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Preface

If A is the adjacency matrix of a graph X, we define a transition matrix
U(t) by

U(t) = exp(itA).
Physicists say that U(t) determines a continuous quantum walk. Most ques-
tions they ask about these matrices concern the squared absolute values of
the entries of U(t) (because these may be determined by measurement,
and the entries themselves cannot be). The matrices U(t) are unitary and
U(t) = U(−t), so we may say that the physicists are concerned with ques-
tions about the entries of the Schur product

M(t) = U(t) ◦ U(t) = U(t) ◦ U(−t).

Since U(t) is unitary, the matrix M(t) is doubly stochastic. Hence each
column determines a probability density on V (X) and there are two extreme
cases:

(a) A row of M(t) has one nonzero entry (necessarily equal to 1).

(b) All entries in a row of U(t) are equal to 1/|V (X)|.

In case (a), there are vertices a and b of X such that |U(t)a,b| = 1. If a 6=
b, we have perfect state transfer from a to b at time t, otherwise we say that
X is periodic at a at time t. Physicists are particularly interested in perfect
state transfer. In case (b), if the entries of the a-row of M(t) is constant,
we have local uniform mixing at a at time t. (Somewhat surprisingly these
two concepts are connected—in a number of cases, perfect state transfer
and local uniform mixing occur on the same graph.)

The quest for graphs admitting perfect state transfer or uniform mixing
has unveiled new results in spectral graph theory, and rich connections to
other fields of mathematics. This also brought us to explore more topics in
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quantum information and their interplay with combinatorics. This book is,
in part, a progress report on these questions.

For us, the biggest surprise is the extent to which tools from algebraic
graph theory prove useful. So we treat this in somewhat more detail than
is strictly necessary. Some of it is standard, some is old stuff repackaged,
and some is new material (e.g., controllability, strongly cospectral vertices)
that has been developed to deal with quantum walks. But combinatorics is
not everything: we also meet with Lie groups, various flavours of number
theory, and almost periodic functions. (And so a second surprise is the
number of different mathematical areas entangled with our topic.)

We do not treat discrete quantum walks here (see [?]). We do not treat
quantum algorithms or quantum computation, nor do we deal with ques-
tions about complexity, error correction, non-local games, and the quantum
circuit model. We discuss a little of the related physics. We have focussed
on questions that are both mathematically interesting and have some phys-
ical significance, since this overlap is often a sign of a fruitful outcome.

We have had useful comments on these notes from many people, includ-
ing Dave Witte Morris, Tino Tamon, Sasha Jurišic and members of his
seminar, Alexis Hunt, David Feder, Henry Liu, Harmony Zhan, Nicholas
Lai, Xiaohong Zhang, Soffia Arnadottir, Qiuting Chen. . . .

This is a (VERY) preliminary version intended to be used a class notes
for a grad course at UFMG in 2020. We welcome any comments to
gabriel@dcc.ufmg.br or cgodsil@uwaterloo.ca.
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Chapter 1

Continuous Quantum Walks

This chapter provides an overview of continuous-time quantum walks on
graphs, from the viewpoint of a mathematician, with a strong focus on
examples. We will discuss the underlying physics in the next chapter.

In the course of their work on quantum computing, physicists have in-
troduced continuous quantum walks. To define such a walk, we take a real
symmetric matrix H and define transition operators U(t) = UH(t) for t ∈ R
by

U(t) := exp(itH).

The matrix H is the Hamiltonian of the walk. Our default assumption is
thatH is the adjacency matrix of a graph, though most of our considerations
apply to other models as well. We observe that U(t) = U(−t) and (since
H is symmetric) that U(t)T = U(t). Hence

U(t)∗U(t) = U(−t)U(t) = I,

equivalently U(t) is a unitary matrix for all t. (For a complex matrix U , we
are using U∗ to denote the conjugate-transpose UT of U .)

We are in fact borrowing the terminology and the picture from the
classical counterpart. A continuous random walk on a graph X can be
specified by a family of matrices M(t), where M(t)a,b is the probability
that at time t the “walker” is on vertex b, given that it started at vertex a.
In the classical case, we assume the underlying model is that in a short time
interval of length δt, the walker moves to an adjacent vertex with probability
proportional to δt, and it is equally likely to move to any neighbor of the
vertex it is on. If A is the adjacency matrix of X and ∆ is the diagonal
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1. Continuous Quantum Walks

matrix such that ∆a,a is the valency of a, then standard theory for Markov
chains in continuous time imply that

M(t) = exp(t(A−∆)).

We note that each column of M(t) is a probability density—its entries are
nonnegative and sum to 1. There are some analogies to the quantum case,
but in general the walks are very different.

Thoughout this book, the term “graph” means “finite graph”.

1.1 Basics
By way of example, take X = P2 and A = A(P2).

a b

Figure 1.1: The graph P2.
Then

A =
(

0 1
1 0

)
and so, for any k ∈ Z,

A2k = I, A2k+1 = A.

Therefore

exp(itA) = I + itA− 1
2t

2I − 1
6it3A+ 1

24t
4I + · · ·

= cos(t)I + i sin(t)A

and
U(t) =

(
cos(t) i sin(t)
i sin(t) cos(t)

)
.

At particular times t, this matrix takes a special form. For instance

U(π) = −I,

while
U(π/2) = i

(
0 1
1 0

)

4



1.2. Products

and
U(π/4) = 1√

2

(
1 i
i 1

)
.

Thus U(t) is respectively:

(a) A scalar matrix.

(b) A scalar times a permutation matrix.

(c) A unitary matrix with all entries having the same absolute value.

Given a graph X and a time t, we can define the mixing matrix M(t)
as the Schur or entry-wise product of U(t) and its conjugate, that is,

M(t) = U(t) ◦ U(−t).

For a, b ∈ V (X), the entry M(t)a,b is the probability that at time t the
quantum walk that started at a will terminate at b. In Chapter 2, we will
elucidate what we mean by this in terms of quantum physics. For the path
on two vertices we have

M(t) =
(

cos2(t) sin2(t)
sin2(t) cos2(t)

)
.

Clearly the mixing matrix is (always) doubly stochastic, equivalently each
row and column is a probability density. We will be most interested in
determining if there is a time t such that a column ofM(t) takes a specified
form: for example, whether some entry is equal to 1 (in which case all other
entries are 0), or whether all entries are equal.

1.2 Products
The Kronecker product A ⊗ B of matrix A and B is the matrix we get if,
for each i and j we replace the ij-entry of A by Ai,jB. So if A is k × ` and
B is m× n, the product A⊗B is a matrix of order km× `n.

The crucial property of the Kronecker product is that, if the products
AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.

5



1. Continuous Quantum Walks

For example, A⊗B = (A⊗ I)(I ⊗B).
The Kronecker product provides a convenient way to define products of

graphs. In particular if X and Y are graphs, their Cartesian product X�Y
is defined as the graph on vertex set V (G) × V (H), where (x, y) ∼ (x′, y′)
if x = x′ and y ∼ y′ in Y or x ∼ x′ in X and y = y′. If X and Y have
respective adjacency matrices A(X) and A(Y ), the adjacency matrix of
their Cartesian product is

A(X � Y ) = A(X)⊗ I + I ⊗ A(Y ).

1.2.1 Lemma. If X and Y are graphs, then, for any t,

UX�Y (t) = UX(t)⊗ UY (t).

Proof. Assume the adjacency matrices of X and Y are A and B respectively.
The matrices A⊗ I and I ⊗B commute, whence

exp(it(A⊗ I + I ⊗B)) = exp(it(A⊗ I)) exp(it(I ⊗B))
= (exp(itA)⊗ I)(I ⊗ exp(itB))
= exp(itA)⊗ exp(itB).

It follows, for example, that the transition matrix for the d-cube Qd =
P�d2 is the d-th tensor power of the transition matrix for P2.

UQd = UP2(t)⊗d.

If L(X) denotes the Laplacian of X then you are invited to verify that

L(X � Y ) = (L(X)⊗ I) + (I ⊗ L(Y )).

Hence whether we use the adjacency matrix or the Laplacian, the above
lemma holds.

The Kronecker product interacts nicely with Schur product, thus if A
and C have the same order and B and D have the same order,

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D).

From this it follows that

MX�Y (t) = MX(t)⊗MY (t).
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1.3. State Transfer and Mixing

1.3 State Transfer and Mixing
Suppose A is a symmetric matrix, which we view as a weighted adjacency
matrix of a graph X. (Hence it could be an adjacency matrix, a signed
adjacency matrix, or a Laplacian.) If a ∈ V (X), we denote its characteristic
vector by ea, that is, the vector in RV (X) that is 0 in all entries except for
the entry corresponding to a, which is equal to 1.

We say that we have perfect state transfer from vertex a in X to vertex
b at time t if

M(t)a,b = 1.
Since U(t) is unitary, this is equivalent to having a complex scalar γ of
absolute value equal to 1 such that

U(t)ea = γeb.

This complex number γ is called the phase factor. In Chapter 2 we will
discuss the (ir)relevance of γ. From Section 1.1 we see that if A = A(P2),
we have perfect state transfer from vertex a to vertex b at time π/2. From
Section 1.2 it follows that if a is a vertex in the d-cube Qd = P�d2 , then
at time π/2 we have perfect state transfer from a to the unique vertex at
distance d from a.

We say that we have instantaneous uniform mixing, or just uniform
mixing at time t if all entries of M(t) are equal, or, equivalently, if all
entries of U(t) have the same absolute value. (We say that a matrix with
this property is flat.) For P2 we saw that U(π/4) is flat. Hence we have
uniform mixing at time π/4 on P2 and, more generally, on the d-cube Qd.

Two of our basic problems are to determine the cases where perfect state
transfer occurs, and to determine the cases where uniform mixing occurs.

1.4 Symmetry and Periodicity
We saw that at time π/2 we have perfect state transfer on P2 from vertex a
to vertex b and, at the same time, from vertex b to vertex a. Similarly, on
P3,

a b c

Figure 1.2: The graph P3.
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1. Continuous Quantum Walks

we will see in Section 1.6 that we have perfect state transfer for a to c, and
from c to a, at time π/

√
2. These are examples of something much more

general.

1.4.1 Lemma. If we have perfect state transfer on X from vertex a to
vertex b at time τ , then we have perfect state transfer from b to a at the
same time (and with the same phase factor).

Proof. Suppose U(τ)ea = γeb. Then

γ−1ea = U(−τ)eb
and if we take complex conjugate of both sides, we find

γea = U(τ)eb,

as γ has norm 1.
From now on, we may simply say that we have perfect state transfer

between two vertices a and b, and in fact we might refer to this as ab-
perfect state transfer. One consequence of this result is that, if we have
ab-perfect state transfer at time t with phase factor γ, then

U(2t)ea = U(t)2ea = γ2ea

and, similarly, U(2t)eb = γ2eb. We say that X is periodic at u if there is a
time τ such that U(τ)ea = γea for some γ.

1.4.2 Corollary. If we have perfect state transfer between a and b in X at
time t, then X is periodic at a and at b, at time 2t.

Although it is difficult to see any physical applications of periodicity, it
provides a very useful mathematical tool for the analysis of perfect state
transfer.

We say that a graph X is periodic if there is a time t such that U(t)
is diagonal. Equivalently X is periodic with period t at each vertex. By
virtue of the following lemma, we do not need to make any assumptions on
phase factors.

1.4.3 Lemma. If X is connected and U(t) is diagonal, then U(t) = γI.

Proof. If X is connected, the only diagonal matrices that commute with A
are the scalar matrices. Since U(t) and A commute, as we will see in the
following sections, the lemma holds.

8



1.5. Spectral Decomposition for Adjacency Matrices

If the eigenvalues of X are all integers it is easy to verify that X is
periodic. It is a surprising fact that something very close to the converse is
true, as we will see in Section 7.3.

1.5 Spectral Decomposition for Adjacency
Matrices

Suppose A is a symmetric matrix with distinct eigenvalues θ0, . . . , θd and let
Er denote orthogonal projection onto the eigenspace belonging to θr, thus
Er is real, symmetric and idempotent. Moreover, Er is a polynomial in A,
and because A is diagonalizable, we have

d∑
r=0

Er = I.

As A is symmetric, its eigenspaces are orthogonal, and thus

ErEs = δr,sEr.

Finally

A =
d∑
r=0

θrEr;

this identity is known as the spectral decomposition of A. If f is an analytic
function defined on the spectrum of A, then f(A) is defined in terms of a
power series, and

f(A) =
d∑
r=0

f(θr)Er.

All this is standard, see [28, Section 3.5] for example. It follows immediately
that

U(t) = exp(itA) =
d∑
r=0

eitθrEr,

and we shall use this identity extensively in the rest of this book. As each Er
is a polynomial in A, an immediate consequence is that U(t) is a polynomial
in A for all t, thus any matrix that commutes with A also commutes with
U(t).

9



1. Continuous Quantum Walks

If G is connected, the known Perron-Frobenius Theorem (see for in-
stance [38, Chapter 8]) states that the largest eigenvalue of A is simple,
and the matrix that represents orthogonal projection onto the corresdpond-
ing eigenspace has only positive entries. We shall typically assume θ0 refers
to the largest eigenvalue, thus the entries of E0 are positive.

Another case of particular interest to us is the following identity:

(tI − A)−1 =
d∑
r=0

1
t− θr

Er.

This allows us to express walk generating functions on a graph X in terms
of its eigenvalues and the entries of the idempotents Er. Thus

φ(X \u, t)
φ(X, t) =

d∑
r=0

(Er)u,u
t− θr

.

where φ(X, t) is the characteristic polynomial of A(X) in the variable t, and
X\u is the graph obtained from X by removing the vertex u and the edges
adjacent to it. We will take this up at length in Chapter 4.

By way of example, we compute the pieces in the spectral decomposition
of P3. The characteristic polynomial of P3 is t3− 2t, whence its eigenvalues
are √

2, 0, −
√

2.
The idempotents Er (in the same order) are

1
4

 1
√

2 1√
2 2

√
2

1
√

2 1

 , 1
2

 1 0 −1
0 0 0
−1 0 1

 , 1
4

 1 −
√

2 1
−
√

2 2 −
√

2
1 −

√
2 1

 .
In computing these it helps to note that if an eigenvalue is simple and z is
an associated eigenvector with norm 1, then the projection E is equal to
zzT . In general the orthogonal projection onto an eigenspace of dimension
m is simply the sum of the projections onto any set of m orthogonal one-
dimensional subspaces.

1.6 Using Spectral Decomposition
So far the only graphs we have considered are P2 and its Cartesian powers.
To increase our range, we make extensive use of the spectral decomposition
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1.6. Using Spectral Decomposition

of symmetric matrices. If A is symmetric and has spectral decomposition

A =
d∑
r=0

θrEr

then
U(t) = exp(itA) =

d∑
r=0

eiθrtEr.

From this we already see that U(t) is a polynomial in A for any t, whence
it commutes with A. Its eigenvalues are the numbers eiθrt.

By way of example, we apply this to the path P3. Its spectral decompo-
sition is computed at the end of Section 1.5. We have

U(t) = ei
√

2tE1 + E2 + e−i
√

2tE3

and therefore
U(π/

√
2) = −E1 + E2 − E3.

However

E1 − E2 + E3 =

0 0 1
0 1 0
1 0 0

 ,
which is a permutation matrix and represents the automorphism of P3 that
swaps its end-vertices. It follows that we have perfect state transfer between
the end-vertices of P3 at time π/

√
2. We also have perfect state transfer on

the Cartesian powers of P3.
We can use the spectral decomposition of A to derive a factorization of

U(t). If

A =
d∑
r=0

θrEr,

then the summands commute and therefore

U(t) = exp(itA) =
d∏
r=0

exp(itθrEr).

If E is an idempotent, then itE has the spectral decomposition

0 · (I − E) + it · E

11



1. Continuous Quantum Walks

and hence
exp(itE) = I − E + eitE.

Thus we have the factorization

U(t) =
d∏
r=0

(I − Er + eiθrtEr).

Since I−Er+eiθrtEr acts as the identity on the column space of I−Er and
as multiplication by eitθr (a complex number of norm one) on the column
space of Er, it might be viewed as a complex reflection about the subspace
col(I−Er). (A complex reflection relative to a subspace U fixes each vector
in U and acts as multiplication by a complex scalar of norm one on U⊥.)

1.7 Complete Graphs
The complete graph Kn is the graph on n vertices where all vertices are
neighbours. The complete bipartite graph Kn,m is the graph on n + m
vertices, where there is no edge amongst the first n vertices, no edge amongst
the last m vertices, and otherwise all pairs of vertices are neighbours. It
is a worthwhile exercise to show using the factorization in the end of last
section that, in the complete bipartite graph K2,n, we have perfect state
transfer between the two vertices of degree n.

We introduce a useful and interesting bound, and apply it to complete
graphs.

1.7.1 Lemma. If X has spectral decomposition ∑r θrEr and a, b ∈ V (X),
then

|U(t)a,b| ≤
d∑
r=0
|(Er)a,b|.

Proof. We apply the triangle inequality to

U(t) =
d∑
r=0

eitθrEr,

noting that all eigenvalues have norm 1.

12



1.8. Bipartite Graphs

We will study this inequality in greater depth in Section 7.1. For now,
we apply it to the complete graphs. Note first that A(Kn) = J − I where J
is the all 1s matrix of appropriate size. It is a simple exercise to show that
the eigenvalues of Kn are n− 1 (which is simple) and −1 (with multiplicity
n− 1). The corresponding idempotents are

1
n
J, I − 1

n
J

and consequently

U(t) = ei(n−1)t 1
n
J + e−it

(
I − 1

n
J
)
.

The bound in Lemma 1.7.1 yields that if a and b are distinct vertices in Kn,
then

|U(t)a,b| ≤
2
n
.

This implies immediately that the only complete graph with perfect state
transfer is K2, which happens to be equal to P2. If we have uniform mixing
on Kn at time t, then each off-diagonal entry of U(t) has absolute value
equal to 1/

√
n. However if

1√
n
≤ 2
n

then n ≤ 4, and so uniform mixing cannot occur on Kn if n > 4, despite
what our intuition might suggest. In fact, a quantum walk on Kn tends to
stay at the start vertex, which already displays a significant contrast to the
classical case.

1.8 Bipartite Graphs
A bipartite graph is a graph where the vertex set can be partitioned into
two classes, and all edges of the graph have one end in each class. Note
that two vertices in the same class are at even distance, and two vertices
in opposite classes are at odd distance. The entries of U(t) are complex
numbers with norm at most 1. When X is bipartite though we can say
more.

13



1. Continuous Quantum Walks

Assume X is bipartite on n vertices. We can always order the vertices
in such way that the adjacency matrix has the following form:

A =
(

0 B
BT 0

)
,

where B is a 01-matrix of appropriate size.

1.8.1 Lemma. Assume X is bipartite and A has partitioned form

A =
(

0 B
BT 0

)
.

Then there are real symmetric matrices C1(t) and C2(t), and a real matrix
K(t) such that

U(t) =
(
C1(t) iK(t)

iK(t)T C2(t)

)
.

Proof. If
D :=

(
I 0
0 −I

)
,

then DAD = −A. Consequently

DU(t)D = U(−t) = U(t),

which implies that the diagonal blocks of U(t) are real and the off-diagonal
blocks are purely imaginary. Since U(t) is symmetric, so are C1 and C2.

As an exercise, you might prove that

C1(t) = cos(t
√
BBT ), C2(t) = cos(t

√
BTB).

What we are seeing in the above expression for U(t) is a reflection of
the fact that U(t) is normal and any normal matrix can be written as a
sum C + iS where C and S are commuting Hermitian matrices. (If N is
normal, then C = 1

2(N+N∗) and S = 1
2i(N−N

∗) are commuting Hermitian
matrices.)

This simplification of the form of U(t) still holds if we allow B to be a
weighted adjacency matrix, but not if we use the Laplacian (because then
the diagonal is not zero).

