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1

Homomorphisms

1.1 Graph Homomorphisms

A graph homomorphism ψ from X to Y is a map from V (X ) to V (Y ) such

that if a and b are adjacent vertices in X , then ψ(a) and ψ(b) are adjacent

in Y . We see at once that a proper m-colouring of a graph X is a homomor-

phism from X to Km , and any graph isomorphism is also a graph homo-

morphism. We assume that our graphs do not have loops, which implies

that for each vertex u in Y , the preimage

ψ−1(u) := {a :ψ(a) = u}

is a coclique. We refer to ψ−1(u) as the fibre of ψ at u.

The fibres of ψ form a partition of the vertices of X and1 we represent 1 as is our custom

this partition by its characteristic matrix F (ψ). This is the |V (X )| × |V (Y )|
matrix where the column indexed by u in V (Y ) is the characteristic vector

of ψ−1(u). This F is a 01-matrix whose column sum to 1, hence its columns

are orthogonal (equivalently F T F is diagonal).

1.1.1 Lemma. Assume F is the characteristic matrix of a partition of V (X ),

with cells indexed by V (Y ). Then F is the characteristic matrix of a homo-

morphism if and only if whenever a,b are adjacent vertices in X and u, v

are distinct non-adjacent vertices in Y , we have Fa,uFb,v = 0.

The virtue of this lemma does not lie in any insight it provides about

graph homomorphisms, but in the fact that it will allow us to establish the

connections between the classical graph homomorphisms we have just

defined and the quantum graph homomorphisms.2 2 yet to come

1.2 The Category of Graph Homomorphisms

You may have a lot of reading to do, we will take much for granted. A

category consists of objects and arrows. Each arrow has a domain and a

codomain, and in many cases it corresponds to a function. We write things
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like f : X → Y to denote that f is an arrow with domain X and codomain

Y . Arrows compose associatively, and for each object X there is a unique

identity arrow (wth domain and codomain X ). We will use f ◦ g to denote

the composition of f and g .

Two examples. If P is a partially ordered set we may form a category

with the elements of P as objects and with a → b if a ≤ b. Here the arrows

are not functions. (We are labouring over this point, because quantum

homomorphisms are not functions.) Our second example is the category G

with loopless graphs as objects and graph homomorphisms as arrows.

Suppose C is a category. We define products, in two ways. The product

(if it exists) of X and Y is an object denoted X ×Y equipped with arrows

πX : X ×Y → X , πY : X ×Y → Y

with the following property: if there is an object Z and arrows

f : Z → X , g : Z → Y

then there is a unique arrow h : Z → X ×Y such that

f = h ◦πX , g = h ◦πY

This leads to two exercises. Prove that in P , the product of a and b is the

least upper bound of a and b (if it exists). In G , the product of X and Y is

the diret product X ×Y .

Now we work towards a second definition of products. A terminal object

in a category is an object, Z say, such that for each object X in C , there is

a unique homomorphism from X to Z . The identity group is a terminal

object in the category of groups and group homomorphisms. The dual to

a terminal object is an initial object . The integers are an initial object in

the category of rings. Any two terminal objects are isomorphic. (Ditto for

initial.)

We construct a new category. Let X and Y be graphs. The objects of our

new category are triples (F , fX , fY ) where fX and fY are homomorphisms

from F to X and Y respectively. The arrows from (F , fX , fY ) to (G , gX , gY )

are the graph homomorphisms ϕ from F to G such that

gX ◦ϕ= fX , gY ◦ϕ= fY .

The triple (X ×Y ,πX ,πY ) is a terminal object in this category.

1.3 Exponentials

An example. If A and S are sets, we use AS to denote the set of functions

from S to A. For three sets A, B , C we have the identity

AB×C = (AB )C
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Taking cardinalities, we deduce the exponential law for non-negative

integers:

a(bc) = (ab)c .

For graphs X and Y we define a new graph X Y such that, for any graphs

Z , the homomorphisms from Z to X Y correspond to the homomorphisms

from Y × Z to X . The key is to consider the case Z = K2. The homomor-

phisms from K2 to a graph X may be identified with the edges of X , so the

edges of X Y must correspond to homomorphisms from Y ×K2 to X . We

describe these homomorphisms in detail.

Assume V (K2) = {1,2}; the vertices of Y ×K2 are then pairs (u,1) and

(v ,2) for vertices u, v of Y . If f : Y ×K2 → X is a homomorphism, define fi

(for i = 0,1) to be the restriction of f to the set {(u, i ) : u ∈ V (Y )}. Here f0

and f1 are maps from V (Y ) to V (X ), our problem is to decide which pairs

of maps V (Y ) to V (X ) arise as restrictions of a homomorphism. This is not

difficult, f0 and f1 determine a homomorphism if whenever u and v are

adjacent in Y , the vertices f0(u) and f1(v) are adjacent in X . In this case we

say that the functions f0 and f1 are compatible on Y .

The above discussion is informal. We now define the graph X Y . Its ver-

tices are the functions from V (Y ) to V (X ); two such functions are adjacent

in X Y if they are compatible on Y . We say that X Y is an exponential graph .

There is a complication—if f0 is a homomorphism from Y to X , then

f0 is adjacent to itself in X Y —and so in general X Y has loops. In fact the

number of loops is the number of homomorphisms from Y to X .

An example. Suppose Y is not bipartite. Then K Y
2 has no loops, and you

may show that it is a disjoint union of copies of K2. It follows that if Y is not

bipartite and Y × Z is bipartite, then Z must be bipartite. There are easy

direct proofs of this, but El-Zhar and Sauer used the exponential to prove

the non-trivial result that if χ(Y ) > 3 and χ(Z ) > 3, then χ(Y × Z ) > 3. A

famous conjecture of Hedetniemi asserted that

χ(Y ×Z ) = min{χ(Y ),χ(Z )};

we now know that this is false.

1.4 The Homomorphic Product

A coclique in X �Km corresponds to a set of m pairwise disjoint cocliques

X�Km , and so α(X �Km) is the maximum size of an induced m-colourable

subgraph of X . Equivalently α(X �Km) is the maximum size of an induced

subgraph of X that admits a homomorphism to Km . We introduce a prod-

uct construction (due to Hell and Nesetril) that extends this observation.

The vertex set of the homomorphic product X nY of X and Y is

V (X )×V (Y ),

where (a,u) is adjacent to (b, v) if
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• a = b, or

• a ∼ b and u 6∼ v .

We use KY to denote the complete graph with vertex set V (Y ) and note that

A(X nY ) = A(X �KY )+ A(X ×Y )

If f is a function from V (X ) to V (Y ), its graph3 is the subset 3 this is the definition of graph from
Calculus

{(a,ψ(a)) : a ∈V (X )}

of V (X )×V (Y ).

A subset of V (X )×V (Y ) is a relation from X to Y .

1.4.1 Lemma. A relation from X to Y is a function if and only if it induces a

coclique in X �KY .

