_{3^2}^G$ by

$$\varphi(x) = \begin{cases} -1 - \zeta^2, & \text{if } x = 0; \\ 1, & \text{otherwise.} \end{cases}$$

Then $\Phi = \{T_x M_y \varphi\}_{x,y \in G}$ is a (0,1,0)-ETF of size $2^m \times 2^{2m}$. In particular, Gerzon's bound is attained in a unitary geometry on $\mathbb{F}_{3^2}^d$ whenever $d = 2^{2k+1}$.

- "TF" is free
- "E" is a direct calculation

Limited connections with complex case

Recall: Gerzon's bound is attained in a unitary geometry on $\mathbb{F}_{3^2}^d$ whenever $d=2^{2k+1}$

- ightharpoonup d = 2,8 lift to complex ETFs that attain Gerzon's bound
 - ightharpoonup d = 2: Tetrahedron in Bloch sphere
 - ▶ d = 8: Hoggar's 64 lines in \mathbb{C}^8
- ightharpoonup d = 32 does not appear to lift to a complex ETF
- ▶ Godsil and Roy: Time-frequency shifts over \mathbb{Z}_2^m generate an ETF only if $m \in \{1,3\}$.

Some more problems

Problem

Generalize (doubly transitive) complex 3×9 to an infinite family over a finite field.

Problem

Is there a combinatorial description of ETFs in finite unitary geometry?

Problem

Find necessary conditions (e.g. integrality constraints) for ETF existence in unitary geometry.

Questions?

Frames over finite fields:
Basic theory and equiangular lines in unitary geometry
G.R.W. Greaves, J.W. Iverson,
J. Jasper, D.G. Mixon
arXiv:2012.12977

Frames over finite fields: Equiangular lines in orthogonal geometry G.R.W. Greaves, J.W. Iverson, J. Jasper, D.G. Mixon arXiv:2012.13642