The above considerations lead to the following result, due to Kay [45,
Section III].
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1.9. Uniform Mixing on Bipartite Graphs and Hadamard matrices

1.8.2 Lemma. Let X be a bipartite graph. If we have perfect state transfer
from u to v at time t, then the phase factor is ±1 if dist(u, v) is even, and
is ±i if dist(u, v) is odd.

We shall return to perfect state transfer on bipartite graphs later.

1.9 Uniform Mixing on Bipartite Graphs
and Hadamard matrices

A Hadamard matrix H is a square n× n matrix whose all entries are equal
to ±1, and such that

HHT = nI.

Hadamard matrices have been studied for more than 100 years. It is easy
to see that

H =
(

1 1
1 −1

)

is a Hadamard matrix, and so are all matrices H⊗k for k ≥ 2. If H is a n×n
Hadamard matrix with n ≥ 3, then it is well known that n ≡ 0 (mod 4). It
is a major open problem in combinatorics to decide whether or not a n× n
Hadamard matrix exists for all n ≡ 0 (mod 4). We use the term complex
Hadamard matrix to refer to a matrix H such that HHT = nI, and all
entries of H are ±1 or ±i.

We use the results of the previous section to derive some useful infor-
mation concerning uniform mixing on bipartite graphs, and to establish a
connection between quantum walks and Hadamard matrices. Recall that a
graph X admits uniform mixing at time t if U(t) is a flat complex matrix.

1.9.1 Theorem. Let X be a bipartite graph on n vertices. If uniform
mixing occurs on X then n = 2 or n is divisible by four; if X is regular and
uniform mixing occurs then n is the sum of two squares.

Proof. Assume X is bipartite and U(t) is flat for some t. As we have
seen, each entry of U(t) is either real or purely imaginary, and it follows
that

√
nU(t) must be a complex Hadamard matrix with entries ±1 and ±i.

Let D be a diagonal matrix with Du,u = 1 if u is in the first class of the
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1. Continuous Quantum Walks

bipartition of X, and Du,u = i otherwise. Then

D∗U(t)D =
(
C1(t) −K(t)
K(t)T C2(t)

)

where C1(t), C2(t) and K(t) are real matrices. Therefore
√
nD∗U(t)D is a

real Hadamard matrix, and thus n = 2 or n is divisible by four.
If X is regular then the all-ones vector 1 is an eigenvector of A. As U(t)

is a polynomial in A, it follows that there are integers a and b such that
√
nU(t)1 = (a+ ib)1;

taking complex conjugates yields that
√
nU(−t) = (a− ib)1

and consequently

(a− ib)(a+ ib)1 = nU(−t)U(t)1 = n1.

An even cycle is regular and bipartite, so the above result provides
another proof of some results of Adamczak et al [1]. Carlson et al [17]
proved that uniform mixing does not occur on C5. In Chapter 17 we will
see that there is no uniform mixing on even cycles of length greater than
four, and no uniform mixing on the cycles Cp, where p is a prime greater
than three.

1.10 Cospectral and Strongly Cospectral
Vertices

If we have perfect state transfer from vertex a to b, what properties must
a and b share. Could they have different valency? We use the spectral
decomposition to derive constraints.

1.10.1 Lemma. Let A = ∑
r θrEr be the spectral decomposition of X. If

we have perfect state transfer from a to b, then:

(a) For each for each non-negative integer k we have (Ak)a,a = (Ak)b,b.

(b) For each for each r we have (Er)a,a = (Er)b,b.
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1.10. Cospectral and Strongly Cospectral Vertices

Proof. If we have perfect state transfer from a to b at time t, there is a
complex number γ with norm one such that

U(t)ea = γeb

and, since U(t) commutes with powers of A,

U(t)Akea = γAkeb.

Hence
(Ak)b,b = 〈eb, Akeb〉 = 〈γ−1U(t)ea, γ−1U(t)Akea〉.

Since U is unitary and ‖γ‖ = 1,

〈γ−1U(t)ea, γ−1U(t)Akea〉 = 〈ea, Akea〉 = (Ak)a,a.

Now we note that each spectral idempotent is a polynomial in A, and
so (b) follows at once.

Since (A2)u,u is the valency of the vertex u, it follows that if we have
perfect state transfer from a to b, then a and b have the same valency. More
generally, for each integer k, the number of closed walks of length k on a
equals the number on b. (So, for example, the number of triangles on a is
equal to the number on b.) If condition (a) holds for vertices a and b, we
say that they are cospectral.

If U(t)ea = γeb, then

γEreb = U(t)Erea = eitθrErea

and hence
Ereb = γ−1eitθrErea.

As both Ereb and Erea are real, eitθrErea is real and, since ‖γ−1eitθr‖ = 1,
we have the following.

1.10.2 Lemma. If there is perfect state transfer from a to b, then Ereb =
±Erea for each r.

If we have Ereb = ±Erea for each r, we say that the vertices a and b are
strongly cospectral.

We leave it as an exercise to show that if (Er)a,a = (Er)b,b for each r,
then a and b are cospectral.

We treat cospectral and strongly cospectral vertices at (much) greater
length in Chapter 6.
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1. Continuous Quantum Walks

1.11 Vertex-Transitive Graphs
Suppose we have perfect state transfer from a to b in X. Then

U(t)ea = γeb

for some complex number γ with |γ| = 1, and, since A commutes with U(t)
we get

U(t)Aea = γAeb.

Since U(t) is unitary and ‖γ‖ = 1, we see that ‖Aea‖2 = ‖Aev‖2. Thus a
and b have the same valency, and this also indicates that if we have perfect
state transfer from a to b, then a and b should be somehow similar. This
suggests that vertex-transitive graphs would be a good place to look for
perfect state transfer. In this section give some thought to the connection
between vertex transitivity and state transfer.

An automorphism of a graph X is a bijection f : V (X) → V (X) that
maps adjacent pairs of vertices to adjacent pairs. A bijection from a fi-
nite set on n elements to itself is a permutation, and provided that the
elements of the set are somehow ordered, say {a1, ..., an}, each permutation
π corresponds uniquely to a 01-matrix P defined as Pij = 1 if and only if
π(ai) = aj. It is an enlightening exercise to verify that a permutation π
is an automorphism of a graph if and only if its corresponding matrix P
commutes with A(X). (Provided, of course, that the same ordering is used
to construct P and A.)

The permutation matrices that commute with A form a group of ma-
trices isomorphic to the automorphism group of X. (The latter consists of
permutations of V (X) and the former consists of matrices; it is usually sim-
plest to ignore the difference, and refer to either presentation as Aut(X).)

The vertex set of X is partitioned into orbits of the action of Aut(X).
When there is only one orbit, the graph is vertex transitive. In a vertex
transitive graph, for any two vertices a and b, there is always a permutation
matrix P that commutes with A so that Pea = eb.

Suppose we have perfect state transfer from a to b in a vertex-transitive
graph X. Assume U(τ)ea = γeb. If the permutation matrix P commutes
with A, it must commute with U(t), and then

γPeb = PU(τ)ea = U(τ)Pea.
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Hence if have perfect state transfer from a to b at time τ , then we have
perfect state transfer from the image of a under P to the image of b. Conse-
quently there is a partition of V (X) into pairs and at time τ we have perfect
state transfer between each vertex and its partner, all happening with the
same complex number γ. Accordingly there is a permutation matrix T such
that

U(τ) = γT ;

further all diagonal entries of T are zero and T 2 = I. Since T must commute
with A it is an automorphism of X. Since U(t) commutes with Aut(X), it
follows that T lies in the center of Aut(X).

1.11.1 Theorem. Assume X is a vertex-transitive graph. If at time τ we
have perfect state transfer from a to b, then there is a complex number γ
and a permutation matrix T such that U(τ) = γT . The permutation matrix
T is a fixed-point free automorphism of X with order two that lies in the
center of Aut(X).

We point out that this result also holds if X has multiple edges or loops,
the key to the argument is that U(τ) must commute with each element of
Aut(X).

1.11.2 Corollary. If a vertex-transitive graph admits perfect state transfer,
then V (X) is even.

1.12 Pretty Good State Transfer
We have already discussed two types of phenomena that could happen in
a quantum walk at a fixed time. Perfect state transfer and uniform mixing
are both defined when the absolute values of certain entries of U(t) attain,
respectively, 1 or 1/

√
n. We will see later that a quantum walk on a graph

has a somewhat oscillating and periodic or almost periodic behavior. So
there makes no sense to ask if it could be that |U(t)ab| tends to 1 or 1/

√
n

or any other value as t → ∞. But we can and will ask if there is a set of
distinct times t0 < t1 < t2 < ... so that (|U(tk)ab|)k≥0 converges. In this
section, we introduce our first example.
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1. Continuous Quantum Walks

We say a graph X admits pretty good state transfer from a to b if for
any ε > 0, there is a t ∈ R such that

|U(t)a,b| > 1− ε.

It is not hard to see that if we have pretty good state transfer from a to
b, we must also have pretty good state transfer from b to a. We view pretty
good state transfer as an interesting and possibly useful approximation to
perfect state transfer. We provide an example of the concept by showing
that it occurs on P4 while perfect state transfer does not.

The eigenvalues of P4 are

θ1 = 1
2(
√

5+1), θ2 = 1
2(
√

5−1), θ3 = 1
2(−
√

5+1), θ4 = 1
2(−
√

5−1).

and by straightforward computation we find that

E1 − E2 + E3 − E4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
Denote the matrix on the right byR. (We could prove thatR = ∑

r(−1)r−1Er
by verifying that if zr is an eigenvector with eigenvalue θr, then Rzr =
(−1)r−1zr, for all paths. Verifying all these details right now is not trivial,
but everything we need is covered in Chapter 10.)

Now choose integers p and q so that

p

q
≈ 1 +

√
5

2 .

Then qθ1 ≈ p and

qθ2 = q(θ1 − 1) ≈ p− q, qθ3 ≈ q − p, qθ4 ≈ −p.

For example take p = 987 and q = 610 and set τ = 610π/2. Then the
values of τθr are (approximately)

987π/2, 377π/2, −377π/2, −987π/2

and these are congruent modulo 2π to

3π/2, π/2, 3π/2, π/2.
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1.13. Oriented Graphs

Hence
U(305π) ≈ −iR.

(The approximation is accurate to five decimal places.)
In general we have to choose p and q so that p ≡ 3 and q ≡ 2 modulo 4.

If fn is the n-th Fibonacci number with f0 = f1 = 1 then

f4m+2 ≡ 2 (mod 4) and f4m+3 ≡ 3 (mod 4),

and the ratios fn+1/fn are the standard continued fraction approximation
to (1+

√
5)/2. We conclude that we have pretty good state transfer between

the end-vertices of P4. We leave the reader the exercise of verifying that
there is also pretty good state transfer between the end-vertices of P5 (for
which the eigenvalues are 0, ±1, ±

√
3).

In Section 10.6 we will see that we do not have perfect state transfer
on Pn when n ≥ 4. If Chapter 11 we return to the study of pretty good
state transfer on paths. There we will see many cases where it occurs, but
we will also see that to get a good approximation to perfect state transfer,
we usually need the time t to be very large. This suggests that pretty good
state transfer will not be a satisfactory substitute for perfect state transfer
in practice.

1.13 Oriented Graphs
An oriented graph is a directed graph where each pair of distinct vertices
is joined by at most one arc. If B is the adjacency matrix of an oriented
graph, then B ◦BT = 0 (which we could take to be the definition), and the
graph is determined by the signed matrix B−BT , which we call the signed
adjacency matrix of the oriented graph. One advantage of the signed matrix
is that it is skew symmetric and hence normal, and so we can hope for useful
relations between the eigenvalues and the combinatorial properties of the
oriented graph. A tournament is an oriented complete graph. We note that
an induced subgraph of an oriented graph is again an oriented graph.

If A is skew symmetric, the matrices

U(t) := exp(tA), (t ∈ R)

are orthogonal—just check:

(exp(tA))T = exp(tAT ) = exp(−tA).
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Hence U(t) defines a continuous quantum walk on the vertices of the ori-
ented graph. Since the entries of U(t) are real, it might seem strange to
refer to this as a ‘quantum walk’. But the entries of U(t) cannot be all
non-negative unless A = 0, so it is not a classical random walk and, in any
case, it is the mixing matrix M(t) which predicts the observable behaviour
of the walk and this matrix if real even for our usual walks.

The idea of studying continuous walks on oriented graphs, and the basic
theory, are due to Cameron et al. [16].

Skew-symmetric matrices are normal, and so have a spectral decompo-
sition. We work out spectral decomposition for oriented graphs. Note that
if AT = −A, then (iA)∗ = iA, whence we see that A is skew symmetric if
and only if −iA is Hermitian.

1.13.1 Lemma. If AT = −A, then all eigenvalues of A are purely imaginary
and the spectrum of A is closed under multiplication by −1. If θ is an
eigenvalue of A with spectral projection E, then projection belonging to −θ
is ET = E.

Proof. As iA is Hermitian, we have the spectral decomposition

iA =
∑
r

θrEr

where the eigenvalues θr are real and the idempotents Er are Hermitian.
Therefore all eigenvalues of A have real part zero.

If λ is a nonzero eigenvalue of A with associated idempotent E, then
AE = λE and therefore

AE = AE = λE.

This implies that Er is the spectral idempotent corresponding to the com-
plex conjugate of θr. But θr = −θr, and so the rest of our claims follow.

For a second approach, note that if A is skew-symmetric it is normal and
so there is a unitary matrix L and a diagonal matrix ∆ such that A = L∆L∗.
Now

−A = AT = A∗ = L∆L∗

and therefore ∆ = −∆.
It follows that we can write

A =
∑
r:θr>0

iθr(Er − Er).
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1.14. Multiple State Transfer

where i(Er − Er) is real and skew symmetric and

(Er − Er)2 = Er + Er.

If r 6= s, then
(Er − Er)(Es − Es) = 0.

Using the spectral decomposition of U(t), we have

U(t) =
∑
r

eitθrEr = E0 +
∑
r:θr>0

cos(θrt)(Er +Er) +
∑
r:θr>0

sin(θrt)(iEr− iEr)

where, despite appearances, each term in the last summand is real. Note
that this identity expresses U(t) as the sum of commuting symmetric and
skew symmetric matrices.

We say vertices a and b in an oriented graph are strongly cospectral if
for each idempotent Er there is a complex scalar γr such that ‖γr‖ = 1 and
Erea = γrEb.

1.13.2 Lemma. If all vertices in the oriented graph X are strongly cospec-
tral, than all eigenvalues of the signed adjacency matrix of X are simple.

Proof. The eigenspace belonging to the eigenvalue θr is spanned by the
projections Erea for a in V (X). If each two of these vectors are parallel,
their span is 1-dimensional.

1.14 Multiple State Transfer
Lemma 1.4.1 tells us that if we have perfect state transfer from a to b in a
continuous walk at time t, then we also have perfect state transfer from b to
a at time t. We will also see (Corollary 7.8.2) that if we have perfect state
transfer from a to b in a continuous walk, then at no time is there perfect
state transfer from a to a vertex distinct from b. For walks on oriented
graphs, the situation is quite different.

We consider the walk on the cyclic orientation of K3 with adjacency
matrix

A =

 0 1 −1
−1 0 1
1 −1 0

 .
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1. Continuous Quantum Walks

Define the permutation matrix P to be

P =

0 1 0
0 0 1
1 0 0

 ,
so A = P − P T . Set

ω = 1
2(−1 + i

√
3).

The eigenvectors of P are1
1
1

 ,
 1
ω
ω2

 ,
 1
ω2

ω


with respective eigenvalues

1, ω, ω2.

As
ω = 1

2(−1 + i
√

3),

we have
ω − ω2 = i

√
3.

and the eigenvalues of A are 0, i
√

3 and −i
√

3.
The spectral idempotents of P are the matrices zz∗ where z runs over

the normalized eigenvectors of P . Thus they are

1
3

1 1 1
1 1 1
1 1 1

 , 1
3

 1 ω2 ω
ω 1 ω2

ω2 ω 1

 , 1
3

 1 ω ω2

ω2 1 ω
ω ω2 1

 .
and therefore the spectral decomposition of U(t) is

U(t) = 1
3

1 1 1
1 1 1
1 1 1

+ eit
√

3

3

 1 ω2 ω
ω 1 ω2

ω2 ω 1

+ e−it
√

3

3

 1 ω ω2

ω2 1 ω
ω ω2 1


If τ := 2π

3
√

3 then
eiτ
√

3 = e2πi/3 = ω
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1.14. Multiple State Transfer

and consequently
(U(τ))1,2 = 1.

Since U(τ) is unitary and a circulant, we have proved that

U(τ) =

0 1 0
0 0 1
1 0 0

 .
1.14.1 Lemma. Let U(t) be the continuous quantum walk on the cyclic
orientation of K3. Then we have perfect state transfer from vertex 1 to
vertex 2 at time 2π

3
√

3 , and perfect state transfer from vertex 1 to vertex 3 at
time 4π

3
√

3 .

Proof. As

U(τ) =

0 1 0
0 0 1
1 0 0


it follows that

U(2τ) =

0 1 0
0 0 1
1 0 0


2

=

0 0 1
1 0 0
0 1 0

 .
This example is due to Tamon et al []. They say that the cyclic orien-

tation of K3 admits universal perfect state transfer, since there is perfect
state transfer between any two distinct vertices.

An oriented graph admits multiple state transfer if there a vertex that
admits perfect state transfer to two distinct vertices. One way to achieve
this is to choose the oriented graph and the time such that U(t) is a mono-
mial matrix. Since the Kronecker products of monomial matrices is a mono-
mial matrix, the Cartesian powers of the cyclic orientation of K3 provide
an infinite family of examples with multiple state transfer.
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1. Continuous Quantum Walks

1.15 Path Plots

Here we plot the probability of transfer between the end vertices of paths.

Figure 1.3: P2: M(t)0,1
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1.15. Path Plots

Figure 1.4: P3: M(t)0,2
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1. Continuous Quantum Walks

Figure 1.5: P4: M(t)0,3
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1.15. Path Plots

Figure 1.6: P11: M(t)0,10
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1. Continuous Quantum Walks

1.16 One More Plot

Here is a plot in the complex plane of UC5(t)0,1 as a function of time. One
question is whether this entry is zero at some positive value of t.

Figure 1.7: C5: U(t)0,1

Notes

Continuous quantum walks were introduced by Farhi and Gutmann in [29].
The concept of state transfer first appears in [12] and the basic theory
of perfect state transfer was mapped out by Christandl et al. in [20]. In
particular the latter paper shows that perfect state transfer occurs on P2
and P3, and on their Cartesian powers. It also offers a proof that, if n > 3,
we do not have perfect state transfer between the end-vertices of Pn. (We
will consider this in Section 10.6, where we prove that we do not have perfect
state transfer between any two vertices of Pn when n > 3.) We provide a
deeper treatment of perfect state transfer in Chapter 7.

Uniform mixing (or instantaneous uniform mixing) appears first in work
of Moore and Russell [48]. We return to this topic in Chapter 17, related
ideas will be taken up there and in Chapter 15.
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1.16. One More Plot

Exercises
1-1. Show that in the complete bipartite graph K2,n, we have perfect state

transfer between the vertices of degree n.

1-2. Show that we do have uniform mixing on K2, K3 and K4.

1-3. Show that if A and B commute, then exp(A+B) = exp(A) exp(B).

1-4. Let X be the complement of a regular graph X on n vertices, that is,
A = A(X) = J − I − A(X). Show that at times t which are integers
multiples of 2π/n, exp(itA) and exp(itA) are very much alike.

1-5. Show that we have perfect state transfer on nK2 when n is even, and on
nC4 for all n. (Here and elsewhere we use nX to denote the union of n
vertex-disjoint copies of X.)

1-6. Show that if (Er)a,a = (Er)b,b for each r, then a and b are cospectral.
Hence deduce that if vertices a and b are strongly cospectral, they are
cospectral.

1-7. Suppose X is bipartite with adjacency matrix

A =
(

0 B
BT 0

)

and
U(t) =

(
C1(t) iK(t)
iK(t)T C2(t)

)
.