1.4.2 Lemma. Suppose X1 is an induced subgraph of X and f is a function

from V (X1) to V (Y ). Then f is a homomorphism if and only if its graph is a

coclique in X nY .
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Quantum Homomorphisms

2.1 Measurements

A measurement on the graph Y is a map ϕ from V (Y ) to the set of d ×d

projections such that
∑

u∈V (Y )ϕ(u) = I . We say that d is the dimension of

the measurement.

2.1.1 Lemma. If P1, . . . ,Pm are projections and
∑

u Pu = Id , then PuPv = 0 if

u 6= v .

Proof. We have

I = I 2 = (∑
u

Pu
)2 =∑

u
Pu + ∑

u,v :u 6=v
PuPv .

As
∑

u Pu = I , this implies that

0 = tr(
∑

u,v :u 6=v
PuPv ) = ∑

u,v :u 6=v
tr(PuPv );

since projections are positive semidefinite, if tr(PuPv ) = 0 then PuPv = 0.

We can extend this lemma: if
∑

u Pu is idempotent, then PuPv = 0 when

u 6= v .

We say that measurements

(Pu)u∈V (Y ), (Qu)u∈V (Y )

in Y are compatible relative to Y if, whenever u and v are non-adjacent

vertices in Y , we have PuQv = 0. (This implies that PuQu = 0.) The mea-

surement graph M (Y ,d) is the graph with the d-dimensional measure-

ments on Y as its vertices, with two measurements adjacent if and only if

they are compatible relative to Y .

If P1 and P2 are two measurements based on Y , we define their outer

product to be the |V (Y )|× |V (Y )| matrix M given by

Mi , j = 〈P1,i ,P2, j 〉+〈P2,i ,P1, j 〉

Since the components of a measurement are positive semidefinite, we see

that Mi , j = 0 if and only if both P1,i P2, j and P2,i P1, j are zero.
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2.1.2 Lemma. Let P1 and P2 be two measurements of dimension d based

on Y and let M be their outer product. Then P1 and P2 are adjacent in

Md (Y ) if and only if (J − A(Y ))◦M = 0.

In general M (Y ,d) is infinite. The case d = 1 is special.

2.1.3 Lemma. If Y is a graph, then Y ∼=M1(Y ).

Proof. If
∑

i Pi = 1 then there is exactly one index j such that P j = 1 and

Pi = 0 if i 6= j . Hence the vertices of M1(Y ) can be identified with the

standard basis vectors indexed by V (Y ). If eu and ev are two standard basis

vectors, their outer product M is ei eT
j +e j eT

i , whence the lemma yields that

ei and e j are adjacent in Md (Y ) if and only if i j ∈ E(Y ).

If the matrices Pu for u in V (Y ) form a measurement, so do the matrices

Pu ⊗ Ie . It follows that M (Y ,d) is (isomorphic to) an induced subgraph of

M (Y ,de).

2.2 Measurements and Homomorphisms

A quantum homomorphism from X to Y is a homomorphism from X to

M (Y ,d) for some d . We write X
q−→ Y to denote that there is a quantum

homomorphism from X to Y . Thus X
q−→ Y if and only if X → M (Y ,d) (for

some d).

We can represent a quantum homomorphism by a |V (X )|×|V (Y )| matrix

M , where each row of M is a measurement on Y . The entries of M are d ×d

projections, thus M is a matrix over the ring Matd×d (C). We may also view

it as a block matrix of order d |V (X )|×d |V (Y )|, in this case we denote it by

M̃ . The defining properties of M are:

• Each row of M sums to Id ;

• If a and b are adjacent vertices in X and u and v are vertices in Y that

are not adjacent, then Ma,u Mb,v = 0.

We introduce some operations on quantum homomorphisms. If the

matrix M represents a quantum homomorphism from X to Y , then M ⊗ Ie

also represents a quantum homomorphism from X to Y .

We show how to compose quantum homomorphisms. If M determines

a quantum homomorphism from X to Y and N a quantum homomor-

phism from Y to Z , we define their composition M ?N to be the matrix

given by

(M ?N )a,z =
∑

u∈V (Y )
Ma,u ⊗Nu,z .

Because the Kronecker product is associative, composition is an associa-

tive operation. We leave the proof of the following as an exercise.

2.2.1 Theorem. If M determines a quantum homomorphism from X to Y

and N a quantum homomorphism from Y to Z , then M ?N determines a

quantum homomorphism from X to Z .
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There is also a sum operation on quantum homomorphisms from X to

Y . If M and N determine quantum homomorphisms from X to Y , their

sum M�N is given by

(M�N )a,u = Ma,u�Na,u .

The direct sum of quantum homomorphisms is again a quantum homo-

morphism (as you may verify).

Quantum homomorphisms with d = 1 are precisely the classical homo-

morphisms.

2.2.2 Lemma. Let M determine a quantum homomorphism of dimension

d from X to Y . If all entries of M commute, it is a direct sum of classical

homomorphisms.

Proof. The entries of M are Hermitian matrices and therefore if they com-

mute, they are simultaneously diagonalizable. Since they are projections,

their diagonalizations are 01-matrices.

It is an interesting exercise to show that if d = 2, the entries of M must

commute.

Next, suppose P is a d ×d positive semidefinite matrix. If M represents a

quantum homomorphism, let τP (M) be given by

(τP (M))a,u = tr(P Ma,u).

If P = I , this may be viewed as a partial trace. If P = RR∗, then

tr(P M) = tr(RR∗M) = tr (R∗MR)

and therefore tr(P M) is real and non-negative. If we assume tr(P ) = 1, the

entries of a row of τP (M) are non-negative reals summing to 1, i.e., they

form a probability density on V (Y ). You should verify that

τP⊕Q (M ⊕N ) = τP (M)+τQ (N )

and

τP⊗Q (M ?N ) = τP (M)τQ (N ).

This implies that τI is a functor.

In this section we have been precise and referred to our matrices of

projections as “determining a quantum homomorphism”. We plan to get

sloppy and identify the quantum homomorphism with the matrix.

2.3 Products and Coproducts

We have a category with graphs as objects and quantum homomorphisms

as arrows. This category has products and coproducts, as we are about to

show.
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If X ,Y
q−→ Z , then (X ∪Y )

q−→ Z . For if X → M (Z ,d) and Y → M (Z ,e)

then, since both M (Z ,d) and M (Z ,e) admit homomorphisms to M (Z ,de),

we have homomorphisms from X and Y to M (Z ,de) and so (X ∪Y )
q−→ Z .

So our category has coproducts—they are the coproducts in the category of

graphs.

2.3.1 Lemma. If P is a measurement on X with dimension d and Q a

measurement on Y with dimension e, then

P ⊗Q := (Pa ⊗Qu)a∈V (X ),u∈V (Y )

is a measurement on X ×Y with dimension de. If P ′ and Q′ are mea-

surements on X and Y respectively, and P ∼ P ′ and Q ∼ Q′, then

P ⊗P ′ ∼Q⊗Q′.