Prove that

C1(t) = cos(t
√
BBT ), C2(t) = cos(t

√
BTB).

1-8. Prove that any two vertices in a vertex-transitive graph are cospectral.

1-9. Show that no two vertices of the Petersen graph are strongly cospec-
tral. [Warning: with only the information at hand, this is hard; it is a
consequence of results we prove later.]

1-10. What can you say about instantaneous uniform mixing on nK2 and on
nC4?

31



1. Continuous Quantum Walks

1-11. Show that pretty good state transfer occurs (according to the official
definition given) if and only if there is an increasing sequence (tk)k≥0
such that

lim
k→∞
|U(tk)a,b| = 1.

(This will be a nice review of the first part of your first real analysis
course.)
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Chapter 2

Physics

In this chapter we lay the foundations for the quantum information theory
that we will need later in the text. By no means do we intend this to be
a conceptual, well motivated and detailed introduction to either quantum
physics or quantum information theory. Our aims, rather, are quite modest
and almost mundane. We present nomenclature, definitions and notation.
The objects and their properties will be defined solely using mathematical
language. (Proper references will be provided in the Notes, at the end of
the chapter.)

We have chosen not to use Dirac’s bra-ket notation. So we will take
the standard basis for C2 to consist of vectors f0 and f1. If M and N are
complex matrices of the same order, we define

〈M,N〉 = tr(M∗N) = sum(M ◦N);

this is an inner product on m× n matrices.

2.1 Quantum Systems
Quantum mechanics is founded on a set of axioms which describe the math-
ematics behind its nature. We offer a description here which would be in
line with a standard introductory course in quantum physics. In the follow-
ing sections, we offer a description that is more in line with the standard
usage in quantum information theory.

The state of a quantum system is a 1-dimensional subspace of
a Hilbert space. Our systems will always be finite-dimensional, so our
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2. Physics

underlying vector space is Cm with the standard complex inner product, for
some naturalm. A quantum system with dimension two is known as a qubit.
Any complex vector space gives rise to a complex projective space, and the
states of a quantum system can be seen as the points of this projective
space, or, alternatively, they are lines in Cm.

There are two customary ways of representing states. The first is to
choose a unit vector that spans the line of interest, and in this case there
are an infinite number of choices, as the underlying field is C. The second
is to give the matrix that represents the orthogonal projection onto the line.
If z is a unit vector, the projection onto the line it spans is P = zz∗. Note
that if λ ∈ C and |λ| = 1 then

(λz)(λz)∗ = λλzz∗ = zz∗.

This reflects the fact that the matrix representing orthogonal projection
onto a subspace does not depend on the choice of basis for the subspace.
From here on and throughout the whole text, we shall usually prefer to
represent a quantum state by its associated rank one projector.

Two quantum systems can be composed. The state space of their
composition is the tensor product of their individual state spaces.
In other words, a compound quantum system is represented by the tensor
product of simple systems. So (C2)⊗d corresponds to a system of d qubits,
and such a system will be the heart of any quantum computer, as a qubit
can effectively be realized as a physical object, and so can their composition.

We saw an example of this in Section 1.2, where we proved that

UX�Y (t) = UX(t)⊗ UY (t).

Here the right side acts on CV (X)⊗CV (Y ), which is a composite system. We
could view this as formed from two independent quantum walks, one on X
and the other on Y . Thus a continuous walk on a complicated graph (the
Cartesian product) can be viewed as the composite of two walks on simpler
graphs.

The time-evolution of a closed quantum system is determined
by a unitary mapping on Cm. So if our system state is represented by
the vector z and it evolves and changes, the state of the new system will
be Uz, for some unitary matrix U . If P = zz∗, then the evolution takes P
to UPU∗. The matrix U might be a function of time, and for a continuous
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2.2. Density Matrices and POVMs

quantum walk, we typically have U = U(t) = exp(itH), for some Hermitian
matrix H.

The axioms also describe which properties can be “observed" or mea-
sured in a quantum system. The observables of a quantum system
Cm are the self-adjoint operators acting on this system, that is,
they correspond to the Hermitian matrices. Assume an observable
H admits spectral decomposition

H =
k∑
r=1

λrFr.

If the system is in a state described by the rank-1 projection P , then, after
carrying out a projective measurement with respect to the observable H,
the axioms of quantum mechanics tells us two things:

(i) with probability 〈Fr, P 〉, the result of the measurement is λr;

(ii) if the result of the measurement is λr, then the state of the system
changes to a state described by

1
〈Fr, P 〉

FrPFr.

Generally physicists choose their Hermitian operators to have only sim-
ple eigenvalues, and so the eigenspaces can be specified by giving an or-
thonormal basis of Cm. In the context of quantum computing, we usually
assume that the orthogonal basis is the standard basis for our vector space.

It is important to realize that a measurement does not reveal the “true”
state of the system. Rather, it imposes a state on the system.

2.2 Density Matrices and POVMs
We now offer a second description of the basics of quantum physics; this is
more in line with the viewpoint usually taken in quantum computing. Our
second approach may seem more general, but it is equivalent to the first.

A state is represented by a positive semidefinite matrix with trace one,
such matrices are called density matrices. If z is a non-zero vector in Cd,
the line spanned by z is determined by the projection

P = 1
z∗z

zz∗.
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2. Physics

Here P is positive semidefinite and tr(P ) = 1, so P is a density matrix.
In this case rk(P ) = 1. We will say that a density matrix with rank one
specifies a pure state. A general density matrix is referred to as a mixed
state. Our next result explains the terminology.

2.2.1 Lemma. If Q is positive semidefinite and tr(Q) = 1, then Q can be
written as a convex combination of positive semidefinite matrices of rank 1.

Proof. If rk(Q) = k, we can find an orthonormal set x1, . . . , xk of eigenvec-
tors for Q with respective non-zero eigenvalues λ1, . . . , λk. Then

Q =
k∑
r=1

λrxrx
∗
r

and since the eigenvalues of Q are nonnegative and sum to 1, we are done.
It wil be possible to express Q as a convex combination of pure states

in many different ways—the pure states are not determined by Q. The set
of d × d density matrices is a compact convex set, and it follows from the
previous lemma that the pure states are its extreme points.

We turn to measurements. A measurement is given by a sequence
M1, . . . ,Me of positive semidefinite matrices such that ∑rMr = I. Such a
sequence is called a positive operator-valued measurement, and is referred
to by the acronym POVM . A measurement is projective if each element Mi

is a projection. Thus the measurements described in the previous section
are projective. (However the matrices in a projective measurement are not
required to have rank one.)

The outcome of a measurement is an element of the the index set
{1, . . . , e} and if the state is given by the density matrix D, the probability
that we observe outcome i is

〈Mi, D〉 = tr(MiD).

Recall that ifM and D are positive semidefinite matrices of the same order,
then 〈M,D〉 ≥ 0, and equality holds if and only ifMD = 0. So 〈Mi, D〉 ≥ 0
and, since ∑Mi = I, we have∑

i

〈Mi, D〉 = 〈
∑
i

Mi, D〉 = 〈I,D〉 = tr(D) = 1.

Hence, given D, the POVM M1, . . . ,Me defines a probability density on
{1, . . . , e}.
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2.2. Density Matrices and POVMs

The combination of density matrix and POVM does not suffice to deter-
mine the post-measurement state. This is not a problem—many physical
measurements destroy the state of the system, and in that case it does not
even make sense to speak of a post-measurement state.

If H is a Hermitian matrix and E1, . . . , Em are the idempotents in the
spectral decomposition of H, then they form a POVM. The simplest case is
when the eigenvalues of H are simple, when there is an orthonormal basis
z1, . . . , zd (consisting of eigenvectors for H) and Ei = ziz

∗
i . Then

〈Ei, D〉 = tr(EiD) = tr(ziz∗iD) = z∗iDzi;

if moreover D is a pure state, say D = xx∗ for a unit vector x, then

〈Ei, D〉 = z∗i xx
∗zi = |z∗i x|2.

This is consistent with our earlier description. The simplest POVM is
formed from the matrices eieTi , and a measurement carried out with this
POVM is called a measurement using the standard basis. We see that

〈eieTi , D〉 = eTi Dei = Di,i.

Thus if we measure D using the standard basis, the probability we observe
outcome i is Di,i.

A state in a composite system with r parts will be a convex combination
of matrices of the form

D1 ⊗ · · · ⊗Dr,

where D1, . . . , Dr are density matrices.
If, at time zero, a closed quantum system is in state given by a density

matrix D, its state at time t is

UDU∗

for a unitary matrix U ; it is easy to verify that UDU∗ is a density matrix.
If D is a pure state, say D = zz∗, then

UDU∗ = Uzz∗U∗ = Uz(Uz)∗.

This is consistent with out earlier description and, as there, typically there
is a Hermitian matrix H such that

U(t) = exp(itH).
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2. Physics

2.3 Qubits and 2× 2 Hermitian Matrices
The qubit is the fundamental unit of quantum information—it is the small-
est quantum system that could assume more than one single state. It also
serves as a building block for larger systems, via the composition operation
described earlier. In this sense, it is quite convenient to have a good un-
derstanding of what can be done to a qubit, and perhaps even a geometric
intuition.

As we have seen, states of qubits correspond are represented by posi-
tive semidefinite matrices of trace one. These can be quite conveniently
parametrized as we show below.

Let H denote the real vector space of 2 × 2 Hermitian matrices. We
define an isomorphism Ψ from R4 to H by as follows. If

v =


w
x
y
z

 ,
then

Ψ(v) =
(
w + z x− iy
x+ iy w − z

)
.

Together with the identity, the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

are the images of the standard basis of R4, and thus

Ψ(v) = wI + xσx + yσy + zσz.

If we take linear combinations of these matrices, we see that they form
a convenient basis for the space of 2 × 2 Hermitian matrices, orthogonal
relative to our inner product on matrices. They are also unitary, and so by
taking products and powers only, they generate a subgroup of the group of
2×2 unitary matrices. We see that σx and σy generate a dihedral group and,
as (σxσy)2 = −I, this group has order eight. Hence the group generated by
the three Pauli matrices has order 16; naturally enough it is known as the
Pauli group. Any two Pauli matrices either commute or anticommute—for
example, σzσx = −σxσz.

If H = Ψ(v), we find that tr(H) = 2〈e1, v〉 = 2w.
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2.3. Qubits and 2× 2 Hermitian Matrices

2.3.1 Lemma. If H is a 2×2 Hermitian matrix, then it is positive semidef-
inite if and only if tr(H) ≥ 0 and det(H) ≥ 0.

Proof. If H is a 2× 2 positive semidefinite matrix, its eigenvalues are non-
negative and so both tr(H) and det(H) are non-negative. For the converse,
using the above parameterization we see that if tr(H) ≥ 0 then w ≥ 0. As

det(H) = w2 − x2 − y2 − z2

it follows that if det(H) ≥ 0, then w2 ≥ z2 and so the diagonal entries of
H are non-negative. Therefore both the diagonal entries and determinant
of H are non-negative, and hence it is positive semidefinite.

The Hermitian matrices with rank and trace equal to 1 correspond to
the elements of R4 with w = 1/2 and

x2 + y2 + z2 = 1
4 .

Thus they correspond to the points on a sphere in R3, known to physicists as
the Bloch sphere. Density matrices, that is, positive semidefinite Hermitian
matrices with trace 1, correspond to the points on or inside this sphere.

✓
1 0
0 0

◆

✓
0 0
0 1

◆

1

2

✓
1 1
1 1

◆

1

2

✓
1 �1
�1 1

◆

1

2

✓
1 �i
i 1

◆
1

2

✓
1 i
�i 1

◆

Figure 2.1: The Bloch Sphere and the density matrices corresponding to
six points. The origin corresponds to (1/2)I.
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2.4 Entanglement
Consider quantum systems Ck and Cm, and their composition given by
Ck ⊗ Cm ∼= Ckm. A density matrix S of dimension km × km represents
a quantum state in the composed system. Even if it has rank 1, therefore
corresponding to a pure state, it could be that there are no choices of P and
Q, density matrices of dimensions k and m respectively, so that P ⊗Q = S.
In this case, we say that the state given by S is an entangled state. For
example, the state on C2 ⊗ C2 given by

S = 1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


is entangled.

Entanglement can be created (or destroyed) by unitary maps. For in-
stance, if

U = 1√
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

 ,
then

USU∗ =
(

0 0
0 1

)
⊗
(

0 0
0 1

)
.

The effect of measurements on entangled states plays an important role
in the understanding of quantum mechanics. Using the example above, as-
sume we proceed by measuring the first system according to the observable
σz, and do nothing in the second, which corresponds to measuring according
to I. The measurement in the composed system is given by the observable
σz ⊗ I. The result of the this measurement is either +1 or −1, either with
probability 1/2, and the resulting state of the composed system will be,
respectively, (

1 0
0 0

)
⊗
(

0 0
0 1

)
or

(
0 0
0 1

)
⊗
(

1 0
0 0

)
.

Now, a measurement is performed in the second system according to the
same observable σz. The result will have complete correlation with the
result of the previous measurement in the first system, namely, if the first
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measurement returns +1, the second will return −1, and if the first returns
−1, the second will give +1.

Returning to the more general setting, say S is a density matrix repre-
senting a state in A⊗ B ∼= Ckm, written as

S =
∑
j

Pj ⊗Qj.

Say M is an observable on the first system, with spectral decomposition
M = ∑

r λrFr. Upon measuring the system with respect to an observable
M⊗I, we have that the probability of receiving λr is given by∑j〈Fr, Pj〉〈I,Qj〉.
This motivates the definition of the partial trace operation. In this case, we
are tracing out the second system, receiving

trB S =
∑
j

(trQj)Pj.

This resulting state is a reduced state in system A, which exhibits the
observable quantities of A in the composed system.

2.5 Walks: Adjacency Matrix
We discuss the physics underlying quantum walks on graphs. If X is a
graph on n vertices, then to implement a continuous walk on X we require
n qubits. The state space is (C2)⊗n. To enable us to describe operations
on this space, we choose a basis.

First, let {f0, f1} denote the standard basis for C2. Next, if S ⊆
{1, . . . , n}, we define

fS = fi1 ⊗ · · · ⊗ fin ,

with ir = 1 if r ∈ S and ir = 0 otherwise. If |S| = k, the vectors fT such
that T ⊆ S span a subspace of the state space with dimension 2k. The
weight of the vector fS is |S|. The span of the vectors of weight k is known
as the k-excitation subspace.

Recall the definition of Pauli matrices σx, σy and σz. If w ∈ {x, y, z},
then σw,r denotes the operator on the state space formed by the tensor
product of n operators on C2, where the r-th operator is σw and the rest
are all equal to the 2 × 2 identity. We note that any two operators of the
form σw,aσw,b (for w in {x, y, z} and a, b in V (X)) commute. (Exercise.)
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We define the edge-Hamiltonian Hxy(ab) by

Hxy(ab) = 1
2(σx,aσx,b + σy,aσy,b).

We see that
σxf0 = f1, σxf1 = f0

and
σyf0 = if1, σyf1 = −if0.

Accordingly, if S ⊕ T denotes symmetric difference of subsets, we have

σx,aσx,bfS = fS⊕{a,b}

while
σy,aσy,bfS = −(−1)|S∩{a,b}|fS⊕{a,b}.

If follows that

Hxy(ab)fS = 1
2
(
1− (−1)|S∩{a,b}|

)
fS⊕{a,b}

=

fS⊕{a,b}, |S ∩ {a, b}| = 1;
0, otherwise.

One consequence of this is that Hxy(ab) maps the k-excitation subspace to
itself.

Finally, the xy-Hamiltonian associated with the graph X is the sum of
the edge-Hamiltonians:s

Hxy := 1
2

∑
ab∈E(X)

(σx,aσx,b + σy,aσy,b).

We see at once that the k-excitation subspace is invariant under the action
Hxy too. Let Wk denote the k-excitation subspace If the initial state of
quantum system evolving under the unitary transition matrix

U(t) = exp(itHxy)

lies in Wk then, for any time t, the state of the system lies in Wk. The
matrix that represents the action of Hxy to W1 is the adjacency matrix A
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of X. The quantum system that arises by restriction toW1 is the continous
quantum walk on X; its transition matrix is exp(itA).

For each space Wk is invariant under the Hamiltonian Hxy, and there
is an interesting combinatorial description of the matrix representing the
restriction of Hxy to Wk. We have just seen that it is the adjacency matrix
of X when k = 1.

The k-th symmetric power X{k} of a graph X has the k-subsets of V (X)
as vertices, where two k-subsets are adjacent if their symmetric difference is
an edge of X. Note that X{1} ∼= X and, if X = Kn, then X{2} is isomorphic
to the line graph L(Kn). We also see (more precisely, you may verify) that
X{n−k} ∼= X{k}.

2.5.1 Theorem. The matrix that represents the action of Hxy on the span
of the vectors fS where |S| = k is the adjacency matrix of the k-th symmet-
ric power of the graph X.

Proof. We have

HxyfS =
∑

ab∈E(X)
Hxy(ab)fS =

∑
T :S⊕T∈E(X)

fT .

As the last sum is over the neighbours of S in X{k}, we are done.

2.6 Walks: More Matrices
We have seen that the edge-Hamiltonian Hxy(ab) leads to quantum walks
based on the adjacency matrix of a graph. There are other forms of adja-
cency matrix of graphs, and some of this give rise to continuous walks.

Let X be a graph on n vertices with adjacency matrix A and let ∆ be
the diagonal matrix of order n×n with ∆i,i equal to the valency of the i-th
vertex of x. The Laplacian matrix L(X) is defined by

L(X) = ∆− A.

The unsigned Laplacian of X is the matrix

∆ + A;

it does not have a standard symbol and has received much less attention
than the Laplacian. Both forms of Laplacian are positive semidefinite.
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We define an edge-Hamiltonian by

Hxyz(ab) = 1
2(σx,aσx,b + σy,aσy,b + σz,aσz,b)

and observe that (we observe, you prove)

Hxyz(ab)fS = 1
2
(
1− (−1)|S∩{a,b}|

)
fS⊕{a,b} + 1

2(−1)|S∩{a,b}|fS

The subspaces Wk are invariant under this operator, and so they are also
invariant under the xyz-Hamiltonian or Heisenberg Hamiltonian is

Hxyz = 1
2

∑
ab∈E(X)

(σx,aσx,b + σy,aσy,b + σz,aσz,b).

If ∆(X{k}) is the diagonal matrix that records the degrees of the vertices
in X{k}, then on Wk, the operator Hxyz is represented by the matrix

1
2 |E(X)|I + A(X{k})−∆(X{k}),

When k = 1, this is essentially the Laplacian matrix of X.
We can also realize the so-called unsigned Laplacian—for the Hamilto-

nian

Hxyz = 1
2

∑
ab∈E(X)

(σx,aσx,b + σy,aσy,b − σz,aσz,b),

the representing matrix is

−1
2 |E(X)|I + A(X{k}) + ∆(X{k}).

When the underlying graph X is regular, ∆ is a scalar matrix and the
adjacency matrix and the two Laplacians provide the same information.
It seems the perfect state transfer occurs less frequently when we use the
Laplacian in place of the adjacency matrix. Nothing is known about the
unsigned Laplacian.
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2.7. Orbits of Density Matrices

2.7 Orbits of Density Matrices
Assume A is the adjacency matrix of X on n vertices and U(t) = exp(itA).
Then the set

U := {t ∈ R : U(t)}
is a group. It is in fact the image of a homomorphism from the additive
group R into the group U(n) of n × n unitary matrices; it is a so-called
1-parameter subgroup of U(d). Since R is abelian, U is abelian.

The group U acts on the set of n× n density matrices:

D 7→ U(t)DU(−t).