Proof. If P and Q are measurements on X and Y respectively, then the

matrices Pa ⊗Qu form a measurement on X ⊗Y .

Assume P ′ and Q′ are measurements on X and Y respectively and that

cP ′ ∼ Q′. Suppose (a,u) and (b, v) are non-adjacent vertices in X ×Y . If

a 6∼ b then PaP ′
b = 0, if u 6∼ v then QuQ ′

v = 0 and, consequently,

(Pa ⊗Qu)(P ′
b ⊗Q ′

v ) = 0.

This shows that P ⊗P ′ ∼Q⊗Q′.

2.3.2 Corollary. The product M (X ,d)×M (Y ,e) is isomorphic to a sub-

graph of M (X ×Y ,de).

If Z
q−→ X and Z

q−→ Y , then Z → M (X ,d) and Z → M (Y ,e) (for some d

and e). Therefore

Z →M (X ,d)×M (Y ,e) →M (X ×Y ,de).

It follows that our category has products, and these coincide with the

products in the category of graphs.

2.4 Measuring States

A state is a positive semidefinite matrix with trace one. Let P be a quantum

homomorphism from X to Y and let D be a state. We define the matrix

〈P ,D〉 by

〈P ,D〉u,v := tr(Pu,v D);

this is a non-negative matrix with each row summing to 1. We say that

〈P ,D〉 is obtained by measuring D using P .

2.4.1 Lemma. If D and E are states and P : X
q−→ Y and Q : Y

q−→ Z , then

〈P ?Q,D ⊗E〉 = 〈P ,D〉〈Q,E〉.
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2.4.2 Lemma. If P and Q are quantum homomorphisms from X to Y , then

〈P�Q,D ⊕E〉 = 〈P ,D〉+〈Q,E〉.
If P is a quantum automorphism, 〈P ,D〉 is doubly stochastic.

2.4.3 Theorem. If we measure a quantum permutation P using a density

matrix D , then 〈P ,D〉 is a doubly stochastic. If P is a quantum automor-

phism of X , then 〈P ,D〉 commutes with A(X ).

If a doubly stochastic matrix S commutes with A(X ), then X admits

an equitable partition with cells that are not all singletons. Let Q be the

normalized characteristic matrix of this partition. Then QQT commutes

with A, which implies that X has eigenvectors that sum to zero on the cells

of the partition. This implies that X is not controllable. Since almost all

graphs are controllable, we conclude that the proportion of graphs on n

vertices that admit a non-trivial quantum homomorphism goes to zero as

n →∞.

2.5 Cliques and Colourings

Let P be a quantum homomorphism. If

0 =∑
u

Pa,uPb,u ,

then

0 =∑
u

tr(Pa,uPb,u).

As the entries of P are positive semidefinite, tr(Pa,uPb,u) ≥ 0 with equality

if and only if Pa,uPb,u = 0. We say that two rows of P are orthogonal if they

are entrywise orthogonal. This yields the following.

2.5.1 Lemma. Let P be a |V (X )| ×m matrix of d ×d projections. Then P

determines a quantum homomorphism X
q−→ Km if and only if whenever

a ∼ b, the a- and b-rows of P are orthogonal.

Supose P is a quantum homomorphism from X to Y of index d . If

Pa,u = Id , and v 6= u, then Pa,v = 0; if b 6= a we also have Pb,u = 0. So P has

the form (
Id 0

0 P1

)
where P1 is a quantum homomorphism from X \a to Y \b.

2.5.2 Theorem. If there is a quantum homomorphism X
q−→ K2, then X is

bipartite.

Proof. Assume Pa,1 = R. Then Pa,2 = I −R.

Suppose Pb,1 = S. If a ∼ b, then RS = 0 and

0 = (I −R)(I −S) = I −R −S +RS = 1−R −S

and hence S = I −R.
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Quantum Colouring

3.1 Type-II Matrices

We use W (−) to denote the Schur inverse of a matrix W (which need not

be square). We that an n ×n matrix W is a type-II matrix if W W −)T = nI .

Hadamard matrices provide one class of type-II matrices. More generally

a unitary matrix is type-II if and only if it is flat. For any nonzero complex

number t , the matrix

W =


1 1 1 1

1 1 −1 −1

1 −1 t −t

1 −1 −t t


is type-II.

A monomial matrix is the product of a permutation matrix and an

invertible diagonal matrix. The monomial matrices of a given order form

a group. If M and N are monomial and W is type-II, then MW N is type-II.

We say that MW N and W are equivalent. If W is type-II so is W T , but in

general W and W T are not equivalent. If W1 and W2 are type-II matrices,

so is W1 ⊗W2.

3.1.1 Lemma. An n ×n matrix W is type-II if and only if for any two diago-

nal matrices D1 and D2,

〈D1,W −1D2W 〉 = 1

n
tr(D1) tr(D2).

Proof. We have

〈ei eT
i ,W −1e j eT

j W 〉 = tr(ei eT
i W −1e j eT

j W ) = eT
i W −1e j eT

j W ei = (W −1)i , j W j ,i ,

and so our claim holds for D1 = ei eT
i and D2 = e j eT

j if and only if

(W −1)i , j W j ,i = 1

n
.

It holds for all i and j if and only if W −1 = 1
n W (−1)T , i.e., if W is type-II. The

result now follows by linearity.
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3.1.2 Corollary. If W is type-II of order n ×n and D is diagonal,

(W −1DW )i ,i = 1

n
tr(D).

3.1.3 Lemma. Suppose P1, . . . ,Pk are pairwise orthogonal projections

summing to I . If W is a k ×k type-II matrix and we define

Ui =
∑

j
Wi , j Pi (i = 1, . . . ,k),

then U1, . . . ,Uk are invertible and∑
i

Pi ⊗Pi =
∑

i
Ui ⊗U−1

i .

If W is unitary, so are U1, . . . ,Uk .

3.2 Orthogonality Graphs

We define G (d ,r ) to be the graph with vertices the complex d ×d projec-

tions of rank r , with two projections P and Q adjacent if and only if they are

orthogonal, i.e., if PQ = 0 or 〈P ,Q〉 = 0. We have

‖P −Q‖2 = 〈P −Q,P −Q〉 = 2r −2〈P ,Q〉;

since P ,Q < 0 it follows that 〈P ,Q〉 ≥ 0 and therefore two projections are

orthogonal if they are at maximum distance.

A projection in G (d ,r ) that fixes e1 has the form(
1 0

0 Q

)

where Q ∈G (d −1,r −1); therefore G (d −1,r −1) is an induced subgraph of

G (d ,r ).

The diagonal matrices in G (d ,r ) are 01-matrices and the subgraph they

induce is the Kneser graph Kd :r .