We use D(t) to denote U(t)DU(−t). The set {D(t) : t ∈ R} is the orbit of
D under this action of U . Our concern is with forward orbits, that is, sets
of the form

{D(t) : t ≥ 0}.
If a, b ∈ V (X), it follows that we have perfect state transfer (as defined

in Section 1.3)from a to b if and only if Db lies in the orbit of Db. Further, if
Db lies in the orbit of Da, then the orbits of Da and Db are equal, implying
that if there is perfect state transfer for a to b, we must also perfect state
transfer from b to a. This viewpoint provides a geometric interpretation of
perfect state transfer.

The orbit of D is a curve in the set of density matrices. One thing to
note is that points on this curve do not always form a closed set. To see
this, recall that the path P4 admits pretty good state transfer between its
end-vertices 1 and 4. Now you can show that there is perfect state transfer
from a to b if and only if Db lies in the closure of the orbit of Da. Since we
do not have perfect state transfer from 1 to 4 in P4, the closure of the orbit
of D1 contains a point not on the orbit.

If Db lies in the closure of the orbit of Da, then the orbit of Db lies in
the closure of the orbit of Da, whence we see that if there is pretty good
state transfer from a to b, there must be pretty good state transfer from b
to a.

2.7.1 Lemma. The closure of the orbit of a matrix D under U is equal to
the orbit of D under the closure of U .

Proof. There are two parts. First show that the orbit of D under U is
closed. Then show that if M ∈ U and M is close to U(t) for some t, then
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MDM∗ is close to a point in the orbit of D under U . (Detils left to the
reader.)

We have seen that a continuous quantum walk on particular graph may
be periodic, i.e., there is a time τ such that U(nτ) = I for all integers n.
We show that any continuous quantum walk is, in a sense, approximately
periodic.

2.7.2 Theorem. Let U(t) be the transition matrix of the continuous quan-
tum walk on the graph X. For any τ > 0 and any ε > 0, there is a positive
integer k such that ‖U(kτ)− I‖ < ε.

Proof. Assume n = |V (X)| and consider the sequence U(mτ). It is infinite
but lies in the compact group U(n), and consequently it has a limit point
M in U(n). Hence there are distinct integers ` and m such that

‖U(`τ)−M‖ < ε/2, ‖U(mτ)−M‖ < ε/2.

By the triangle inequality we then have

‖U(mτ)− U(`τ)‖ < ε

and, since U(t) is unitary

‖U(mτ)− U(`τ)‖ = ‖U(`τ)(U((m− `)τ)− I)‖ = ‖U((m− `)τ)− I‖.

Take k = m− ` to get the theorem.

This theorem tells us that a quantum walk returns ‘close’ to its initial
state infinitely often. We will revisit this topic in Chapter 8.

Notes
We list some of the books that we have found useful in our attempts to get a
better handle on the physics side of things. And to help the reader calibrate
our weightings, note that (when reading) we prefer thin books to fat ones,
and that we are not particularly concerned with algorithmic questions.
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Quantum Computing, Quantum Information Theory
(a) Barnett, “Quantum Information” [6].

(b) Kaye, Laflamme, Mosca, “An Introduction to Quantum Computing”.

(c) Mermin, “Quantum Computer Science: An Introduction” [47].

(d) Nielsen and Chuang, “Quantum Computation and Quantum Informa-
tion” [49].

(e) Petz, “Quantum Information Theory and Quantum Statistics” [51].

(f) Watrous, “The Theory of Quantum Information" [59].

Quantum Physics
(a) Schumacher and Westmoreland, “Quantum Processes, Systems & Infor-

mation” [53]. An introduction designed for quantum computing.

(b) Brian C. Hall, “Quantum Theory for Mathematicians” [40].

(c) Shlomo Sternberg, “A Mathematical Companion to Quantum Mechan-
ics” [?].

(d) Gerald Teschl, “Mathematical Methods in Quantum Mechanics” [55].

Lie Groups
(In decreasing order of sophistication.)

(a) Daniel Bump, “Lie Groups” [].

(b) Brian C. Hall, “Lie Groups, Lie Algebras, and Representations” [].

(c) John Stillwell, “Naive Lie Theory” [].
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Exercises
2-1. Verify that if w in {x, y, z} and a, b in V (X), then any two operators of

the form σw,aσw,b commute.

2-2. Compute the matrix Hxy explicitly for the graph P3. Identify its blocks,
and realize what their column and row indices mean.

2-3. Assume a system of n qubits is put under the action of the xy-Hamiltonian.
Show that if the initial state of each qubits is f0, then nothing happens.

2-4. Show that if P1, P2 and P3 are orthogonal projections, and that I =∑3
i=1 Pi, then PiPj = 0 for all i 6= j. As a challenge, extend this result

to k projectors instead of only three.

2-5. Show that if Db lies in the closure of the orbit of Da, then the orbit of
Db lies in the closure of the orbit of Da. Using this, deduce that if we
have pretty good state transfer from a to b, there is also pretty good
state transfer from b to a.
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Chapter 3

Equitable Partitions

We develop some of the theory of equitable partitions. As we will see,
sometimes it is possible to partition the vertex set of a graph in such a way
that a quantum walk cannot distinguish between vertices that belong to a
class of the partition. This provides a very useful tool to analyse certain
quantum phenomena in graphs.

The concept of equitable partitions in algebraic graph theory has been
used for some time. There are treatments of this topic in [35, 38], and the
reader who finds the treatment here too terse may find these sources useful.

3.1 Partitions and Projections
If π is a partition, then |π| denotes the number of cells of π. We want to
represent partitions by matrices, as follows. If π is a partition of V (X), its
characteristic matrix S is the matrix whose columns are the characteristic
vectors of the cells of π, that is, each column is a 01-vector that records in
each row whether a vertex belongs to the cell. The column space of S is
precisely the space of real functions on V (X) that are constant on the cells
of π. Sometimes we will need the normalized characteristic matrix, which
get by scaling each column so that it has norm 1. We denote this matrix
by Ŝ and observe that

ŜT Ŝ = I|π|.

Note that S and Ŝ have the same column space. Since ŜŜT is idempotent,
it follows it is the matrix that represents orthogonal projection onto the
space of functions constant on the cells of π.
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3. Equitable Partitions

A partition π = (C1, . . . , Ck) of V (X) is equitable if the number of
neighbours in Cj of a vertex in Ci is the same for all vertices in Ci (including
the case i = j).

Given an equitable partition π ofX, we define the quotient graphX/π to
be the directed graph with the cells of π as its vertices, and with the number
of arcs from the cell Ci to the cell Cj equal to the number of neighbours in
Cj of a vertex in Ci. If B = A(X/π) is the adjacency matrix of this directed
graph, note that AS = SB.

For example, any partition of the vertex set of C4 into two parts of
size two provides an equitable partition. You are invited to determine all
possible equitable partitions of P3, P4 and C5.

The fundamental characterizations of equitable partitions are given by
the following.

3.1.1 Lemma. Let π be a partition of V (X) with characteristic matrix S
and normalized characteristic matrix Ŝ. The following are equivalent:

(a) π is equitable.

(b) col(S) is A-invariant.

(c) A and ŜŜT commute.

Proof. The definition of equitable partition implies that π is equitable if
and only if there is a matrix B such that AS = SB, and this is equivalent
to requiring that col(S) is A-invariant. Hence (a) and (b) are equivalent.

Since col(S) = col(Ŝ) we see that if π is equitable then AŜ = ŜC for
some matrix C and then

AŜŜT = ŜCŜT .

As AŜ = ŜC we have C = ŜTAŜ, from which we see that C is symmetric.
We have

ŜŜTA = Ŝ(AŜ)T = Ŝ(ŜC)T = ŜCŜT

and so (b) implies (c).
To prove that (c) implies (b), we observe that, as a consequence of (c),

AŜ = ŜŜTAŜ, thus col(Ŝ) is A-invariant.
The equivalence of (b) and (c) is purely a fact from linear algebra: if

A is symmetric, then a subspace U is A-invariant if and only if the matrix
representing orthogonal projection on U commutes with A.
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3.1. Partitions and Projections

The matrix ŜŜT is doubly stochastic and represents orthogonal projec-
tion onto the space of functions constant on the cells of π. It is a block
diagonal matrix with diagonal blocks 1

r
Jr, where Jr is the all-ones matrix

of order r × r, and the size of the i-th block is the size of the i-th cell of π.
The vertex u forms a singleton cell of π if and only if ŜŜT eu = eu.

We view C = ŜTAŜ as the adjacency matrix of the symmetrized quo-
tient graph of X relative to π. Note that C is diagonally similar to A(X/π).
We can compute its spectral decomposition as follows. Since A is symmetric,
it has a spectral decomposition

A =
d∑
r=0

θrEr

where θr runs over the distinct eigenvalues θr of A and Er is the matrix
that represents orthogonal projection onto the the eigenspace belonging to
θr.

3.1.2 Lemma. Let π be an equitable partition of X with normalized char-
acteristic matrix Ŝ. Let A be the adjacency matrix of X and let C be the
adjacency matrix of the symmetrized quotient graph, that is, C = ŜTAŜ.
Then the idempotents in the spectral decomposition of C are the non-zero
matrices ŜTErŜ, where Er runs over the idempotents in the spectral de-
composition of A.

Proof. From
A =

d∑
r=0

θrEr,

we have
C = ŜTAŜ =

d∑
r=0

θrŜ
TErŜ. (3.1.1)

Note that ŜTErŜ is symmetric. As π is equitable, ŜT Ŝ commutes with A,
thus commutes with all Er, which are polynomials in A. Hence

(ŜTErŜ)(ŜTEsŜ) = ŜTErEsŜ,

thus the ŜTErŜ are orthogonal idempotents. Finally,
d∑
r=0

ŜTErŜ = ŜT Ŝ = I,

thus we conclude that (3.1.1) is the spectral decomposition of C.
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3. Equitable Partitions

Note the corresponding idempotents are associated to the same eigen-
values.

3.2 Walks and Orthogonal Matrices
With just the characterization of the previous section in hand, we have some
useful consequences.

3.2.1 Lemma. Suppose π is an equitable partition of X and that a cell
of π is a singleton containing the vertex a, call it â = {a}. Let C be the
adjacency matrix of the symmetrized quotient graph relative to π. Let
b ∈ V (X), and b̂ the class of π containing b. Then, for any time t:

(a) U(t)ea is constant on the cells of π.

(b) U(t)a,b = (1/
√
|b̂|)(exp itC)

â,̂b
.

Proof. To see (a), let S be the characteristic matrix of π. Because {a} is a
cell, we have

U(t)ea = U(t)Sea.
As the column space of S is A invariant, it is also U(t) invariant, so any
column of U(t)S is constant in the cells of π. In particular, U(t)ea is
constant in the cells of π.

To see (b), it suffices to note that, as ŜŜT commutes with A, we have

ŜT exp(itA)Ŝ = exp(itŜTAŜ) = exp(itC),

and then apply (i).
Item (b) immediately gives the corollary below.

3.2.2 Corollary. Assume there exists an equitable partition in X in which
{a} is a cell. We have perfect state transfer on X from a to b at time t if
and only if the symmetrized quotient graph has perfect state transfer from
{a} to b̂, and in this case, b̂ = {b}.

We actually can say something a bit stronger. If D is a pure state, then
D2 = D and consequently if D1 and D2 are pure states,

‖D1 −D2‖2 = tr(D1 −D2)2 = tr(D1 +D2 − 2D1D2) = 2− 2〈D1, D2〉.
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3.2. Walks and Orthogonal Matrices

Thus D1 = yy∗ and D2 = zz∗, this yields that ‖D1 −D2‖2 = 2− 2|y∗z|2.
Recall the abbreviated notation Da(t) = U(t)DaU(−t).

3.2.3 Lemma. Assume P is an orthogonal matrix that commutes with
A(X), with Pea = ea. Then

‖Db − PDbP
T‖ ≤ 2‖Da(t)−Db‖.

Proof. We have
P (Da(t)−Db)P T = PU(t)DaU(−t)P T − PDbP

T

= U(t)PDaP
TU(−t)− PDbP

T

= U(t)DaU(−t)− PDbP
T

= Da(t)− PDbP
T .

As P is orthogonal, this implies that
‖Da(t)−Db‖ = ‖Da(t)− PDbP

T‖
and hence if ‖Da(t)−Db‖ = δ, then by the triangle inequality,

‖Db − PDbP
T‖ ≤ 2δ.

3.2.4 Lemma. Suppose a, b ∈ V (X), and |V (X)| = n. If ‖Da(t)−Db(t)‖ <
1/
√
n for some t, then any equitable partition in which {a} is a singleton

cell must also have {b} as a singleton cell.

Proof. Suppose that we have an equitable partition π in which {u} is a
singleton cell, and let M = ŜŜT represent orthogonal projection onto the
space of functions constant on the cells of π. Let P = 2M − I. This is
an orthogonal matrix (verify it as an exercise), commutes with A (due to
Lemma 3.1.1) and Pea = ea (as {a} is a cell). We can apply the lemma,
giving

‖Db − PDbP
T‖ ≤ 2||Da(t)−Db|| < 2/

√
n.

Now if b lies in a cell of π with size k, then

‖Db − PDbP
T‖2 = 2− 2〈Db, PDbP

T 〉 = 2− 2
(2
k
− 1

)2
= 8
k

(
1− 1

k

)
.

If k = 1 this is equal to 0, and we are in good terms. Otherwise, 2 ≤ k ≤ n.
In this case,

8
k

(
1− 1

k

)
≥ 4
k
≥ 4
n
,

a contradiction.
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3.3 Automorphisms
Recall that an automorphism of a graph X is a bijection f : V (X)→ V (X)
that maps edges to edges, that is, a ∼ b if and only if f(a) ∼ f(b). The
set of all automorphisms of a graph forms a group called the automorphism
group of X, or Aut(X). To each permutation f of the vertices of X, there
is a corresponding permutation matrix P . It is easy to verify that f is an
automorphism if and only if P and A commute.

The orbit of a vertex a ∈ V (X) is the subset of X determined by

aAut(X) = {b ∈ V (X) : f(a) = b for some f ∈ Aut(X)}.

It is a standard exercise to verify that the orbits of Aut(X) partition
V (X); we call this the orbit partition. It is actually more interesting to
verify that this partition is equitable.

3.3.1 Lemma. If G ≤ Aut(X), the orbit partition relative to G is equitable.

Proof. If A is the adjacency matrix, S is the characteristic matrix of the
partition and P is the permutation matrix of an automorphism, note that
first that PS = S. Then

AS = APS = PAS.

So the columns of AS are invariant under P . But this is true for all auto-
morphisms, thus the columns of AS are constant in each orbit. Therefore
the column space of S is A-invariant, and the result follows from Lemma
3.1.1.

If Q is a permutation matrix with multiplicative order k then

C = 1
k

(I +Q+ · · ·+Qk−1)

is doubly stochastic and represents orthogonal projection onto the functions
constant on the orbits of Q. If M represents orthogonal projection onto
the space of functions constant on the cells of a partition π of V (X) and
a ∈ V (X), then Mea = ea if and only if {a} is a cell of π. So Cea = ea if
and only if a is fixed by the automorphism Q.

If G is a permutation group acting on a set V and a ∈ V , we use Ga

to denote the stabilizer of a in G, that is, the subgroup formed by the
permutations in G that fix a. The previous results applied to the orbit
partition of Aut(X)a yields:
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3.3.2 Corollary. Let G be the automorphism group of X. If we have
perfect state transfer from a to b, then Ga = Gb.

Proof. The group Ga is a subgroup of Aut(X). The orbit of a contains
only itself, thus {a} is a singleton of an equitable partition of V (X). By
Corollary 3.2.2, {b} is also a singleton, so any automorphism fixing a also
fixes b. As we shall also have state transfer from b to a, it follows that
Ga = Gb.

Again, we can say something stronger by applying Lemma 3.2.3, noting
that a permutation matrix is an orthogonal matrix.

3.3.3 Lemma. Let a and b be vertices of X. If there is a time t such that
‖Da(t)−Db‖ < 1/

√
2, then any automorphism of X that fixes a must also

fix b.

Proof. Assume P is the matrix corresponding to an automorphism, and
Pea = ea. From Lemma 3.2.3, we have

‖Db − PDbP
T‖ <

√
2.

If Peb = ec for some vertex c, we have PDbP
T = Dc. If b 6= c, then

‖Db − PDbP
T‖2 = ‖Db −Dc‖2 = 2.

We conclude that if there is a time t such that ‖Da(t) − Db(t)‖ < 1/
√

2,
then any automorphism of X that fixes a must also fix b.

A physicist would say that a unitary matrix that commutes with A is a
symmetry of the quantum system determined by A. Both automorphisms
and equitable partitions give rise to symmetries in this sense (but there will
be many symmetries that do not arise in this way). We will meet some of
them in Section 7.2, and we shall prove further results that resemble some
of the above.

3.4 Quotients of the d-Cube and of
Complete Bipartite Graphs

Lemma 3.2.1 has shown that in the presence of an equitable partition that
singles out a vertex in a cell, any question about the quantum walk that
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starts on this vertex of the graph can be reduced to a question about a
quantum walk on a smaller, albeit weighted, graph. In this section, we
display an application to the d-cube. One way to define the d-cube is to say
that vertices are the {0, 1} strings of length d, with adjacency if and only
if two strings differ in one position.

Let π denote the distance partition relative to a vertex a in the d-cube
Qd. This means that {a} is a singleton, and each of the other classes of the
partition correspond to vertices at a fixed distance from a. We can assume
that a is the all 0s string, and it is not so difficult now to convince yourself
that the vertices at distance k from {a} are precisely those with k entries
equal to 1. Further, and we leave this as an exercise, this distance partition
is equitable. In fact, all distance partitions of vertices of the d-cube are
equitable, and the quotient graphs are all equal. The quotient graph of a
distance partition of the d-cube is a weighted path with d+ 1 vertices, and
no loops.

If B = A(Qd/π) is the adjacency matrix of this quotient, then Br,s = 0
if |r − s| 6= 1, that is, A(Qd/π) is a weighted path with no loops, and

Br,s =

d− r, r = s− 1,
r, r = s+ 1.

From Lemma 3.2.1, we have

UB(t){u},{v} = U(t)u,v.

Since we have perfect state transfer on the d-cube between u and v at time
π/2 (recall Chapter 1), it follows that we have perfect state transfer on our
weighted path at time π/2.

This has the important consequence that, if we can use weights and
directions in edges, we can always arrange for perfect state transfer at arbi-
trary distances in paths. We shall return to this topic in depth in Chapter
13.

As a second application of these ideas, we consider the quantum walk on
the complete bipartite graphs K2,n. Denote the two vertices of the degree
n by a and b. Then the sets

{a}, {b}, V (X)\{a, b}
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are the cells of an equitable partition, and the adjacency matrix of the
symmetrized quotient is  0

√
n 0√

n 0
√
n

0
√
n 0

 .
But this is just

√
nA(P3). We conclude that we have perfect state transfer

between a to b at time π/
√

2n.

Notes
The first systematic applications of equitable partitions to continuous quan-
tum walks were presented by Ge et al. [30] and Bachman et al. [5].

The material in Section 3.3 is based closely on [31].
In [5], R. Bachman et al. studied perfect state transfer of quantum

walks on quotient graphs. They showed that the ab-entry of the transition
function exp(iA(X)t) of an original graph X is equal to the {a}{b}-entry of
the transition function exp(iA(X/π)t) of the quotient graph with equitable
distance partition with respect to vertices a and b. In Lemma 3.2.1, we saw
that this is actually an instance of a more general result.

Bachman et al. provided an extensive treatment of some graphs whose
quotients are weighted P4. In particular, by taking two non-isomorphic reg-
ular graphs with the same valency and size, constructing two cones over
each using distinct vertices a and b, and then creating some edges between
the two regular graphs in such a way that the distance partition of a is
equitable, they were able to show that if the parameters are right, then
there is perfect state transfer between a and b. However there is no auto-
morphism that swaps a and b. This was the first counter-example to the
early conjecture that perfect state transfer would imply the existence of
an automorphism swapping the vertices involved. We recommend reading
this paper for a more hands-on presentation of equitable partitions in the
context of quantum walks.