We will most often use the graph G (d ,1). The subgraph of G (d ,1) in-

duced by the flat projections will be denoted by G [. The least integer d

such that a graph X admits a homomorphism into G (d ,1) is called the or-

thogonal rank of X , and is denoted by ξ(X ). The least integer d such that

X admits a homomorphism into G [(d) is the flat orthogonal rank, denoted

ξ[(X ).

3.3 Colourings from Projections

Let X be a graph with n vertices. A quantum c-colouring is an n × c matrix

N such that Nu,i is a d ×d projection for each vertex u and i = 1, . . . ,c and:

(a) For each vertex u we have
∑

i Nu,i = Id ,
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(b) If u and v are adjacent vertices, then Nu,i Nv ,i = 0.

Condition (a) implies that the projections in a row are pairwise orthogonal.

The minimum value of c for which a quantum c-coluring exists is the

quantum chromatic number of X , denoted χq (X ).

If the projectors Nu,i each have rank r , we say we have a quantum

rank-r colouring. In this case cr = d . It can be shown that if a quantum

c-colouring exists, then there is a rank-r quantum c-colouring for some r .

We will generally work with rank-r colourings.

A classical c-colouring is a quantum c-colouring (with d = 1): take N

to be the characteristic matrix of the partition of V (X ) into colour classes.

Also, it is not hard to show that if X admits a quantum 2-colouring, it is

bipartite.

Assume X has a quantum c-coloring with d ×d projections given by a

matrix N . Define block-diagonal nd ×nd matrices P1, . . . ,Pc , where the

j -th diagonal block of Pi is N j ,i . We observe that Pi is a projection and∑
i Pi = I . (For a classical c-colouring, the matrices Pi are diagonal and 01.)

3.3.1 Lemma. The projections P1, . . . ,Pc come from a quantum c-colouring

if and only if
c∑

i=1
Pi (A⊗ Id )Pi = 0.

If M is diagonal,
c∑

i=1
Pi (M ⊗ Id )Pi = M ⊗ Id .

If M runs over the algebra of matrices of order nd ×nd , then the matri-

ces ∑
i

Pi MPi

form a subalgebra, and the map M 7→ ∑
i Pi MPi is an orthogonal projec-

tion.

3.4 Rank-r Colourings and Unitary Derangements

Suppose P1, . . . ,Pk is sequence of pairwise orthogonal d ×d projections

with rank r , summing to I . Choose, for each i , a d × r matrix Si such that

the columns of Si are orthonormal (S∗
i Si = Ir ). Since Pi P j = 0 when i 6= j ,

we have S∗
i S j = 0 when i 6= j . It follows that if U is the d ×d matrix

U =
(
S1 . . . Sk

)
then U∗U = Id , i.e., U is unitary. Thus our sequence of projections cor-

responds to a unitary matrix, along with a partition of its columns into

submatrices of order d × r .

Assume now that the matrix N determines a rank-r quantum c-colouring

of X . Then each row of N gives rise to a partitioned d ×d unitary matrix,
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with each row using the same partition. If Ua and Ub are the unitaries cor-

responding to adjacent vertices a and b, then U∗
a Ub is a unitary matrix

with c/r zero diagonal blocks of order r × r . We will call such a matrix a

unitary derangement of rank r .

Let D denote the set of unitary derangements of order d ×d and rank

r . Then D is closed under inversion, and so we may form the Cayley graph

X (U (d),D). We call this the rank-r unitary derangements graph, asnd we

denote it by UD(d ,r ). A graph Y has a quantum c-colouring of rank r if

and only if there is a homomorphism from Y into UD(d ,r ). (Here d = cr .)

There is classical analog in the rank-1 case. The symmetric group Symd

is a subgroup of U (d), and a permutation in Symd is a derangement if it

has no fixed point. If D denotes the set of derangements, we have a Cayley

graph X (Symd ,D). The permutations that fix a point i form a coclique in

this Cayley graph of size (d − 1)!. On the other hand, if L is a d ×d Latin

square, then each row of L determines a permutation in Symd and the

permutations corresponding to the rows of L form a clique in our Cayley

graph of size d . In particular the chromatic number of our Cayley graph is

d , and so χ(Y ) ≤ d if and only if there is homomorphism from Y into the

Cayley graph.

3.5 Inequalities

We will derive a number of inequalities between some of our parameters

3.5.1 Theorem. We have homomorphisms

G [(d) →UD(d ,1) →G (d ,1).

Proof. Choose a flat unitary d ×d matrix W and assume zz∗ ∈ G [(d). Let

Dz denote the diagonal matrix formed from the first column of P , scaled to

make it unitary. (This is possible because z is flat.) Then

1p
d

DzW

is unitary. If y y∗ ∈G [(d) and D y is unitary, then

(D y W )∗DzW =W ∗D∗
y DzW

and by Corollary 3.1.2, it follows that the diagonal entries of W ∗D∗
y DzW

are zero if 〈y , z〉 = 0. We conclude that the map

z 7→ 1p
d

DzW

is a graph homomorphism.

The map

ν : U 7→U∗eT
1 eU
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send a unitary matrix to a rank-1 projection. If M , N ∈U (d) and M∗N is a

unitary derangement, then

0 = (M∗N )1,1 = 〈Me1, Ne1〉.

Therefore ν is a graph homomorphism.

We can derive derive a chain of inequalities for our parameters.

3.5.2 Lemma. For any graph X ,

ω(X ) ≤ ξ(X ) ≤χ(1)
q (X ) ≤ ξ[(X ) ≤χ(X ).

Proof. If projections P and Q are orthogonal, then their first columns Pe1

and Qe1 are orthogonal, and first inequality follows from this.

The second and third inequalities are consequences of the previous

theorem.

Finally if N is the matrix a classical c-colouring, then the rows of N are

unit vectors such that vectors associated to adjacent vertices are orthogo-

nal, and so the final inequality holds.

Consider the graph H(d), with vertices the ±1-vectors of length d , with

two vectors adjacent if they are orthogonal. If d is odd, H(d) is empty and

if d ∼= 2 (modulo 4), then it is bipartite. If 4 | d , then by a result of Frankl and

Rödl, that χ(H(d)) increases exponentially with d . (By work of Newman we

know that χ(H(d)) = d if and only if d ∈ {1,2,4,8.) Thus we have examples

of graphs where there is an exponential gap between χ(1)
q and χ.

3.5.3 Lemma. If χ(1)
q (X ) = 3, then χ(X ) = 3.

Proof. A 3×3 unitary derangement must be a monomial matrix. Now work

a bit.

We also have that χsv (X ) ≤ ξ(X ), see 1. 1

3.6 Orthogonal Rank

Following Elphick and Wocjan, we derive lower bounds on the orthogonal

rank ξ(X ) of a graph X .

We start with an orthogonal representation in terms of vectors, rather

than projections. Let W be an n ×k complex matrix such that (W ∗W )◦ A =
0. Since the union of the subspaces (W ei )⊥ is a proper subset of Ck , there

is a unitary matrix Q such that no entry in the first row of QW is zero and it

follows that we may assume that all entries in the first row of W are equal

to 1.