A final philosophical comment. The key to understanding a linear op-
erator is to identify its invariant subspaces, and small invariant subspaces
are easier to deal with than large ones. Equitable partitions provide invari-
ant subspaces, however these subspaces have a special property: they have
bases of 01-vectors.
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Exercises
3-1. Verify that if Q is a symmetric projection matrix, then (2Q − I) is an

orthogonal matrix.

3-2. Describe all possible equitable partitions of the graphs P3, P4 and C5.

3-3. Describe all possible equitable partitions of the path Pn. (You might find
useful to first show that the n× n anti-diagonal matrix is a polynomial
in A(Pn).)

3-4. Provide a proof for Lemma 3.3.1 that makes no mention to a matrix.

3-5. Show then that the distance partition of any vertex in the d-cube is
equitable (it might be useful to start by showing that the d-cube is
vertex-transitive, so you only need to consider as the initial vertex the
string of 0s). Verify that the weights presented in the text are correct.

3-6. Given a symmetric matrix M , a partition π of its rows (and columns),
having characteristic matrix S, will be called equitable if the column
space of S is M -invariant. Describe combinatorially what it means for
a partition of the vertex set of a graph to be equitable relative to the
Laplacian matrix.
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Chapter 4

Spectrum and Walks

We investigate expressions for various walk generating functions on a graph
X in terms of characteristic polynomials of X and of various induced sub-
graphs. Although many of the results are known, we offer new proofs in a
number of cases. Our motivation, of course, is to relate these concepts to
conditions directly related to quantum walk phenomena.

Consider a graph X with vertices a and b. Say A(X) = ∑d
r=0 θrEr is the

spectral decomposition of A. In Section ?? we saw that if there is perfect
state transfer from a to b then a and b were strongly cospectral, that is,

Ereb = ±Erea (r = 0, . . . , d).

This implies that a and b are cospectral, one characterization of which is
that

(Ak)a,a = (Ak)b,b

for each k. We have

(Ak)a,a =
∑
r

θkr (Er)a,a,

indicating a connection between cospectrality and walks, and hence between
perfect state transfer and walks. The goal of this chapter is two develop
these connnections further.
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4.1 Formal Power Series
Given a sequence of elements from a ring α = (αk)k≥0, one defines the
generating function associated to this sequence with indeterminate t by

α(t) =
∑
k≥0

αkt
k.

Typically the the ring is a field, but in the following sections of this chapter
it will be a ring of matrices. Despite the perhaps misleading name and
notation that suggests α(t) is a function, this power series should be seen as
a formal object. The key is that addition and multiplication are well defined
operations, and (as we wiol see) under these operations power series for a
ring. You should not worry, for example, whether whether the infinite sum
converges or not for some non-zero value of the variable. Instead, our only
concern is to know or compute or discover or be able to find all coefficients
of a power series by a finite process.

(i) Given two power series α(t) = ∑
k≥0 αkt

k and β(t) = ∑
k≥0 βkt

k, their
sum is defined as:

α(t) + β(t) =
∑
k≥0

(αk + βk)tk.

(ii) Given two power series α(t) and β(t), their product is defined as:

α(t)β(t) =
∑
k≥0

 k∑
j=0

αjβk−j

 tk.
The set of power series with elements from a ring thus also form a ring.
Sometimes, given a power series α(t), it is possible to find its multiplicative
inverse, that is, a power series β(t) so that α(t)β(t) = 1. For example, if
α(t) = ∑

k≥0 a
ktk, for some a, then α(t)β(t) = 1 implies that β0 = 1, then

β1 = −a, and the remaining βs equal to 0. Thus,∑
k≥0

aktk

 (1− at) = 1.
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4.2. Walk Generating Functions

4.2 Walk Generating Functions
Two graphs are cospectral if their adjacency matrices have the same spec-
trum. We use φ(X, t) to denote the characteristic polynomial of the adja-
cency matrix A of X—so φ(X, t) = det(tI − A).

We are going to make use of the connection between the spectrum of a
graph and various classes of walks. Recall that (Ak)a,b counts the number
of walks with k steps from vertex a to vertex b. We will make much use of
the walk generating function

W (X, t) :=
∑
k≥0

Aktk = (I − tA)−1.

One may view a power series whose coefficients are matrices as a matrix
whose entries are power series. Thus, the coefficient of tk in the (a, b) entry
of W counts the number of walks with k steps from a to b. Since tr(Ak) is
the number of closed walks of length k in X, it follows that the generating
function for closed walks on X (weighted by length) is tr(W (X, t)). From
the identity

(I − tA)−1 =
d∑
r=0

1
1− tθr

Er,

we have an expression for the generating function for the walks in X that
go from u to v:

Wa,b(X, t) =
d∑
r=0

1
1− tθr

(Er)a,b. (4.2.1)

4.2.1 Lemma. Let mr denote the multiplicity of θr as an eigenvalue of X.
Then we have the following expression for the generating function for the
closed walks on X:

tr(W (X, t)) =
d∑
r=0

mr

1− tθr
= t−1φ

′(X, t−1)
φ(X, t−1)

Proof. The first equality following from the fact that trEr = mr. For the
second equality, we use that

φ(X, t) =
d∏
r=0

(t− θr)mr ,
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4. Spectrum and Walks

and thus
φ′(X, t) =

d∑
r=0

mr(t− θr)mr−1 ∏
s 6=r

(t− θs)mr .

Then
φ′(X, t)
φ(X, t) =

d∑
r=0

mr

t− θr
,

and replacing t by 1/t, we have

φ′(X, t−1)
φ(X, t−1) =

d∑
r=0

tmr

1− tθr
.

4.3 Closed Walks at a Vertex
Properties about the determinant that you can prove exploring its Laplace
expansion still hold true if the entries of the matrix are power series, in
particular, for any matrix M with coefficients which are power series,

M · adj(M) = det(M)I. (4.3.1)

We use M [j, i] to denote the matrix M with row j and column i removed.
Then adj(M) is the matrix defined as

(adjM)ij = (−1)i+j detM [j, i],

Specifically, we are interested in what happens when M = (I − tA). Equa-
tion (4.3.1) implies

W (X, t) = adj(I − tA)
det(I − tA) (4.3.2)

If a ∈ V (X), thenWa,a(X, t) is the diagonal entry ofW (X, t) corresponding
to a, so it follows that

Wa,a(X, t) = det(I − tA(X \a))
det(I − tA) ,

which we prefer to write as

t−1Wa,a(X, t−1) = φ(X \a, t)
φ(X, t) . (4.3.3)
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4.3. Closed Walks at a Vertex

On the other hand

t−1W (X, t−1) =
d∑
r=0

1
t− θr

Er,

thus
φ(X \a, t)
φ(X, t) =

d∑
r=0

(Er)a,a
t− θr

. (4.3.4)

As a consequence, and using Lemma 4.2.1,

4.3.1 Corollary. For any graph X we have

φ′(X, t) =
∑

a∈V (X)
φ(X \a, t).

Suppose a ∈ V (X) and b ∈ V (Y ). We say that the pairs (X, a) and (Y, b)
are cospectral ifX is cospectral to Y andX\a is cospectral to Y\b. IfX = Y ,
then (X, a) is cospectral do (X, b) if and only if φ(X \a, t) = φ(X \ b, t), in
which case we may simply say that a and b are cospectral. This definition,
of course, is equivalent to the one we presented in the beginning of this
chapter.

4.3.2 Theorem. Given X and A(X) = ∑d
r=0 θrEr, and vertices a and b,

the following are equivalent:

(a) φ(X \a, t) = φ(X \ b, t).

(b) (Er)a,a = (Er)b,b for all r.

(c) (Ak)a,a = (Ak)b,b for all integers k.

(d) Wa,a(X, t) = Wb,b(X, t).

Proof. From Equation (4.3.4), it follows that

(Er)a,a = φ(X \a, t)(t− θr)
φ(X, t)

∣∣∣∣∣
t=θr

.

Thus (a) gives (b). Conditions (b) and (c) are equivalent because Ak is a
linear combination of E0, . . . , Ed, and each Er is a polynomial in A. From
(b) to (d), it follows immediately from Equation (4.2.1). From (d) to (a),
we use Equation (4.3.3).
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4. Spectrum and Walks

4.3.3 Corollary. If there is perfect state transfer between two vertices,
then they have the same valency.

Proof. As we have seen, vertices involved in perfect state transfer are cospec-
tral, and the diagonal entries of A2 corresponding to cospectral vertices are
equal. These are equal to their degrees.

4.4 Walks Between Two Vertices
Let a and b be distinct vertices in X, and let Nb,a(X, t) be the generating
function for the walks in X from b to a that only use b once (necessarily at
the start). We call these non-returning walks. Since any walk from b to a
decomposes uniquely into a closed walk on b, followed by a non-returning
walk from b to a:

4.4.1 Lemma. If a and b are distinct vertices in X. then

Wb,a(X, t) = Wb,b(X, t)Nb,a(X, t).

4.4.2 Lemma. If a and b are distinct vertices in X, then

Wa,a(X, t)−Wa,a(X \ b, t) = Wa,b(X, t)2

Wb,b(X, t)
.

Proof. The left side is the generating function for the walks in X that start
at a and visit b at any point. Any such walk decomposes uniquely into a
walk from a to b (with possible multiple visits at b), and a non-returning
walk from b to a. Thus

Wa,a(X, t)−Wa,a(X \ b, t) = Wa,b(X, t)Nb,a(X, t)

and now the lemma follows using the previous lemma and the observation
that Wa,b(X, t) = Wb,a(X, t).

Using Lemma 4.4.2 and Equation (4.3.3), and some straightforward ma-
nipulation, one arrives at the following corollary. We will be denoting the
graph X with vertices a and b removed by X \ab.

4.4.3 Theorem. If a and b are distinct vertices in X, then

t−1Wa,b(X, t−1) = (φ(X \a, t)φ(X \ b, t)− φ(X \ab, t)φ(X, t))1/2

φ(X, t) .
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4.4. Walks Between Two Vertices

Further, as a consequence, we can recover a formula for the off-diagonal
entries of Er:

(Er)a,b = (φ(X \a, t)φ(X \ b, t)− φ(X \ab, t)φ(X, t))1/2(t− θr)
φ(X, t)

∣∣∣∣∣
t=θr

.

Let φa,b(X, t) = [adj(tI − A)]a,b. Note that it is a polynomial. From
Equation (4.3.2) and Theorem 4.4.3, it follows that

φa,b(X, t) = (φ(X \a, t)φ(X \ b, t)− φ(X \ab, t)φ(X, t))1/2.

We will refer to this as the square-root identity. Further, we can prove the
following result.

4.4.4 Corollary. Let Pa,b denote the collection of all paths between a and
b. Then

φa,b(X, t) =
∑

P∈Pa,b
φ(X \P, t).

Proof. Note that X\P is the graph we get from X by deleting the vertices
of P .

This will be a proof by induction on the number vertices of the graph.
For graphs with 2 vertices, it follows trivially (provided you get the trivial
cases right.) Now, consider non-returning walks from a to b, and their
corresponding generating function Na,b(X, t). As we well know,

Wa,a(X, t−1)Na,b(X, t−1) = Wa,b(X, t−1).

On the other hand,

Na,b(X, t−1) = t−1 ∑
c∼a

Wc,b(X \a, t−1).

By induction,

t−1Wc,b(X \a, t−1) = 1
φ(X \a, t)

∑
P∈P(X\a)c,b

φ((X \a)\P, t).

Hence

φa,b(X, t) = t−1Wa,b(X, t−1)φ(X, t)

= Wa,a(X, t−1)
tφ(X \a, t)

∑
c∼a

∑
P∈P(X\a)c,b

φ((X \a)\P, t)φ(X, t).

Result now follows from Equation (4.3.3).
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We also can derive the following consequence.

4.4.5 Corollary. If there is a pair of cospectral vertices in X, then φ(X, t)
is reducible over Q.

Proof. By Theorem 4.4.3

φa,b(X, t)2 = φ(X \a, t)φ(X \ b, t)− φ(X \ab, t)φ(X, t).

If a and b are cospectral this implies that

φ(X \ab, t)φ(X, t) = φ(X \a, t)2 − φa,b(X, t)2

= (φ(X \a, t)− φa,b(X, t))(φ(X \a, t) + φa,b(X, t)).

As each factor in this expression has degree at most |V (X)|−1, we conclude
that φ(X, t) has a non-trivial factor over Q.

4.5 The Jacobi Trick
If D ⊆ V (X) and M is a square matrix with rows and columns indexed by
V (X), then MD,D shall denote the square submatrix of M with rows and
columns indexed by D. The following theorem is due to Jacobi.

4.5.1 Theorem. Let X be a graph. If D ⊆ V (X), then

det ((tI − A)−1)D,D = φ(X \D, t)
φ(X, t) .

Proof. Assume for convenience that vertices corresponding to D are the
first rows and columns of A. Let M be the matrix formed by replacing the
first d columns of the n×n identity matrix with the corresponding columns
of (tI − A)−1. We can write M in partitioned form

M =
(
M1 0
M2 I

)

where M1 = ((tI − A)−1)D,D and the details of M2 are irrelevant. Then

(tI − A)M =
(
I N1
0 tI − A(X \D)

)
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4.5. The Jacobi Trick

and hence
det(tI − A) det(M1) = det(tI − A(X \D)).

This can be used to give an alternate proof of Theorem 4.4.3, which you
are invited to find as an exercise.

4.5.2 Corollary. Let θ0, . . . , θd be the distinct eigenvalues of X, with cor-
responding spectral idempotents E0, . . . , Ed. If D ⊆ V (X), the multiplicity
of θr as a pole of φ(X \D, t)/φ(X, t) is equal to rk((Er)D,D).

Proof. We have

((tI − A)−1)S,S =
d∑
r=0

1
t− θr

(Er)S,S.

Let Fi = (t − θi)−1(Ei)S,S, and let P be an orthogonal matrix such that
D = P T (Ei)S,SP is diagonal. Let H = ∑

i:i 6=r Fi. Thus,

φ(X \S, t)
φ(X, t) = det

( 1
t− θr

D + P THP
)
.

From the Laplace expansion, this determinant is the sum of the determi-
nants of the matrices we obtain from P THP by replacing each subset of
columns by the corresponding set from (t − θr)−1D. The non-zero diago-
nal entries of this matrix contain poles at θs, but the entries of P THP do
not. Thus, selecting precisely the set of columns corresponding to the non-
zero columns of D will provide a unique term in the determinant expansion
whose multiplicity of the pole at θs is precisely the rank of (Es)D,D.

The following argument is due to Xiaohong Zhang.

4.5.3 Lemma. Vertices a and b of X are parallel if and only if the poles of
φ(X \{a, b}, t)/φ(X, t) are simple.

Proof. Let θr be an eigenvalue of X. We have

(Er)a,a = φ(X \a, t)(t− θr)
φ(X, t)

∣∣∣∣∣
t=θr

, (Er)b,b = φ(X \ b, t)(t− θr)
φ(X, t)

∣∣∣∣∣
t=θr

and

(Er)a,b =
(t− θr)

√
φ(X \a, t)φ(X \ b, t)− φ(X \{a, b}, t)φ(X, t)

φ(X, t)

∣∣∣∣∣
t=θr

.
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Now

det
(

(Er)a,a (Er)a,b
(Er)a,b (Er)b,b

)
= (Er)a,a(Er)b,b − (Er)2

a,b

= φ(X \{a, b}, t)(t− θr)2

φ(X, t)

∣∣∣∣∣
t=θr

and, if the multiplicity of θr in φ(X, t) is m, last term is not zero if and only
the multiplicity of θr in φ(X \{a, b}, t) is m− 2. (By interlacing, it cannot
be less.) Since a and b are parallel if and only if the determinant is zero,
the result follows.

4.6 All Walks
The generating function whose coefficients of tk count all walks of length k
in X is

sum(W (X, t)) =
d∑
r=0

1TEr1
1− tθr

.

Note that, for regular graphs, this says that the generating function of all
walks depend only on the valency and the size of the graph. We will see
in this section how that this can be expressed in general using φ(X, t) and
φ(X, t). The following lemma is a well known fact.

4.6.1 Lemma. For any matrices M and N such that MN and NM are
defined,

det(I −MN) = det(I −NM).

Proof. Follows immediately from(
I M
0 I

)(
I −MN 0

N I

)
=
(
I M
N I

)
=
(
I 0
N I

)(
I M
0 I −NM

)
.

4.6.2 Theorem. For any graph X on n vertices,

φ(X, t)
(−1)nφ(X,−t− 1) = 1−

d∑
r=0

1TEr1
t+ 1 + θr

= 1− 1T ((t+ 1)I + A)−11.
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Proof. We have

tI − A(X) = (t+ 1)I + A− J = ((t+ 1)I + A)(I − ((t+ 1)I + A)−1J).

Applying the lemma,

det(I − ((t+ 1)I + A)−1J) = det(I − ((t+ 1)I + A)−111T )
= 1− 1T ((t+ 1)I + A)−11.

The result now follows using this and the spectral decomposition of ((t +
1)I + A)−1.

Cospectral pairs of regular graphs have their complements cospectral.
The following corollary is, in a sense, the right generalization of this fact
applied to non-regular graphs.

4.6.3 Corollary. Suppose X and Y are cospectral. Then X and Y are
cospectral if and only if

sum(W (X, t)) = sum(W (Y, t)).

A similar approach can be taken to study all walks at a vertex. If
a ∈ V (X), let Wa(X, t) be the generating function for the walks in X that
start at a, and let Na(X, t) be the generating function for the non-returning
walks that start at a. Then

t−1Wa(X, t−1) =
d∑
r=0

eTaEr1
t− θr

and, also,
Wa(X, t) = Wa,a(X, t)Na(X, t).

4.6.4 Lemma. If a ∈ V (X), then

sum(W (X, t))− sum(W (X \a, t)) = Wa(X, t)2

Wa,a(X, t)
Proof. The left side of our proposed identity is the generating function for
the walks in X that use a at any point. Such walks can be split into those
a walk in X that starts somewhere and arrives at a, followed by a closed
walk on a, and which ends with a non-returning walk starting at a. Hence
the generating function for these walks factors as

Na(X, t)Wa,a(X, t)Na(X, t),

and our lemma follows.
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We say that two pairs (X, a) and (Y, b) are cospectral with cospectral
complements if X and Y are cospectral with cospectral complements and
X \a and Y \ b are cospectral with cospectral complements.

Applying the results of the past section X and X \ a, and the lemma
above, we get

t−1Wa(X, t−1) =
(

(−1)nφ(X \a, t)
φ(X, t)

(
φ(X,−t− 1)
φ(X, t) + φ(X \a,−t− 1)

φ(X \a, t)

))1/2

.

(4.6.1)

As a consequence, the corollary below follows.

4.6.5 Corollary. Suppose a, b ∈ V (X) and X \a and X \ b are cospectral.
Then the X \a and X \ b are cospectral if and only if

Wa(X, t) = Wb(X, t).

4.7 1-Sums and 2-Sums
Suppose X and Y are graphs, and let Z be the graph we get by identifying
a vertex of X with a vertex of Y . Equivalently, we may assume that V (X)∩
V (Y ) = {a} and no edge joins a vertex of X \a with a vertex of Y \a. We
say Z is a 1-sum of X and Y at a.

For any graph X with vertex a, let Ca(X, t) be the generating function
for the closed walks on a that return exactly once. All walks that start and
end at a can be decomposed into a walk that starts and ends at a, followed
by another that start at a and returns exactly once. Thus

Wa,a(X, t)(1− Ca(X, t)) = 1,

and therefore
Ca(X, t) = 1−Wa,a(X, t)−1.

4.7.1 Lemma. If Z is the 1-sum of X and Y at a, then

φ(Z, t) = φ(X \a, t)φ(Y, t) + φ(X, t)φ(Y \a, t)− tφ(X \a, t)φ(Y \a, t)

Proof. We have
Ca(Z, t) = Ca(X, t) + Ca(Y, t).