Let wi denote the i -th row of W , and let Di be the n ×n diagonal matrix

formed from wi .
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3.6.1 Lemma. If the matrices D1, . . . ,Dk are obtained from an orthogonal

representation as above, then ∑
i

D∗
i ADi = 0.

Proof. We have

D∗
i ADi = A ◦ (w∗

i )wi

and
k∑

i=1
(w∗

i )wi =W ∗W .

Since (W ∗W )◦ A = 0, the result follows.

Because we have normalised W so that eT
1 W = 1, we have D1 = I . Hence

the lemma implies that

A =−
k∑

i=2
D∗

i ADi . (3.6.1)

3.6.2 Corollary. For a graph X on n vertices,

ξ(X ) ≥ 1− θ1

θn
.

Proof. From Equation (3.6.1) we have

θ1(A) ≤
k∑

i=2
−θn(D∗

i ADi ) =−(k −1)θn(A).

Note that if this bound is tight and z is an eigenvector for A with eigen-

value θ1(A), then Di z is an eigenvector for A with eigenvalue θn . Hence the

multiplicity of θn is at least ξ(X )−1.

It is known that χsv (X ) ≤ ξ(X ) and that if X is a graph with n vertices, e

edges and least eigenvalue τ, then

χvec (X ) ≥ 1− 2e/n

τ
.

If X is k-regular then 2e/n = k and so we have a strengthening of the

previous bound. If X is 1-homogeneous, then χsv (X ) =χvec (X ) = 1−k/τ.

There is also a form of inertia bound.

3.6.3 Corollary. For a graph X on n vertices,

ξ(X ) ≥ 1+max

{
n+

n− ,
n−

n+

}
.

Proof. Suppose A has spectral decomposition

A =∑
r
θr Er ;

if we set

B = ∑
r :θr >0

θr Er , C =− ∑
r :θr <0

θr Er ,
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then B ,C < 0 and A = B −C . Further define

F = ∑
r :θr <0

Er .

Then F is a projection, F B = 0 and F A = −C . Referring back to Equa-

tion (3.6.1), we have

C −B =∑
i
∆i A∆∗

i

(where ∆i =U∗
1 UI and is unitary). Multiplying both sides by F , we get

C =∑
i

F∆i (B −C )∆∗
i F =∑

i
F∆i B∆∗

i F −∑
i

F∆i C∆∗
i F .

Here the final sum is positive semidefinite, and so

C 4
∑

i
F∆i B∆∗

i F .

As the rank of each term in this sum is at most rk(B), it follows that

n− ≤ (c −1)n+,

whence the bound

ξ(X ) ≥ 1+max

{
n+

n− ,
n−

n+

}
.

3.7 Orthogonal Rank and Rank-1 Colourings

We follow Scarpa and Severini (arXiv:1106.0712v1).

Since the Cartesian product X �Kd contains copies of Kd , we have

ξ(X �Kd ) ≤ d .

When does equality hold? Assume that W is a d×nd matrix whose columns

provide an orthgonal embedding of X �D . Since the image of Kd must be

an orthogonal set of vectors, we may assume that

W =
(
U1 . . . Un

)
where the d ×d matrices U1, . . . ,Un are unitary.

Now

(W ∗W )◦ (A⊗ Id + In ⊗Kd ) = 0.

We have (W ∗W )◦ (In ⊗Kd ) = 0 if and only if U∗
i Ui = I , i.e., Ui is unitary. We

have (W ∗W )◦ (A⊗ Id ) = 0 if and only if

(U∗
i U j )◦ I = 0

whenever i j ∈ E(X ).

We conclude that ξ(X �Kd ) = d if and only if ξ(1)
q (X �Kd ) = d .

By way of comparison α(X �Kd ) = d if and only if χ(X ) = d .
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Derangements

A derangement is a permutation of a set with no fixed point. If D denotes

the set of derangements in Symn, then D is closed under inverses and does

not contain the identity, so we may use D as the connection set for the

Cayley graph X (Symn,D); we denote this graph by D(n). We summarize

some relevant properties of D(n).

4.0.1 Theorem. We have:

(a) The maximum size of a clique in D(n) is n; cliques of size n correspond

to n ×n Latin squares.

(b) The maximum size of a coclique is (n −1)!; the cocliques of size (n −1)!
are cosets of the stabilizer of a point.

(c) The chromatic number of D(n) is n.

4.0.2 Corollary. We have χ(X ) ≤ n if and only if X →D(n).

Two graphs X and Y are homomorphically equivalent if X → Y and

Y → X . The previous corollary may restated as the statement that D(n) and

Kn are homomorphically equivalent.

Let us represent elements of Symn by permutation matrices. The space

of n ×n complex matrices is an inner product space, with inner product

〈M , N〉 := tr(M∗N ).

If M is a permutation matrix, M∗ = M−1 and we see that if M and N are

permutation matrices and M−1N represents a derangement, then 〈M , N〉 =
0. Thus D(n) is an orthogonality graph.

4.1 Rank-1 Quantum Colourings and Unitary Derangements

Suppose M defines a quantum m-colouring of X , where the entries of M

have rank one. Then the entries of M must be of order m ×m. If

P1, . . . ,Pm
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are the projections in row i of M , then there are unit vectors x1, . . . , xm such

that

Pr = xr x∗
r .

Since Pr Ps = 0 if r 6= s, the vectors x1, . . . , xm are pairwise orthogonal,

and therefore they form the columns of a unitary matrix, R say. If S is the

unitary matrix corresponding to row j of M , then the condition Mi ,r M j ,r =
0 holds for each r if and only the diagonal entries of R∗S are all zero. Since

R and S are unitary, so is R∗S.

We define a unitary derangement to be a unitary matrix with all diag-

onal entries zero. Any permutation matrix is unitary, and it is a unitary

derangement if and only if the permutation it represents is a derangement.

The inverse of a unitary derangement is its conjugate-transpose, and so

it is again a unitary derangement. Hence we may define a Cayley graph

UD(n) on the unitary group U (d), with connection set the set of unitary

derangements. Note that the derangement graph D(n) is an induced sub-

graph of UD(n).

4.1.1 Theorem. A graph X has a rank-1 quantum n-colouring if and only if

X →UD(n).

4.1.2 Lemma. If the matrices M1, . . . , Mn form a clique in UD(n), let M

denote the n ×n matrix of projections with

Mi , j = Mi e j (Mi e j )∗.

Then M is a rank-1 quantum n-colouring of Kn .

A quantum permutation is an n ×n matrix P whose entries are d ×d

projections, such that the projections in any row or column sum to Id .

Quantum permutations correspond to quantum n-colourings of Kn .1 1 Of course, classical n-colourings of Kn are
permutationsIf L is an n ×n Latin square with entries from {1, . . . ,n} we can convert L

to a quantum permutation: if Li , j = r , replace the entry r by the projection

ee eT
r .

If z is a unit vector in Cn , then the unitary matrices M with i -th row

equal to z form a coclique, for if Mei = Nei = z then

(M∗N )i ,i = eT
i M∗Nei = zz∗ 6= 0

and M∗N is not a derangement.

You may find it interesting to prove that χ(1)
q (X ) = 3 if and only if χ(X ) =

3.

4.2 Three Homomorphisms

We use homomorphisms to relate some of the parameters at hand. One

observation is in order.
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4.2.1 Lemma. If W is a flat unitary matrix and D1 and D2 are diagonal

matrices (all of the same order), then

〈D1,W ∗D2W 〉 = tr(D1) tr(D2).

4.2.2 Theorem. We have homomorphisms as follows:

Kn → S[(n) →UD(n) → S(n).

Proof. The n-cliques in S[(n) are exactly the flat unitary matrices of order

n ×n. This takes care of the first homomorphism.

For the second, if z ∈Cn , let Dz be the diagonal matrix with

(Dz )i ,i = zi .

If z ∈ S[(n), then Dz is unitary and the map

z 7→ DzW

takes elements of S[(n) to unitary matrices. Consider the matrix

Q = (D y W )∗DzW .

We have

Qi ,i = tr(ei eT
i Q) = 〈ei eT

i , (D y W )∗DzW 〉 = 〈ei eT
i ,W ∗D∗

y DzW 〉

and, applying the lemma (with D1 = ei eT
i ), we deduce that

〈ei eT
i ,W ∗D∗

y DzW 〉 = tr(W ∗D∗
y DzW ) = tr(D∗

y Dz ) = 〈y , z〉.

Accordingly if y and z are orthogonal, then Q is a derangement.

The third homomorphism is again simple. As

〈Me1, Ne1〉 = (M∗N )1,1

we may use the map M 7→ Me1 as the homomorphism.

4.2.3 Corollary. For any graph X ,

χ(X ) ≥ ξ[(X ) ≥χ(1)
q (X ) ≥ ξ(X ).

4.3 Separating χ and χq

Let q be an odd prime power. The vertices of the Erdős-Rényi graph ER(q)

are the 1-dimensional subspaces of the 3-dimensional vector space over

GF (q); two subspaces spanned by nonzero vectors x and y are adjacent

if xT y = 0. (Note: this is not an Erdős-Rényi random graph.) We see that

ER(q) has q2 + q + 1 vertices and each vertex has q + 1 neighbours but,

unfortunately perhaps, there are q +1 vertices with loops on them.
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The graph we use is ER(3), on 13 vertices. Each vertex is represented by

a vector of length three with entries 0, 1 and −1. We normalize the vectors

by assuming that the first non-zero entry is 1. Now we view these vectors

as vectors over R, and work with the orthogonality graph on these vectors.

Denote it by Y . Clearly ξ(Y ) ≤ 3.

Cameron et al. prove the following, using properties of the quaternions.

4.3.1 Lemma. There is a homomorphism from SR(4) into the subgraph of

UD(4) induced by the real orthogonal matrices.

4.3.2 Corollary. If ξR(x) ≤ 4, then χ(1)
q (X ) ≤ 4.

A direct computation shows that χ(Y ) = 4. Consider the cone Ŷ over

Y . Here ξR(Ŷ ) ≤ 4, whence χq (Ŷ ) ≤ 4. However χ(Ŷ ) must be five. Thus

we have established that χ and χq can differ and, also, that a graph and its

cone may have the same quantum chromatic number. We have not ruled

out the possibility that χq (Y ) = 3, this is done in the oddities paper.

The quaternions H are the algebra over R generated by i , j and k, where

i 2 = j 2 = k2 =−1, i j k =−1.

If z ∈H and z = x0 + i x1 + j x2 +kx3, then its conjugate z∗is

x0 − i x1 − j x2 −kx3.

The norm of z is z∗z = x2
0 + x2

1 + x2
2 + x2

3 and its trace is z + z∗ = 2x0. A unit

quaternion is a quaternion with norm 1. A quaternion is pure if its trace is

zero.

There is an obvious map from the vector space R4 to the algebra H

which takes unit vectors in R4 to quaternions with norm 1. Denote it by q .

4.3.3 Lemma. If x, y ∈R4, then

〈x, y〉 = tr(q(x)∗q(y)).

In particular, 〈x, y〉 = 0 if and only if q(x)∗q(y) is pure.

If a ∈H, then we have a map La from H to itself, given by

La(z) = az.

Then La is R-linear and

(La(z))∗La z = a∗a z∗z

and so if a has norm 1, then La is norm preserving. This gives an isomor-

phism from the group of unit quaternions into O(4), the real orthogonal

group.
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4.3.4 Lemma. Relative to the ordered basis 1, i , j ,k, the matrix representing

La is 
a0 −a1 −a2 −a3

a1 a0 −a3 −a2

a2 a3 a0 −a1

a3 −a2 a1 a0

 .

4.3.5 Corollary. The matrix representing La is an orthogonal derangement

if and only if a is pure.

4.3.1 More Derangements

4.3.6 Theorem. The orthogonal derangement graph OD(4) is homomor-

phically equivalent to ΩR(4).

Proof.

1. If x, y in R4 are orthogonal, q(x)∗q(y) is a pure quaternion.

2. LaLb = Lab (associativity).

3. If q(x)∗q(y) is pure, then LT
q(x)Lq(y) is a derangement.

4.4 Derangements of Index k

We have seen that rank-1 colourings give rise to unitary derangements.

What of rank-k colourings?

A d ×d projection P of rank k can be written as P = UU∗, where U is

d ×k and its columns of are an orthonormal basis for im(P ). So U∗U = Ik .

If the matrix M represents a rank-k quantum m-colouring of X , there are

d ×k matrices Ua,i (for a ∈V (X ) and i = 1. . . ,m) such that

U∗
a,iUa,i = Ik , Ua,iU∗

a,i = Ma,i .

We see that if i 6= j , then U∗
a,iUa, j = 0 and if ab ∈ E(X ), then U∗

a,iUb,i = 0. Let

U be the matrix with ai -entry equal to Ua,i . Since mk = d , each row of U

is a d ×d unitary matrix. If ab ∈ E(X ), then(
Ua,1 . . . Ua,m

)∗ (
Ub,1 . . . Ub,m

)
is a unitary matrix of order mk ×mk with k diagonal blocks of zeros.

We define a unitary matrix M to be a unitary derangement of index k if

it has order mk ×mk and

M ◦ (Im ⊗ Jk ) = 0.

(If k = 1 we recover our previous derangements.) We can apply this term

to permutation matrices, since they are unitary, and we will refer to them

simply as derangements of index k. Since the set of mk × mk unitary
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derangements with index k is closed under conjugate transpose and does

not contain the identity, we can use it as the connection set for a Cayley

graph for the full unitary group; if n = km, we denote it by UDk (m).