The rest follows from Equation (4.3.3).
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It follows that the spectrum of the 1-sum of X and Y at a is determined
by the spectra of the four graphs X, X \a, Y, and Y \a. Since

Wa(Z, t) = Wa,a(Z, t)Na(Z, t) = Wa,a(Z, t)(Na(X, t) +Na(Y, t)− 1),

it follows that the spectrum of Z is determined by the spectra of the four
graphs above, and the spectra of their complements.

If a and b are cospectral vertices in X and c ∈ V (Y ), then the 1-sum
of (X, a) and (Y, c) is cospectral to the 1-sum of (X, b) and (Y, c). Schwenk
used this construction as part of his proof that the proportion of trees on
n vertices that are determined by their characteristic polynomials tends to
zero as n increases.

We note one consequence of the previous lemma.

4.7.2 Corollary. Let X and Y be vertex-disjoint graphs and let a be a
vertex in X and b a vertex in Y . If Z is the graph we get from X ∪ Y by
adding an edge joining a to b, then

φ(Z, t) = φ(X, t)φ(Y, t)− φ(X \a, t)φ(Y \ b, t).

One way to prove this is apply Lemma 4.7.1 twice, first forming the
1-sum of X and K2, then taking the 1-sum of this with Y .

We form the 2-sum of graphs X and Y by merging a pair of vertices in
X with a pair of vertices in Y . In any interesting case the merged pair of
vertices form a cutset in the 2-sum. To carry out our discussion, we assume
we have a graph Z with non-adjacent vertices a and b and subgraphs X
and Y such that

V (X) ∪ V (Y ) = V (Z), V (X) ∩ V (Y ) = {a, b}.

Thus Z is a 2-sum of X and Y and we want to relate the spectrum of Z to
that of X and Y . We note that a path in Z from a to b must lie in X or in
Y . Hence, by Corollary 4.4.4,

φa,b(Z, t) = φa,b(X, t)φ(Y \ab, t) + φa,b(Y, t)φ(X \ab, t),

and consequently

φ(Z \ab, t)φ(Z, t) = φ(Z \a, t)φ(Z \ b, t)
− (φa,b(X, t)φ(Y \ab, t) + φa,b(Y, t)φ(X \ab, t))2.
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Since Z \a and Z \b are 1-sums, we can express their characteristic polyno-
mials in terms of characteristic polynomials of the subgraphs

X \a, X \ b, X \ab, Y \a, Y \ b, Y \ab.

So we have a formula of sorts for φ(Z, t).
Our work in this section provides the following result.

4.7.3 Theorem. The 2-sum of graphs X and Y at a pair of cospectral
vertices, a and b, which are not neighbours, yields a graph Z where a and
b are not neighbours and are cospectral.

Proof. Note that Z \a is the 1-sum of X \a and Y \a at the vertex b, so

φ(Z\a, t) = φ(X\a, t)φ(Y \ab, t)+φ(X\ab, t)φ(Y \a, t)−tφ(X\ab, t)φ(Y \ab, t)

and, likewise

φ(Z\b, t) = φ(X\b, t)φ(Y \ab, t)+φ(X\ab, t)φ(Y \b, t)−tφ(X\ab, t)φ(Y \ab, t).

Therefore

φ(Z \a, t)− φ(Z \ b, t) = φ(X \a, t)φ(Y \ab, t) + φ(X \ab, t)φ(Y \a, t)
− φ(X \ b, t)φ(Y \ab, t)− φ(X \ab, t)φ(Y \ b, t)

and, thus, a and b are cospectral in Z if and only if

φ(X \a, t)
φ(X \ab, t) −

φ(X \ b, t)
φ(X \ab, t) = φ(Y \ b, t)

φ(Y \ab, t) −
φ(Y \a, t)
φ(Y \ab, t) .

It follows that if a and b are cospectral in X and in Y , then they are
cospectral in their 2-sum Z.

4.8 Reduced Walks
A walk in a graph X is reduced if it does not contain a subsequence of
the form aba. (Sometimes these are called non-backtracking walks.) If
|V (X)| = n, then the matrix generating series Φ(X, t) is defined by declar-
ing that Φ(X, t))a,b is the generating series for the reduced walks in X from
a to b, for all vertices a and b ofX. We see that ifX is a tree, there is exactly
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one reduced walk between a given pair of vertices, and the length of the
walk is the distance between the vertices. Hence if T is a tree, the entries of
Φ(T, t) are polynomials of degree at most the diameter of T . Equivalently
we can write

Φ(T, t) =
∑
r≥0

trAr,

where (Ar)a,b = 1 if dist(a, b) = r and is otherwise zero. If T is a tree, then
Φ′(T, 1) = D(T ), where D(T ) is the distance-matrix of T .

If A = A(X), define pr(A) to be the matrix (of the same order as A)
such that (pr(A))a,b is the number of reduced walks in X from a to b of
length r. Thus

Φ(X, t) =
∑
r≥0

trpr(A).

Observe that

p0(A) = I, p1(A) = A, p2(A) = A2 −∆,

where ∆ is the diagonal matrix of valencies of X. If r ≥ 3 we have the
recurrence

Apr(A) = pr+1(A) + (∆− I)pr−1(A).

These calculations were first carried out by Biggs, who observed the impli-
cation that pr(A) is a polynomial in A and ∆, of degree r in A. Our next
theorem combines two results from Chan and Godsil [18].

4.8.1 Theorem. For any graph X on at least two vertices,

Φ(X, t)(I − tA+ t2(∆− I)) = (1− t2)I.

Furthermore, det(I − tA+ t2(∆− I)) = 1− t2 if and only if X is a tree.

4.9 Hermitian Matrices
In defining U(t), the key constraint on A is that it be Hermitian. Most of
the theory presented in this chapter extends without great difficulty to this
case, and we describe briefly how to do this here.

We start with a square matrix M with entries from some commutative
ring and with its rows and columns indexed by some set V . We define a

75



4. Spectrum and Walks

walk relative to M to be a sequence of ordered pairs of vertices of X, such
that the tail of one term is the head of the term immediately following.
The weight of the vertex pair (a, b) is Ma,b, and the weight of a walk is the
product of the weights of its terms. The generating function for walks on
M is

(I − tM)−1 =
∑
k≥0

tkMk

and the coefficient of tk in ((I − tM)−1)a,b is the sum of the weights of the
walks of length k starting at a and ending at b. When V = V (X) for some
graph X, we might view M as a weighted adjacency matrix for X; in this
case we assume that Ma,b = 0 if ab /∈ E(X).

If M [a, b] denotes the matrix we get by deleting the a-row and b-column
from M , then, from adjugate expression for the inverse,

((I − tM)−1)a,b = det((I − tM)[a, b])
det(I − tM) .

The identities derived in this chapter extend routinely to the case where
M is Hermitian. (They can also extend to the case where M is a normal
matrix.) For example, in Corollary 4.4.4, we related an off diagonal entry
of (I − t−1A)−1 with paths. If instead of A we have an Hermitian matrix
M , then we proceed as follows. If α is a walk in X, let wt(α) denote its
weight. If P is a path in X from a to b, we can view it as a walk and hence
it has a weight wt(P ). If M is Hermitian, the weight of a walk from b to a
is the complex conjugate of the weight of the reversed walk from b to a.

4.9.1 Theorem. Let M be a Hermitian weighted adjacency matrix for X
and let a and b be distinct vertices in X. Let P denote the set of paths in
X from a to b. Then

t−1((I − t−1M)−1)a,b =
∑
P∈P

wt(P )φ(M \P, t)
φ(M, t) .

4.10 No Transfer at all on Some Signed
Graphs

We use the ideas from the previous section to study state transfer on signed
graphs. A signed adjacency matrix for a graph is symmetric and its nonzero
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entries are 1 or −1. Let C be the cycle C4 with signed adjacency matrix

A =


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 .

We claim that if U(t) = exp(itA), then U(t)1,2 = 0 for all t. To prove this,
we first observe that the vertices 1 and 2 are joined by exactly two paths,
each of length two and with one of weight 1 and the other with weight −1.

If P is either of these paths, then φ(C \P ) = t and therefore, by Theo-
rem 4.9.1, we have that ((tI − A)−1)1,2 = 0.

Accordingly

0 =
d∑
r=0

(Er)1,2

t− θr
and therefore (Er)1,2 = 0 for all r. Since

U(t)1,2 =
d∑
r=0

eitθr(Er)1,2

we conclude that U(t)1,2 = 0 for all t.

XY

X1
1

-1

11

2

Y

Figure 4.1: A graph with no transfer from X1 to X2

Now construct a graph Z as follows. Choose rooted graphs X1, X2 and
Y and let Z be the graph by merging the roots of X1, X2 and two copies of
Y with the vertices of C4, to produce the signed graph shown in Figure 4.10.

Let W be the graph that we get when X1 and X2 are both K1. Let 1
and 2 denote the images of the root vertices of X1 and X2 in Z and let a be
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a vertex in X1 and b a vertex in X2. Sign the edges as in the figure. Then
by the result in Exercise 1, we have

φa,b(Z, t) = φa,1(X1, t)φ1,2(W, t)φ2,b(X2, t)
and since any 12-path inW uses only vertices in C, our signing ensures that
φ1,2(W, t) = 0. Therefore φa,b(Z, t) = 0 and thus it follows that UZ(t)a,b = 0
for all t.

The example above provides a refined explanation of why in certain
signed graphs there can be no transfer. However, the example above can
be cast in a general setting as follows. The key property of C, the signed
C4, is that it is bipartite and that its adjacency matrix has the form

A =
(

0 H
HT 0

)
and HHT = 2I. So assume X is a graph with signed adjacency matrix of
this form, where H is a square and HHT = kI. (For example H could be
a Hadamard or a conference matrix.) Then (k−1/2A)2 = I and so

exp(itk−1/2A) = cos(t)I + ik−1/2 sin(t)A.
If follows that a and b are two vertices in the same color class of X, then
U(t)a,b = 0 for all t. By taking 1-sums we can construct more examples
with no transfer.

Notes
The results in this Chapter are in large part an extension of results from
[35, Chapter 4].

Karimipour, Rad and Asoudeh study a construction related to the one
in Section 4.10 in [44],

Exercises
4-1. Suppose Z is the 1-sum of graphs X and Y using a vertex a. If b and c

are vertices in X \a and Y \ b respectively, show that
φb,c(Z, t) = φb,a(X, t)φa,c(Y, t).

4-2. Prove Theorem 4.4.3 in two different ways.
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Chapter 5

Walk Modules

Suppose eS is the characteristic vector of a subset S of the vertices of the
graph X. Then, to put things in their simplest terms, in this chapter we
investigate the A-invariant subspace spanned by the vectors AreS, for all
non-negative r. In more high flown terms, this subspace is the cyclic R[A]-
module generated by eS. Properties of these modules will be particularly
useful in our study of quantum walks in graphs.

In a quantum information context, x represents a initial state, typically
x = ea when S contains a single vertex a. Then the Hamiltonian, given by
A = A(X), yields an evolution given by U(t), which is a polynomial in A.
Therefore, for any t, the resulting quantum state lies in the R[A]-module
generated by x.

5.1 Walk Modules
Let X be a graph on n vertices and let S be a subset of V (X) with charac-
teristic vector eS. The walk matrix relative to S is

WS :=
(
eS AeS . . . An−1eS

)
.

The column space of WS is the A-invariant subspace of Rn generated by eS.
Equivalently, if R[A] denotes the ring (or algebra) of all polynomials in A,
then col(WS) is the R[A]-module generated by eS, and therefore we call it
the walk module of S. We might also abuse both notations at once and
refer to it as the A-module generated by eS.
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5. Walk Modules

Note that

(W T
SWS)i,j = (eS)TAi−1Aj−1eS = (eS)TAi+j−2eS

and therefore (W T
SWS)i,j is the number of walks in X of length i + j − 2

that start and finish on a vertex in S. Let CS(X, t) be the generating series
for the walks in X that start and finish at a vertex in S. Then CS(X, t)
determines the product W T

SWS, and it is not too hard to show that entries
of W T

SWS suffice to determine CS(X, t). Moreover:

5.1.1 Lemma. If S is a nonempty subset of V (X), then

CS(X, t) =
d∑
r=0

eTSEreS
1− tθr

,

If z ∈ Rn, then the minimal polynomial of A relative to z is the monic
polynomial p of least degree such that p(A)z = 0. If ψ is the usual minimal
polynomial of A, then ψ(A)z = 0 (without doubt) and so, as a consequence
of Euclidean division, we have that p divides ψ. It is an exercise to show
that the degree of the minimal polynomial of A relative to xS equals rk(WS).

5.2 Dual Degree and Covering Radius
Let E0, . . . , Ed be the idempotents in the spectral decomposition of A. Then

Ak =
d∑
r=0

θkrEr

and therefore the vectors AkeS are generated by the {EreS}dr=0. On the
other hand, since each Er is a polynomial in A, it follows that each Erxs is
a combination of the columns of WS. We conclude that

col(WS) = 〈{Eres}dr=0〉,

and thus, as the {Eres}dr=0 are orthogonal, we have

rk(WS) = |{θr : EreS 6= 0}|.
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We define the dual degree of S to be rk(WS) − 1. If X is connected and
E0 is the idempotent belonging to the spectral radius, then all entries of
E0 are positive. Hence the dual degree of a non-empty subset of V (X) is
non-negative. The terminology “dual degree” comes from coding theory: if
X is the Hamming graph H(n, q) with vertex set GF (q)n and S is a linear
code then the dual degree of S is the degree of its dual code.

The set of eigenvalues θr such that EreS 6= 0 is the eigenvalue support
of S. Since

eTSEreS = eTSE
2
reS = eTSE

T
r EreS = ‖EreS‖2,

we find that EreS = 0 if and only if eTSEreS = 0. If X is connected then
the support of any non-empty subset of V (X) contains the spectral radius.

5.2.1 Lemma. The eigenvalue support of a vertex set a of X consists of
the eigenvalues θr such that θr is a pole of the rational function φ(X \
a, t)/φ(X, t).

Proof. From Equation (4.3.4),

φ(X \a, t)/φ(X, t) =
d∑
r=0

(Er)a,a
t− θr

,

whence the result follows.

5.2.2 Corollary. If θ belongs to the eigenvalue support of a, then so do all
algebraic conjugates of θ.

5.2.3 Lemma. If a and b are distinct vertices in X and (Er)a,b 6= 0, then
θr lies in the eigenvalue supports of both a and b.

Proof. We have
(Er)a,b = 〈Erea, Ereb〉

and therefore by Cauchy-Schwarz,

|(Er)a,b| ≤ ‖Erea‖ ‖Ereb‖.

5.2.4 Lemma. If X is bipartite, the eigenvalue support of a vertex is closed
under multiplication by −1,
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5. Walk Modules

Proof. We may assume X is connected. Let D be a diagonal matrix with
diagonal entries equal to 1 on one colour class and equal to −1 on the other.
Then DAD = −A and if Az = θz, then −θz = DADz and so Dz is an
eigenvector with eigenvalue −θ. The lemma follows.

The covering radius of S is the least integer r such that any vertex of
X is a distance at most r from S. Thus S is a dominating set if and only if
its covering radius is 1, and the diameter of a graph is the maximum value
of the covering radii of the vertices. (The covering radius of a vertex is
also known as the eccentricity of the vertex.) Our next lemma generalizes
the well known fact that if X has diameter d, then the number of distinct
eigenvalues of X is at least d+ 1.

5.2.5 Lemma. If S is a non-empty subset of V (X) with covering radius r
and dual degree s∗, then r ≤ s∗.

Proof. If eS is the characteristic vector of S, then for k = 0, . . . , r the
supports of the vector (A+ I)keS are strictly increasing and therefore these
vectors are linearly independent.

As an example, if X is the path Pn on n vertices and S is one of its
end-vertices, then covering radius of S is n − 1. Hence the dual degree of
an end vertex is n− 1, from which we deduce the well known fact that the
eigenvalues of the path are distinct.

5.3 Controllable Pairs, Symmetries,
Rational Functions

Let X be a graph on n vertices with adjacency matrix A. If z ∈ Rn, define
the matrix Wz by

Wz =
(
z Az . . . An−1z

)
.

The pair (A, z) is said to be controllable if Wz is invertible. In this chapter,
z will often be the characteristic vector eS of some subset S of V (X), and
then we will say that (X,S) is controllable if (A, eS) is. Note that, given
A, if there is z so that (A, z) is controllable, then A must have simple
eigenvalues. This observation implies the following result, recalling that
the only vertex transitive graph with all eigenvalues simple is K2.
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5.3.1 Corollary. If X is vertex transitive and |V (X)| > 2, no subset of
V (X) is controllable.

We can also relate another aspect of symmetries to controllability.

5.3.2 Lemma. If (X,S) is controllable, then any automorphism of X that
fixes S as a set is the identity.

Proof. Let P be a permutation matrix that commutes with A (thus P
defines an automorphism of X). It fixes S if and only if PeS = eS. Hence,
in this case,

PAreS = ArPeS = AreS,

and therefore PWS = WS. Hence if WS is invertible, P = I.
We derive some useful characterizations of controllability. From the

spectral decomposition of A, we see that

(tI − A)−1z =
d∑
r=0

1
t− θr

Erz

and hence
zT (tI − A)−1z =

d∑
r=0

zTErz

t− θr
. (5.3.1)

Since
zTErz = zTE2

rz = (Erz)TErz, (5.3.2)

we have that zTErz = 0 if and only if Erz = 0. Therefore the rank of Wz is
equal to the number of distinct poles of the rational function zT (tI−A)−1z.
With z = eS for some subset S ⊆ V (X), then there is a polynomial φS(X, t)
with degree at most n− 1 such that

eTS (tI − A)−1eS = φS(X, t)
φ(X, t)

(As we have already seen, if S is the vertex a, then φS(X, t) = φ(X \a, t).)
This provides a useful characterization of controllability:

5.3.3 Lemma. Let X be a graph on n vertices and suppose S ⊆ V (X),
with characteristic vector eS. Then (X,S) is controllable if and only if the
rational function eTS (tI − A)−1eS has n distinct poles.
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We have the following consequence of Lemma!5.3.3 and the remark pre-
ceding it:

5.3.4 Corollary. A vertex a in X is controllable if and only if φ(X \ a, t)
and φ(X, t) are coprime.

For the path Pn on n vertices we have

φ(P0, t) = 1, φ(P1, t) = t

and, if n ≥ 1,
φ(Pn+1, t) = tφ(Pn, t)− φ(Pn−1, t)

from which it follows by induction that φ(Pn+1, t) and φ(Pn, t) are coprime
for all n. So if a is an end-vertex of Pn, the pair (Pn, {a}) is controllable.

5.4 Controllable Subsets
Our next theorem will characterize controllability in terms of linear algebra
rather than rational functions. First a useful lemma.

5.4.1 Lemma. Let v1, . . . , vm be a set of vectors in Rn, and let Qij = viv
T
j .

Then {v1, ..., vm} spans a subspace of dimension k if and only if {Qij}mi,j=1
spans a subspace of dimension k2 in the space of n × n matrices with real
entries.

Proof. We show that v1, . . . , vk is linearly independent if and only if the k2

matrices vivTj for ≤ i, j ≤ k are linearly independent.
If v1, . . . , vk are linearly dependent, the matrices vivT1 (for i = 1, . . . , k)

are linearly dependent.
So assume that v1, . . . , vk are linearly independent. Then there are vec-

tors u1, . . . , uk such that vTi uj = δi,j. (The vectors u1, . . . , uk form a dual
basis). Assume by way of contradiction that there are scalars ai,j such that∑

1≤i,j≤k
ai,jviv

T
j = 0.

Then

0 = uTr

 ∑
1≤i,j≤k

ai,jvivj

us =
∑

1≤i,j≤k
ai,j(uTr vi)(vTj us) = ar,s.

Therefore the matrices vivT1 are linearly independent.
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As an immediate consequence, we get:

5.4.2 Corollary. Let S be a subset of the vertices of the graph X, with
characteristic vector z = eS. The following statements are equivalent:

(a) (X,S) is controllable.