4.4.1 Theorem. A graph X on mk vertices has a rank-k quantum m-

colouring if and only if there is a homomorphism X →UDk (m).

If M is a unitary derangement (of index one) and Q is unitary of order

k ×k, then M ⊗Q is a unitary derangement of index k.

4.5 Grassmann Graphs

The Grassmann graph Gr (d ,k) is the graph with the k-dimensional sub-

spaces of Cd as vertices, with two subspaces adjacent if they are orthogonal.

We may, and will, choose to represent the vertices of Gr (d ,k) by d × d

projections of rank k. If P and Q are two such projections, then

‖P −Q‖2 = 〈P −Q,P −Q〉 = tr(P +Q −PQ −QP ) = 2k −2〈P ,Q〉.

Hence P and Q are at maximum distance if and only if they are orthogonal.

(Since P and Q are positive semidefinite, 〈P ,Q〉 ≥ 0.) Consequently we may

view Gr (d ,k) as an analog of the Kneser graph Kd :k . Since the fractional

chromatic number of a graph is determined by homomorphisms into

Kneser graphs this suggests, correctly, that homomorphisms to Grassmann

graphs will provide a quantum analog to fractional chromatic number.

4.5.1 Theorem. There is a homomorphism UDk (m) →Gr (mk,k).

Proof. Define

D =
(

Ik 0

0 0

)
.

If M is a md ×md unitary matrix, then

MDM∗

represents orthogonal projection onto the column space of MD , i.e., onto

the span of the first k columns of M . If N is a second md ×md unitary

matrix, then

MDM∗N DN∗ = 0

if and only if

DM∗N D = 0.

Hence the projections MDM∗ and N DN∗ are orthogonal if M∗N is a

unitary derangement of index k, and this proves the theorem.

If M represents a rank-r quantum m-colouring of X , each column of M

provides a homomorphism from X into Gr (mr ,r ).
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Type-II Matrices

5.1 Definitions

If M and N are m ×m matrices, their Schur product is the m ×n matrix

M ◦N defined by

(M ◦N )i , j = Mi , j Ni , j

This is a commutative associative product with the all-ones matrix J as

multiplicative identity. If no entry of M is zero, we define the matrix M (−)

by

(M (−))i , j := M−1
i , j

and call it the Schur inverse of M ; clearly M ◦ M (−) = J . If M is a Schr

invertible matrix we define

Mi / j := (Mei )◦ (Me j )(−).

Thus Mi / j is the ration of the i -th and j -th columns of M .

An n ×n complex matrix w is a type-II matrix if it is Schur invertible and

W W (−)T = nI

Any Hadamard matrix is a type-II matrix, as is the character table of an

abelian group. If W1 and W2 are type-II, so is the Kronecker product W1 ⊗
W2. Two type-II matrices are equivalent if one can be obtained from the

other by some combination of:

(a) permutations of rows and or columns,

(b) pre- or post-multiplication by invertible diagonal matrices.

If W is type-II, so is its transpose W T , but in general W and W T are not

equivalent.

Our next result introduces an important class of type-II matrices. We say

that a complex matrix is flat if its entries all have the same absolute value.

5.1.1 Lemma. Suppose W is a square Schur-invertible matrix. Then any

two of the following statements imply the third:
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(a) W is type-II.

(b) W is flat.

(c) W is unitary.

A flat unitary matrix is commonly referred to as a complex Hadamard

matrix. The examples of type-II matrices we offered earlier are flat.

5.2 The Nomura Algebra

To each m ×n Schur-invertible matrix W we associate its Nomura algebra,

defined as the set of m ×m matrices M such that each ratio Wi / j is an

eigenvector. Hence M lies in the Nomura algebra of W if and only if there

are scalars Θi , j (M) such that

MWi / j =Θi , j (M)Wi / j .

We denote this algebra by NW . It contains the identity matrix, so it is at

least not empty.

5.2.1 Lemma. A square Schur-invertible matrix W is type-II if and only if

J ∈NW .

So if W is type-II, the dimension of its Nomura algebra is at least two.

There is a non-trivial class of examples based on finte abelian groups.

Assume G is a finite abelian group of order n, given by n ×n permutation

matrices, and let W be its character table, with rows indexed by group

elements and columns by characters. Then Wi / j is a character of G , and

therefore NW consists of the matrices M for which there is a diagonal

matrix D such that MW = W D . It is not hard to verify that all permutation

matrices in G belomg to NW .

It is surprisingly difficult to provide examples of type-II matrices the

dimension of the Nomura algebra is great than two. We can use products to

get examples which we deem trivial: It can be proved that if W1 and W2 are

type-II matrices, then

NW1⊗W2
∼=NW1 ⊗NW2 .

Hence if W is the Kronecker prodiuct of k type-II matrices,

dim(NW ) ≥ 2k .

A type-II matrix W is a spin model if W ∈ NW . Spin models are impor-

tant becuase they give rise to link invariants. Abelian group provide exam-

ples where the type-matrices are flat ; the only known examples where the

type-II matrix is flat is based on the Higman-Sims graph (die to Jaeger 1) 1

and a family due to Nomura 2 bases on Hadamard matrices. 2
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5.3 Quantum Automorphisms

A quantum permutation P is an n ×n matrix such that each entry is a d ×d

projection, and the projections in each row and column sum to Id . We

prefer to view P as a matrix over the ring of d ×d matrices but, occasionally

it is convenient to view it as an nd ×nd matrix with blocks of size d ×d . In

this case we will write P̃ to warn the reader of the change of viewpoint.

Note that if Q1, . . . ,Qk are projections and
∑

i Qi = I , then Qi Q j = 0 when

i 6= j . If the entries in a quantum permutation P all have rank one, then P is

also known as a quantum Latin square.

5.3.1 Lemma. Suppose P is an n×n quantum unitary with d×d projections

as entries. Then P̃ is unitary.

Proof. Easy exercise.

An important consequence of this result is that P and P̃ are invertible.

Following Roberson et al 3, we define two graphs X and Y on n vertices 3

to be quantum isomorphic if there is a quantum permutation P of order

n ×n, with entries projections of order d ×d , such that

(A(X )⊗ Id )P̃ = P̃ (A(Y )⊗ Id ).

If X = Y , we have a quantum automorphism of X . Since P is unitary, the

matrices A(X )⊗ I and A(Y )⊗ I are similar, and so we see that quantum

isomorphic graphs are cospectral. We’ll see that more is true, but there are

graphs that are quantum isomorphic but not isomorphic. (See 4.) 4

An automorphism of the graph X on n vertices can be specified by an

n ×n permutation matrix Q such that Q A = AQ. Then Q ⊗ I and A ⊗ I

commute, and we see that any automorphism of a graph gives rise to

quantum automorphism,

5.3.2 Lemma. If P is a quantum permutation, P̃ commutes with J ⊗ Id .

This result is easy to prove, and is left to the reader. One consequence

of it is that quantum isomorphic graphs are cospectral with cospectral

complements.

Our next results holds provided the entries in any row of P satisfy

Pi , j Pi ,k = δ j ,k Pi , j ;

they do not need to be projections.

5.3.3 Lemma. If P is a quantum permutation and P̃ commutes with M ⊗ I

and N ⊗ I , it commutes with (M ◦N )⊗ I .

Proof. The i j -block of (M ⊗ I )P̃ is∑
r

Mi ,r Pr , j
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and, by hypothesis, this is equal to the i j -block of P̃ (M ⊗ I ):∑
s

Ms, j Pi ,s .

We have ∑
r

Mi ,r Pr , j
∑

s
Ni ,s Ps, j =

∑
r

(Mi ,r Ni ,r )Pr , j

where the right side is the i j -block of ((M ◦N )⊗ I )P̃ . Similarly∑
r

Mr , j Pi ,r
∑

r
Nr , j Pi ,r =

∑
r

(Mr , j Nr , j )Pi ,r

where the right side is the i j -block of P̃ ((M ◦N )⊗ I ). Since the left sides of

the previous pair of equations are equal, our result follows.

5.3.4 Lemma. Let P be a quantum permutation. The set of matrices M

such that M ⊗ I commutes with P̃ is ∗-closed.

Proof. Since the entries of P are Hermitian, we have

(P̃ (M∗⊗ I ))x,y =
∑

r
Px,r M∗

r ,y =
∑

r

(
Px,r Mr ,y

)∗ = (
(P̃ (M ⊗ I ))x,y

)∗
and, if P and M ⊗ I commute, then(

(P̃ (M ⊗ I ))x,y
)∗ = ((M∗⊗ I )P̃ )x,y .

It follows that if M ⊗ I commutes with P̃ , so does M∗⊗ I .

From the previous two lemmas we see that the set of matrices M such

that P̃ commutes with (M ⊗ I ) is a coherent algebra.

5.4 The Matrix of Idempotents of a Type-II Matrix

We describe an operation on type-II matrices which we can use to con-

struct quantum permutations. Assume W is an n×n type-II matrix and, for

each i and j , define a rank-1 matrix Yi , j by

Yi , j := 1

n
Wi / j (W j /i )T .

Let YW denote the n ×n matrix with i j -entry equal to Yi , j (for all i and j ).

We call it the matrix of idempotents of W .

We observe that

Yi ,i = 1

n
J

and

Y T
i , j = Y j ,i .

The latter implies that YW is symmetric. Further

Y (−)
i , j = nW j /i (Wi / j )T = n2Y j ,i .
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If Y τ denotes the matrix we get by replacing each entry of Y by its trans-

pose (i.e., the partial transpose of Y ), then

Y τ = 1

n
Y (−).

Finally, if W is flat, then Yi , j is Hermitian.

5.4.1 Theorem. Let Y be the matrix of idempotents of the n ×n type-II

matrix W . Then each row and column of Y sums to I .

Proof. Let ∂i (M) denote the diagonal matrix such that (∂i (M)r ,r = (Mei )r .

We have

n
∑

j
Yi , j =

∑
j

Wi / j (W j /i )T = ∂i (W )

(∑
j

(W e j )(−)(W e j )T

)
∂i (W )−1.

Here the inner sum is equal to

W (−)W T = (W W (−)T )T = nI .

Since Y is symmetric, the result follows.

Let S be the endomorphism of Cn ⊗Cn that sends u ⊗ v to v ⊗u. Note

that S2 = I and S is a permutation matrix.

5.4.2 Theorem. If W is a type-II matrix, its matrix of idempotents Y is a

type-II matrix. If W is flat, then Y is flat and is a quantum permutation.

Proof. For fixed i , the vectors W e j form a basis of Cn and the vectors

n−1(W e j )(−) form a basis dual to this. Hence the matrices

1

n
(W e j )(−1)(W e j )T

are pairwise orthogonal idempotents and sum to I . Therefore for fixed i

the matrices Fi , j are pairwise orthogonal idempotents that sum to I .

Since Y T =Y , it also follows that each column of Y consists of pairwise

orthogonal idempotents that sum to I . If W is flat, then Yi , j is Hermitian.

5.4.3 Corollary. If W is a Hadamard matrix, YW is a Hadamard matrix of

Bush type.

5.4.4 Lemma. If W is type-II, then YW T = SYW S.

Proof. We have

n(Yi , j )r ,s =
Wr ,i

Wr , j

Ws, j

Ws,i
= Wr ,i

Ws,i

Ws, j

Wr , j
=

W T
i ,r

W T
i ,s

W T
j ,s

W T
j ,r

= n(Yr ,s (W T ))i , j .

Here the left hand and right hand terms are equal respectively to

(ei ⊗er )T YW (e j ⊗es ), (er ⊗ei )T Y (es ⊗e j )

and the result follows.
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5.5 A Nomura Algebra is Schur-Closed

Let W be a type-II matrix. Recall that if M ∈ NW , then Θi , j (M) is the eigen-

value of M on the eigenvector Wi / j . Accordingly we define ΘW (M) to be

the matrix with

(ΘW (M))i , j =Θi , j (M);

it is the matrix of eigenvalues of M . Clearly, if M , N ∈NW , then

ΘW (M N ) =ΘW (M)◦ΘW (N ).

If M and N are square matrices of the same order, their Lie bracket is

[M , N ] := M N −N M .

Obviously [M , N ] = 0 if and only if M and N commute (and this is the only

property of the Lie bracket that we will use.)

5.5.1 Theorem. Let W by type-II and let Y be its matrix of idempotents.

Then

NW = {M : [I ⊗M ,YW ] = 0},

and

NW T = {N : [N ⊗ I ,YW ] = 0}.

Proof. We have that [I ⊗M ,Y ] = 0 if and only if [M ,Yi , j ] = 0 for all i and

j . Now M commutes with a rank-1 matrix uv∗ if and only if u is a right

eigenvector for M . Hence [M ,Yi , j ] = 0 for fixed i and all j if and only if

M ∈NW .

For the second claim,

S((N ⊗ I )YW )S = (I ⊗N )YW T ,

from which the assertion follows.

5.5.2 Corollary. If W is a type-II matrix, then NW is Schur-closed.

If we show that NW is closed under transpose, it will follow that NW is

the Bose-Mesner algebra of an association scheme. Similarly NW T will be a

Bose-Mesner algebra; the relation between these two algebras is described

in the following theorem, which we would like to be able to prove using the

machinery at hand.

We have

(M ⊗ I )Y = (Θ(M)⊗ J )◦Y .

5.5.3 Theorem (Nomura). If W is a type-II matrix of order n ×n, then

ΘW (M) ∈NW T

and

ΘW (M ◦N ) = 1

n
ΘW (M)ΘW (N )
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