(b) The matrices AizzTAj where 0 ≤ i, j < n form a basis for the algebra
of all n× n matrices.

We can also express things in terms of the algebra 〈A, zzT 〉 generated
by A and zzT .

5.4.3 Theorem. Assume A is an n × n real matrix and z ∈ Rn. Then A
and zzT generate Matn×n(R) if and only if the matrices AizzTAj, where
0 ≤ i, j < n, are linearly independent.

Proof. Since dim(Matn×n(R)) = n2, if the matrices given are linearly inde-
pendent they form a basis for Matn×n(R).

So we assume that 〈A, zzT 〉 = Matn×n(R). By Lemma 5.4.1, it is enough
to show that the vectors z, Az, . . . , An−1z are linearly independent. Let W
denote the span of these vectors. By the Cayley-Hamilton theorem, An is
a linear combination of the powers Ak for k0, . . . , n− 1 and therefore W is
invariant under A. Since

zzTAkz = (zTAkz)z ∈ W,

it is also invariant under zzT . ConsequentlyW is invariant under Matn×n(R)
and therefore dim(W ) = n.

If S ⊆ V (X), we define the cone of X relative to S to be the graph we
get by taking a new vertex, say 0, and joining it to each vertex in S, and
denote it by X̂S.

5.4.4 Lemma. Let S ⊆ V (X). Then

φ(X̂S, t) = φ(X, t)(t− eTS (tI − A)−1eS).

Proof. This follows from(
t −eTS
−eS (tI − A)

)
=
(

1 0
0 (tI − A)

)(
t −eTS

−(tI − A)−1eS I

)
.

85



5. Walk Modules

5.4.5 Theorem. Let X be a graph and S ⊆ V (X). Then (X,S) is con-
trollable if and only if (X̂S, {0}) is controllable.

Proof. The lemma implies that

φ(X̂S, t)
φ(X, t) = t−

d∑
r=0

eTSEreS
t− θr

. (5.4.1)

Further, Lemma 5.3.3 says that (X,S) is controllable if and only if this
rational function has n distinct poles. Now

eT0 (tI − Â)−1e0 =
(
(tI − Â)−1

)
0,0

= φ(X, t)
φ(X̂, t)

and therefore (X̂S, {0}) is controllable if and only if the rational function
φ(X, t)/φ(X̂S, t) has n+1 distinct poles, that is, if and only if φ(X̂S, t)/φ(X, t)
has exactly n+ 1 distinct zeros.

Since the derivative of the right side in (5.4.1) is positive everywhere it
is defined, between each pair of consecutive zeros there is exactly one pole.
Therefore there are n+ 1 distinct zeros.

The following corollary provides infinite families of controllable pairs.

5.4.6 Corollary. Let S be a subset of V (X), and let Yk be the graph
obtained by taking a path on k vertices and joining one of its end-vertices
to each vertex in S. Let 0 denote the other end-vertex of the path. If (X,S)
is controllable then (Yk, {0}) is controllable.

5.5 Controllable Graphs
We say that graph is controllable if (X, V (X)) is controllable.

Theorem 5.4.3 readily implies the following corollary.

5.5.1 Corollary. A graph is controllable if and only if its complement is.

Since any automorphism of X fixes V (X), we see that a controllable
graph is asymmetric, as per Lemma 5.3.2.
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Moreover, assume X and Y are isomorphic, with adjacency matrices A
and B respectively. For some permutation matrix P we have B = P TAP .
As an immediate consequence,

WV (Y ) = P TWV (X).

Thus the walk matrices relative to the set of all vertices in isomorphic graphs
are equal up to reordering the rows. If these walk matrices are invertible,
no two rows are equal, and therefore the ordering of the vertices obtained
from the lexicographic ordering of the rows of W is canonical.

5.5.2 Theorem. Two controllable graphs are isomorphic if and only their
ordered walk matrices are equal.

Proof. One direction is proved in the paragraph above. For the other direc-
tion, note that if their ordered matrices are equal, there is a permutation
matrix P so that WV (Y ) = P TWV (X). Then

W =
(
1 B1 . . . Bn−11

)
=
(
1 (P TAP )1 . . . (P TAP )n−11

)
.

Thus, because the characteristic polynomials of B and P TAP have degree
n, we also have Bn1 = (P TAP )n1. Thus

B
(
1 B1 . . . Bn−11

)
= (P TAP )

(
1 (P TAP )1 . . . (P TAP )n−11

)
,

and the result now follows because W is invertible.
As a consequence of the above lemma, we have a polynomial time iso-

morphism algorithm for controllable graphs.

5.6 Isomorphism
Let X be a graph on n vertices with adjacency matrix A and let y be a
vector in Rn. Let Y be a graph on n vertices with adjacency matrix B
and let z be a vector in Rn. We say that the pairs (X, y) and (Y, z) are
isomorphic if there is an orthogonal matrix L such that

LA = BL, and Ly = z.

We will use WX,y to denote the walk matrix of X relative to y. Analogously
for WY,z. Note that as a consequence of the isomorphism between (X, y)
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and (Y, z), we have LWX,y = WY,z; thus controllability is preserved by
isomorphism. Further

W T
Y,zWY,z = W T

X,yL
TLWX,y = W T

X,yWX,y.

If the pairs (A, y) and (B, z) are isomorphic, then A and B must have the
same characteristic polynomial. Moreover, W T

Y,zWY,z = W T
X,yWX,y implies

that, for all k,
yTAky = zTBkz,

thus giving that
yT (I − tA)−1y = zt(I − tB)−1z.

As it turns out, a converse is also true.

5.6.1 Lemma. Assume A and B are similar matrices, with spectral decom-
positions

A =
d∑
r=0

θrEr, B =
d∑
r=0

θrFr.

Consider vectors y and z. The following are equivalent.

(a) yTEry = zTFrz, for all r.

(b) yT (I − tA)−1y = zT (I − tB)−1z.

(c) W T
Y,zWY,z = W T

X,yWX,y.

Proof. The equivalence between (a) and (b) follows from Equation (5.3.1).
Also, as we have seen, W T

X,yWX,y determines yT (I − tA)−1y, similarly for Y
and z, so (c) implies (b).

Now, we assume (a). If Y is the matrix whose columns are Ery and Z
is the matrix whose columns are Frz, we have Y TY = ZTZ. On the other
hand, if V is the (d+ 1)× (d+ 1) matrix so that Vij = θj−1

i , then

WX,y = Y V and WY,z = ZV,

and therefore

W T
X,yWX,y = V TY TY V = V TZTZV = W T

Y,zWY,z.

The lemma gives the important consequence below.
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5.6.2 Theorem. Two pairs (A, y) and (B, z) are isomorphic if and only if
A and B are similar, and yT (I − tA)−1y = zT (I − tB)−1z.

Proof. If (A, y) and (B, z) are isomorphic, then A and B are similar, and
W T
Y,zWY,z = W T

X,yWX,y, thus one direction follows from the previous lemma.
Now assume A and B are similar. We must construct an orthogonal

matrix L that gives the similarity, and satisfies Ly = z.Any orthogonal
matrix L′ mapping the orthonormal bases of the eigenspaces of A to the
bases of the corresponding eigenspaces of B is so that L′A = BL′. In
choosing a basis for each eigenspace, we can always start with an arbitrarily
chosen unit vector, so define L so that LA = BL, and, for all r,

L

 1√
yTEry

Ery

 = 1√
zTFrz

Frz.

As yTEry = zTFrz from Lemma 5.6.1, it follows that, for all r, L(Ery) =
Frz. Thus

Ly = L
d∑
r=0

Ery =
d∑
r=0

Frz = z.

We derive two important consequences.

5.6.3 Corollary. Pairs (X,S) and (Y, T ) are isomorphic if and only if X
is cospectral to Y and the cone of X relative to S is cospectral to the cone
of Y relative to T .

Proof. Assuming A = A(X) and B = A(Y ) are similar, it follows from
Lemma 5.4.4 that X̂S and ŶT are cospectral if and only if

eTS (I − tA)−1eS = eTT (I − tB)−1eT .

From the previous theorem, the result follows.
From Corollary 4.6.3 it follows that if X and Y are cospectral then X

and Y are cospectral if and only if

1T (I − tA(X))−11 = 1T (I − tA(Y ))−11.

So Theorem 5.6.2 imply the important result of Johnson and Newman [42]
that if X and Y are cospectral with cospectral complements, then there is
an orthogonal matrix L such that

LTA(X)L = A(Y ), LT (A(X))L = A(Y ).
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5.7 Isomorphism of Controllable Pairs
Our first result generalizes Lemma 2.4 from [58].

5.7.1 Lemma. Suppose the pairs (X,S) and (Y, T ) are isomorphic and
controllable. Then the matrix WTW

−1
S is orthogonal and represents the

isomorphism from (X,S) to (Y, T ).

Proof. Let A and B be the adjacency matrices of X and Y respectively.
Since the pairs are isomorphic, W T

SWS = W T
T WT . Since they are con-

trollable, WS and WT are invertible and therefore

WTW
−1
S = W−T

T W T
S = (WTW

−1
S )−T

Hence Q = WTW
−1
S is orthogonal.

Let C denote the companion matrix of φ(X, t). Then

AWS = WSC,

and, since A and B are similar,

BWT = WTC.

Hence
BWTW

−1
S = WTCW

−1
S = WTW

−1
S A

and thus B = QAQ−1.
Finally, since QWS = WT , we have QeS = eT .

5.7.2 Corollary. If the pairs (X,S) and (X,T ) are isomorphic and con-
trollable and Q = WTW

−1
S , then Q commutes with A(X) and Q2 = I.

Proof. From the lemma we have QAQ−1 = A, so Q and A commute. Since
the eigenvalues of A are all simple, this implies that Q is a polynomial in
A and therefore it is a symmetric matrix.

When the hypotheses of this corollary hold, the matrix Q can be viewed
as a kind of “approximate” automorphism of order two—it is rational, com-
mutes with A and swaps the characteristic vectors of S and T . If S and T
are single vertices a and b, then Q will be block diagonal with one block of
the form (

0 1
1 0

)
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and the other an orthogonal matrix of order (n−2)×(n−2) which commutes
with the adjacency matrix of X \{a, b}.

5.7.3 Lemma. If (A, y) and (B, z) are controllable and yT (I − tA)−1y =
zT (I − tB)−1z, then (A, y) and (B, z) are isomorphic.

Proof. This is a combination of Lemma 5.6.1 and Lemma 5.7.1, noting that
the latter holds just the same for vectors y and z instead of eS and eT .

5.8 Laplacians
The theory we have presented will hold for any symmetric matrix. If D =
D(X) is the diagonal matrix of valencies of the vertices of X and A is its
adjacency matrix, recall that L(X) = D−A is the Laplacian of X. This is
a symmetric matrix, positive semidefinite matrix, with row sums zero.

If a, b ∈ V (X), define

Ha,b := (ea − eb)(ea − eb)T .

If ab /∈ E(X), and the graph Y is obtained by adding the edge ab to X,
then

L(Y ) = L(X) +Ha,b.

Thus
L(X) =

∑
ab∈E(X)

Ha,b.

Now

det(tI − L−Ha,b) = det[(tI − L)(I − (tI − L)−1Ha,b)]
= det(tI − L) det(I − (tI − L)−1(ea − eb)(ea − eb)T )
= det(tI − L)(1− (ea − eb)T (tI − L)−1(ea − eb))

and if h := ea − eb, then

φ(L(Y ), t)
φ(L(X), t) = 1− hT (tI − L)−1h = 1−

∑
λ

hTFλh

t− λ

where L = ∑
λ λFλ is the spectral decomposition of L. It follows that the

eigenvalues of L(Y ) are determined by the eigenvalues of L(X) along with

91



5. Walk Modules

the squared lengths of the projections of ea − eb onto the eigenspaces of
L(X).

If we get Y from X by deleting the edge ab, then we find that

φ(L(Y ), t)
φ(L(X), t) = 1 +

∑
λ

hTFλh

t− λ

We observe that Lrh is orthogonal to 1, and so the dimension of the
L-module generated by h is at most n− 1. We say that the pair of vertices
{a, b} is controllable relative to the Laplacian if

W =
(
1 h Lh . . . Ln−2h

)
has rank n.

If {a, b} is controllable and P is an automorphism of X that fixes {a, b},
then either

P (ea − eb) = ea − eb
and PW = W , or

P (ea − eb) = eb − ea
and P acts as multiplication by −1 on the n − 1-dimensional subspace
orthogonal to 1. As a consequence, its trace is negative, and so it is not
a permutation matrix, and in the former case P = I. We conclude that if
{a, b} is controllable with respect to L, then only the identity automorphism
fixes the set {a, b}.

5.9 Control Theory
In this section we provide a brief introduction to some concepts from control
theory. Our favorite source for this material is the book of Kailath [43] (but
there is a lot of choice).

Consider a discrete system whose state at time n is xn, where xn ∈ Fd.
Assume A is a d × d matrix, and b ∈ Fd. The states are related by the
recurrence

xn+1 = Axn + unb (n ≥ 0). (5.9.1)

where (un)n≥0 is an arbitrary sequence of scalars. The output cn at time n is
equal to cTxn, where c is fixed. The basic problem is determine information
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about the state of the system given (un) and (cn). From (5.9.1) we find
that ∑

n≥0
tnxn+1 = A

∑
n≥0

tnxn +
(∑
n≥0

unt
n
)
b.

If we define

X(t) :=
∑
n≥0

tnxn, u(t) :=
∑
n≥0

unt
n, c(t) :=

∑
n≥0)

cnt
n

then we may rewrite our recurrence as

t−1(X(t)− x0) = AX(t) + u(t)b,

and consequently

X(t) = (I − tA)−1x0 + tu(t)(I − tA)−1b. (5.9.2)

Thus we have two distinct contributions to the behaviour of the system:
one determined entirely by A and the initial state x0, the other determined
by A, b and u(t). It follows from (5.9.2) that the state of the system is
always in the column space of the controllability matrix

W =
(
b Ab . . . Ad−1b

)
The system is controllable if W is invertible.

(Note that our “exposition” of control theory is confined to the simplest
case. In general b and c are replaced by matrices B and C. The system
is then controllable if the the A-module generated by col(B) is Fv, and
observable if the module generated by col(C) is Rv. This more general case
forced itself on us in our treatment of Laplacians.)

It is convenient to assume x0 = 0. Then we have

c(t) = tu(t) cT (I − tA)−1b.

If the observability matrix 
cT

cTA
...

cTAd−1
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is invertible, then it is possible to infer the state of the system at time m
from the observations cm, . . . , cm+d−1. In this case we say that the system
is observable. Note that the system is observable if and only the pair (A, b)
is controllable.

The series
cT (I − tA)−1b,

is known as the transfer function of the system. In control theory our
variable t is normally replaced by a variable z−1; thus the transfer function
becomes cT (zI − A)−1b.

Notes
This chapter is based in large part on [36] and [39].

O’Rourke and Touri prove [50] that for random graphs X = G(n, p), the
n pairs (A, ei) for i ∈ V (X) are all controllable, with probability going to
1 as n → ∞. In [?], they prove (in our terms) that almost all graphs are
controllable.

In [33] it is proved that controllable graphs are reconstructible. Tutte
[] proved that a graph is reconstructible if its characteristic polynomial is
irreducible over the rationals.

The results in Section 5.6 extend an important result of Johnson and
Newman [42], who essentially proved Theorem 5.6.2 for y = z = 1.

Exercises
5-1. Let CS(X, t) be the generating series for the walks in X that start and

finish at a vertex in S, meaning, the coefficient of tk is the number of
walks of length k that start and end at S. Show that entries of W T

SWS

suffice to determine CS(X, t).

5-2. If z ∈ Rn, then the minimal polynomial of A relative to z is the monic
polynomial p of least degree such that p(A)z = 0. If ψ is the usual
minimal polynomial of A, show that p divides ψ.

5-3. Show that the degree of the minimal polynomial of A relative to xS
equals rk(WS).
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5.9. Control Theory

5-4. Show that the dual degree of a is zero if and only if a is an isolated
vertex. Show that the dual degree of a is one if and only if X is a cone at
a over a regular graph. Try to characterize the graphs so that a vertex
has the dual degree equal to two.

5-5. Prove in detail that if X and Y are cospectral with cospectral comple-
ments, then there is an orthogonal matrix L so that LA(X) = A(Y )L,
and LA(X) = A(Y )L.
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Chapter 6

Cospectral Vertices

In Chapter 4, we developed a theory that relates walks in graphs and the
spectrum. For instance, we saw in Theorem 4.10 that two vertices a and
b are cospectral if and only Wa,a(X, t) = Wb,b(X, t). The connection with
quantum walks is our motivation—as we know, if we have perfect state
transfer on X, then the vertices a and b are cospectral. In Chapter 5 we
focused on the walk modules, and derived fundamental properties.

In this chapter, we intend to apply the theory built in the previous
chapters to quantum walks.

6.1 Walk modules of cospectral vertices
Walk modules provide a yet another way of characterizing cospectral ver-
tices.

6.1.1 Theorem. The following are equivalent.

(a) Vertices a and b are cospectral in the graph X.

(b) The A-modules generated by ea + eb and ea − eb are orthogonal.

(c) The A-modules generated by ea and eb are isomorphic, and this iso-
morphism is given by a symmetric matrix Q that commutes with A,
interchanges ea and eb, and satisfies Q2 = I.

Proof. As usual, let A = ∑d
r=0 θrEr be the spectral decomposition of A =

A(X).
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6. Cospectral Vertices

For any projection Er, we have

(Er(ea + eb))TEr(ea − eb) = (ea + eb)TEr(ea − eb) = (Er)a,a − (Er)b,b.

Moreover, (Es(ea + eb))TEr(ea − eb) = 0 whenever s 6= r. Thus, the A-
modules generated by ea + eb and ea − eb are orthogonal if and only if
(Er)a,a = (Er)b,b for each eigenvalue θr of X.

Now observe that Rn can be decomposed into three orthogonal sub-
spaces: the A-module generated by (ea + eb), call it W+, the one generated
by (ea − eb), say W−, and the orthogonal complement of their direct sum,
denoted by W0. Define the map Q that acts as the identity in W+ and in
W0, and multiplies vectors in W− by −1. It is an isomorphism of Rn that
interchanges the A-modules generated by ea and eb. Moreover, Q2 = I,
its eigenspaces are orthogonal, and each of them is A-invariant. Thus Q is
symmetric and commutes with A.

If (c) holds, then, for all r, recalling that Er is a polynomial in A, we
have

eTaErea = eTaErQQErea = (QErea)T (QErea) = (ErQea)T (ErQea) = eTb Ereb.

The theorem implies that, if a and b are cospectral and z lies in the
A-module generated by ea+eb, then za = zb. If a (or b) is controllable, then
Rn is the direct sum of the modules generated by ea + eb and ea − eb.

6.2 Characterizing Cospectral Vertices
There is a surprising number of interesting ways to characterize pairs of
cospectral vertices. We compile a list below, based on Theorems 4.3.2 and
6.1.1, and Lemma 5.6.1.

6.2.1 Theorem. Let a and b be vertices in X. Then the following state-
ments are equivalent:

(a) a and b are cospectral, that is, for all r, (Er)a,a = (Er)b,b.

(b) φ(X \a, t) = φ(X \ b, t).

(c) If Wa and Wb are the walk matrices for a and b respectively, then
W T
a Wa = W T

b Wb.
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6.3. Walk-Regular Graphs

(d) The R[A]-modules generated by ea − eb and ea + eb are orthogonal.

(e) There is a symmetric matrix Q, with Q2 = I and so that AQ = QA,
satisfying Qea = eb.

(f) Wa,a(X, t) = Wb,b(X, t).

(g) For all integers k, (Ak)a,a = (Ak)b,b.

6.3 Walk-Regular Graphs
A graph is walk-regular if all vertices in it are cospectral, or, equivalently, if
each matrix in the algebra generated by A(X) has constant diagonal. Any
vertex-transitive graph is walk regular. However the graph in Figure 6.1 is
walk regular but not vertex transitive. (As it happens, it is cospectral to
the line graph of the cube, which is vertex transitive.)

Figure 6.1: A Walk-Regular Graph that is not vertex transitive.

The complement of a walk-regular graph is walk regular. Our next result
is from Van Dam [56]).
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6. Cospectral Vertices

6.3.1 Lemma. If X is connected and regular and has at most four distinct
eigenvalues, it is walk regular.

Proof. If A is connected and regular on n vertices, then 1
n
J is one of its

spectral idempotents. If θ1, θ2, θ3 are the eigenvalues of A distinct from the
valency of X and

p(t) = (t− θ1)(t− θ2)(t− θ3),

then p(A) is a multiple of J . This implies that A3 is a linear combination
of J , I, A and A2 and hence that the diagonal of A3 is constant. Since the
minimal polynomial of A has degree at most four, it follows that if k ≥ 4
then Ak is a linear combination of Ar for r = 0, . . . , 3 and therefore its
diagonal is constant.

You might prove that a connected regular bipartite graph with at most
five distinct eigenvalues is walk regular.

6.3.2 Theorem. If X is walk regular and |V (X)| ≥ 3, then the number of
simple eigenvalues of X is at most |V (X)|/2.

Proof. Assume X is as given and n = |V (X)|. If X is not connected then
each component is walk regular with the same characteristic polynomial
and the result holds because there are no simple eigenvalues. Hence assume
X is connected and its valency, say k, is a simple eigenvalue.

Suppose X has a second simple eigenvalue λ, with eigenvector z. Then
the idempotent Eλ is a non zero scalar multiple of zzT . Since all diagonal
entries of Eλ are equal, all entries of z have the same absolute value. We
may assume z is a ±1-vector. Since λ 6= k the eigenvectors 1 and z are
orthogonal and hence z must contain an equal number of 1’s and −1’s. This
implies that n is even. We can also see that k − λ must be even.

Assume that X has exactly s simple eigenvalues. If the eigenvalues of
X are

k = θ1 ≥ · · · ≥ θn

then the eigenvalues of X are

n− 1− k ≥ −θn − 1 ≥ · · · ≥ −θ2 − 1.

Since X is walk-regular, if it is not connected then it has no simple eigen-
values and X has at most two simple eigenvalues. If X is connected then
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its valency n− 1− k is a simple eigenvalue and so X has exactly s simple
eigenvalues. Now the simple eigenvalues of X lie in the set

k, k − 2, . . . ,−k
and so s ≤ k + 1 and, applying the same argument to X yields s ≤ n − k.
Therefore 2s ≤ n+ 1. As n is even, the result follows.

It can be shown that if the number of simple eigenvalues of a walk
regular graph X on more than two vertices is greater than two, then |V (X)|
is divisible by four.

6.4 State Transfer on Walk-Regular Graphs
In this section, we see an application of the concept of walk regular graphs
to quantum walks.

6.4.1 Lemma. If X is walk regular and perfect state transfer occurs on X,
then |V (X)| must be even.

Proof. Suppose perfect state transfer takes place from a to b at time τ .
Then there is a complex number γ where |γ| = 1 such that

U(τ)a,b = U(τ)b,a = γ.

As |γ| = 1, we see that U(τ)a,a = 0 and, as X is walk-regular, all diagonal
entries of U(τ) are zero and in particular, tr(U(τ)) = 0. Since

U(2τ)a,a = γ2

we also see that that U(2τ) = γ2I. We conclude that the eigenvalues of
U(τ) are all ±γ and, since tr(U(τ)) = 0, both γ and −γ have multiplicity
|V (X)|/2.

If mr denotes the multiplicity of the eigenvalue θr, then

tr(U(t)) =
d∑
r=0

mr exp(itθr).

If X has integer eigenvalues only, we may define the Laurent polynomial
µ(z) by

µ(z) :=
d∑
r=0

mrz
θr .

We call µ(z) the multiplicity enumerator of X.
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6. Cospectral Vertices

6.4.2 Lemma. Let X be a walk-regular graph with integer eigenvalues. If
perfect state transfer occurs on X, then µ(z) has a zero on the unit circle
of the complex plane.

Proof. The trace of U(t) is zero if and only if µ(eit) = 0.
The characteristic polynomial of the graph in Figure 6.1 is

(t− 4)(t− 2)3t3(t+ 2)5

and its multiplicity enumerator is

µ(z) = z−2(z6 + 3z4 + 3z2 + 5).

This polynomial has no roots on the unit circle, and we conclude that perfect
state transfer does not occur in that graph.

We see no reason to believe that, if perfect state transfer occurs on a
walk-regular graph at time τ , then U(τ) must be a multiple of a permutation
matrix. (But we do not have an example where it is not.)

For more information on walk-regular graphs, see [32]. The computa-
tions in this section were carried out in sage [54]. Van Dam [56] studies
regular graphs with four eigenvalues, as we noted these provide examples
of walk-regular graphs.

6.5 Parallel Vertices
We say that two vertices a and b of X are parallel if for each r, the pro-
jections Erea and Ereb are parallel. We will see that this relation arises
naturally in our work on state transfer and other phenomena. If all eigen-
values of X are simple, then any two vertices are parallel, hence there is no
shortage of examples.

To begin, we show that the concept has some combinatorial significance.

6.5.1 Lemma. Suppose a and b are parallel vertices in X with the same
eigenvalue support. If π is an equitable partition of X and {a} is a singleton
cell in π, then so is {b}.

Proof. Let π be an equitable partition with normalized characteristic matrix
Q. Then {a} is a cell of π if and only if QQT ea = ea. Since QQT commutes
with any polynomial in A, we have

Erea = ErQQ
T ea = QQTErea.
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As a and b have the same eigenvalue support, if Erea 6= 0, then Ereb 6= 0.
Further, since a and b are parallel, it follows that eb lies in the span of the
vectors Erea. Therefore QQT eb = eb and so {b} is a cell of π.

Of course this result implies that if a and b have the same eigenvalue
support and are parallel, then Aut(X)a = Aut(X)b.

6.5.2 Lemma. Distinct vertices a and b of X are parallel if and only if all
poles of the rational function φ(X \{a, b}, t)/φ(X, t) are simple.

Proof. By Corollary 4.5.2, if D = {a, b} then the multiplicity of the pole at
θr in φ(X \D, t)/φ(X, t) is equal to rk((Er)D,D). We have

|(Er)a,b|2 = (eTaEreb)2 = 〈Erea, Ereb〉2 ≤ ‖Erea‖2‖Ereb‖2 = (Er)a,a(Er)b,b

whence it follows that rk((Er)D,D) = 1 if and only if a and b are parallel.

6.5.3 Lemma. The walk modules relative to vertices a and b ofX are equal
if and only if a and b are parallel and have the same eigenvalue support.

Proof. Each element of Wa can be expressed as p(A)ea for some polynomial
p. As Erp(A)ea = p(θr)Erea, we see that the vectors Erea form an orthog-
onal basis for colWa and the intersection of Wa with any eigenspace of A
has dimension at most one.

If Wa = Wb then ErWa = ErWb, but ErWa and ErWb are spanned
respectively by Erea and Ereb. Therefore a and b are parallel and have the
same eigenvalue support. For the converse, if a and b are parallel and have
the same eigenvalue support then Erea and Ereb span the same space for
each r, and thus Wa = Wb.

6.6 Strongly Cospectral Vertices
Recall that we define vertices a and b in X to be strongly cospectral if, for
each idempotent Er,

Erea = ±Ereb.
We immediately have the following:

6.6.1 Lemma. Two vertices a and b in X are strongly cospectral if and
only if they are parallel and cospectral.
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Taking note of Lemma 6.5.3, we have a second useful characterization.

6.6.2 Corollary. Let a and b be vertices in X with walk matrices Wa and
Wb respectively. Then a and b are strongly cospectral if and only if they
are cospectral and col(Wa) = col(Wb).

If a and b are vertices in X, we say an element f in RV (X) is balanced
if f(a) = f(b) and is skew if f(a) = −f(b). A subspace is balanced or skew
if each vector in it is balanced or, respectively, skew.

6.6.3 Lemma. Two vertices a and b in X are strongly cospectral if and
only if each eigenspace is balanced or skew relative to the vertices a and b.

Proof. If a and b are strongly cospectral, then either Er(ea − eb) = 0 or
Er(ea + eb) = 0. Since col(Er) is the θr-eigenspace, it follows that either
each eigenvector in the θr-eigenspace is balanced, or each eigenspace is skew.
The converse follows easily.

Since cospectral vertices necessarily have the same eigenvalue support,
we have:

6.6.4 Corollary. If the eigenvalues ofX are simple, then cospectral vertices
are strongly cospectral.

Suppose X is arc regular (i.e., X is walk regular and the walk generating
functions Wa,b(X, t) are equal for all arcs (a, b)). Assume the valency of X
is k. If b1 ∼ a and θ 6= ±k, then

θ(Eθ)a,a =
∑
b∼a

(Eθ)a,b = k(Eθ)a,b1

Since |θ| < k, adjacent vertices cannot be strongly cospectral, and so we
deduce that we cannot get perfect state transfer from a vertex to its neigh-
bour in an arc-transitive graph. A variant of this argument shows that in
a distance-regular graph, strongly cospectral vertices are antipodal. More
on that in Chapter 14.

6.6.5 Lemma. If all vertices in X are strongly cospectral, then X = K2.

Proof. If all vertices ofX are strongly cospectral to a, then the θr-eigenspace
of X is spanned by Erea, and therefore all eigenvalues of X are simple. If
all vertices are cospectral, then X is walk regular and therefore by Theo-
rem 6.3.2 we deduce that |V (X)| ≤ 2.
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6.6.6 Lemma. The number of vertices strongly cospectral to a is bounded
above by the size of the eigenvalue support of a.

Proof. If vertices a and b are strongly cospectral, then eb is a signed sum of
the nonzero vectors Erea, say

eb =
d∑
r=0

σr(b)Erea,

where σr(b) = ±1 and the sum is over the nonzero vectors Erea. Let S be
the matrix with rows indexed by the vertices strongly cospectral to a and
columns by the indices r such that Erea 6= 0, and with br-entry equal to
σr(b). If M is the matrix with the non-zero vectors Erea as columns, then(

I
0

)
= MS.

Therefore the rows of S are linearly independent and the claim follows.

6.7 Examples of Strongly Cospectral
Vertices

We present some examples of strongly cospectral vertices.

6.7.1 Theorem. Let X be the graph obtained from vertex-disjoint graphs
Y and Z by joining a vertex a in Y to a vertex b in Z by a path P of length
at least one. If a and b are cospectral in X, they are strongly cospectral.

Proof. Assume A = A(X) and, recall, φa,b(X, t) denotes [adj(tI − A)]a,b.
From the spectral decomposition of A, we have

φa,b(X, t)
φ(X, t) = ((tI − A)−1)a,b =

d∑
r=0

(Er)a,b
t− θr

,

showing that the poles of φa,b(X, t)/φ(X, t) are simple. From Corollary 4.4.4,
we have

φa,b(X, t) =
∑

P∈Pa,b
φ(X \P, t),

105



6. Cospectral Vertices

where the sum is over all paths in X that join a to b. By construction there
is only one path in X that joins a to b, and therefore

φa,b(X, t) = φ(Y \a, t)φ(Z \ b, t).

If Q is the path we get from P by deleting its end-vertices.

φ(X \{a, b}, t)
φ(X, t) = φ(Q, t)φ(Y \a, t)φ(Z \ b, t)

φ(X, t) = φ(Q, t)φa,b(X, t)
φ(X, t)

We conclude that the poles of φ(X \{a, b}, t)/φ(X, t) are all simple and so,
by Lemma 6.5.2, it follows that a and b are strongly cospectral.

Note that a and b will be cospectral in X if Y and Z are cospectral and
also Y \a and Z \ b are cospectral.

Now we consider a rabbit-ear construction. Recall that we use mult(λ,X)
to denote the multiplicity of λ as an eigenvalue of X.

6.7.2 Lemma. Let a be a vertex in X and let Z be formed from X by
joining two new vertices of valency one to a. If mult(0, X \a) ≤ mult(0, X),
the two new vertices are strongly cospectral in Z.

Proof. The two new vertices are swapped by an automorphism of Z, and
so they are cospectral. Applying Lemma 4.7.1 twice, we find that

φ(Z, t) = t2φ(X, t)− 2tφ(X \a, t),

and so, by Lemma 6.5.2, we can prove the result by verifying that the poles
of

φ(X, t)
t(tφ(X, t)− 2φ(X \a, t))

are simple. Now

φ(X, t)
(tφ(X, t)− 2φ(X \a, t)) = 1

t− 2φ(X\a,t)
φ(X,t)

and, by Equation (4.3.4), the poles of the above rational function are simple.
So the lemma is proved if we show that 0 is not a zero of

t− 2φ(X \a, t)
φ(X, t) ,
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equivalently, not a zero of the rational function

φ(X \a, t)
φ(X, t) .

This holds if and only if mult(0, X \a) ≤ mult(0, X).

As a sanity check, if X = K1, then mult(0, X) = 1 and mult(0, X\a) = 0
and it follows that the vertices of valency one in P3 are strongly cospectral.
(This is very likely the most complicated proof of this fact we can provide.)

6.8 Characterizing Strongly Cospectral
Vertices

Our terminology is somewhat tongue-in-cheek: a symmetry of a graph is an
orthogonal matrix which commutes with its adjacency matrix. As we have
already seen, cospectrality between vertices a and b is characterized by the
existence of a symmetric symmetry that interchanges a and b. It turns out
strong cospctrality can also be characterized in terms of symmetries.

6.8.1 Lemma. The vertices a and b in X are strongly cospectral if and
only if there is an orthogonal matrix Q such that:

(a) Q is a polynomial in A, and, additionally, it is a rational matrix.

(b) Qea = eb.

(c) Q2 = I.

Proof. As usual, the spectral decomposition of A is given by A = ∑d
r=0 θrEr.

There are σr ∈ {±1} so that, for Erea = σrEreb if, and only if, the poly-
nomial defined by p(θr) = σr satisfies p(A)ea = eb. Moreover, p(A)2 = I if
and only if p(θr) = ±1.

So the only thing remaining to show is that p(A), defined as above, is a
rational matrix. We will use some basic facts about field extensions, which
we will revisit in Chapter 7.

Let E be the extension of the rationals obtained by adjoining the eigen-
values of X and let α be an automorphism of E. Assume a and b are
strongly cospectral. Then Eα

r , given by applying α to each entry of Er, is

107



6. Cospectral Vertices

an idempotent in the spectral decomposition of A, associated to the eigen-
value θαr . Therefore ((Er)a,a)α > 0 and consequently ((Er)a,b) and ((Er)a,b)α
must have the same sign. It follows that Q = p(A) is fixed by all field au-
tomorphisms of E and therefore it is a rational matrix.

We can now provide a compiled list of equivalent characterizations of
strongly cospectral vertices, using Theorem 6.2.1, Lemma 6.5.2, Lemma 6.6.1,
Lemma 6.5.3, Corollary 6.6.2, and Lemma 6.8.1.

6.8.2 Theorem. Let a and b be vertices in X. Then the following state-
ments are equivalent:

(a) a and b are strongly cospectral, that is, for all r, Erea = ±Ereb.

(b) φ(X \ a, t) = φ(X \ b, t), and the poles of the rational function φ(X \
{a, b}, t)/φ(X, t) are simple.

(c) If Wa and Wb are the walk matrices for a and b respectively, then
W T
a Wa = W T

b Wb, and col(Wa) = col(Wb)

(d) The R[A]-modules generated by ea − eb and ea + eb are orthogonal, a
nd their direct sum is equal to the R[A]-module generated by ea.

(e) There is a symmetric matrix Q, with Q2 = I and so that Q is a poly-
nomial in A, satisfying Qea = eb.

We leave it as a research problem to find the analogous conditions to
conditions (f) and (g) of Theorem 6.2.1.

We saw that if a and b are controllable, then the eigenvalues of X are
simple, and so if a and b are controllable and cospectral there is a symmetric
orthogonal matrix Q which commutes with A and maps ea to eb. In this
case we have an explicit expression for Q.

6.8.3 Lemma. Let a and b be vertices in X with respective walk matrices
Wa and Wb. If a and b are controllable and Q := WbW

−1
a then Q is a poly-

nomial in A. Further Q is orthogonal if and only if a and b are cospectral.

Proof. Let Cφ denote the companion matrix of the characteristic polynomial
of A. Then

AWa = WaCφ
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for any vertex a in X. Hence if a and b are controllable,

W−1
a AWa = W−1

b AWb

and from this we get that

AWbW
−1
a = WbW

−1
a A.

Since X has a controllable vertex its eigenvalues are all simple, and so any
matrix that commutes with A is a polynomial in A. This proves the first
claim.

From the discussion in Section 5.1, the vertices a and b are cospectral if
and only if W T

a Wa = W T
b Wb, which is equivalent to

Q−T = W−T
b W T

a = WbW
−1
a = Q.

6.9 Matrix Algebras
We obtain another view of the results in this chapter by considering the
matrix algebra generated by A and xxT , for some vector x. We will denote
this algebra by 〈A, xxT 〉. This algebra is closed under transpose (and hence
is semisimple.)

6.9.1 Lemma. If the vertices a and b are parallel with the same eigenvalue
support, then 〈A, eaeTa 〉 = 〈A, ebeTb 〉.

Proof. We note that

(AkxxTA`)(AmxxTAn) = xTA`+mxAkxxTAm

and it follows the matrices
AkxxTA`,

together with the powers ofA, generate 〈A, xxT 〉. It follows that if E0, . . . , Ed
are the spectral idempotents of A, then these idempotents together with the
(nonzero) matrices ErxxTEs generate 〈A, xxT 〉.

If a and b are parallel with the same eigenvalue support, then either
Ereae

T
aEs and EreaeTaEs are both zero, or each is a scalar multiple of the

other. Hence 〈A, eaeTa 〉 = 〈A, ebeTb 〉.
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The commutant of a set S of n× n matrices is the set

{M ∈ Matn×n(C) : MS = SM}.

6.9.2 Corollary. Assume a and b are parallel vertices in X and with the
same eigenvalue support. If the orthogonal matrix Q commutes with A and
Qea = ea, then Qeb = eb.

Proof. The hypotheses simply imply that Q lies in the commutant of
〈A, eaeTa 〉.

The permutation matrices in the commutant of {A, eaeTa } form the sub-
group Aut(X)a of Aut(X). Hence the previous lemma provides another
proof that if a and b are strongly cospectral then Aut(X)a = Aut(X)b.

Notes
References to Godsil’s early papers and Godsil and Smith. Exers below
following from FR paper.

Add reference to Cox (section char. strong cospec vts).

Exercises
6-1. Prove in detail that two vertices a and b in X are strongly cospectral if

and only if they are parallel and cospectral.

6-2. LetX be a graph with simple eigenvalues and assume a and b are strongly
cospectral vertices. Let Q be the set of all orthogonal matrices that
commute with A(X), that swap a and b or fix both of them, and that
are involutions. Let m be the size of the eigenvalue support of a and b.
Prove that Q is a group of order 2n−m+1. Explain why this could fail if
X has an eigenvalue which is not simple.

6-3. Let a be a vertex in the graph X and let b be a vertex in Y . If X and
Y are cospectral and X \a and Y \ b are cospectral, prove that there is
an orthogonal matrix Q such that Q−1A(Y )Q = A(X) and Qea = eb.

6-4. Prove that a connected regular bipartite graph with at most five distinct
eigenvalues is walk regular.
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6-5. Define two vertices to be not-so-strongly cospectral if they are parallel
and have the same eigenvalue support. Show that the number of ver-
tices not-so-strongly cospectral to a is bounded above by the size of the
eigenvalue support of a.

6-6. Show that if the number of simple eigenvalues of a walk-regular on more
than 2 vertices is greater than 2, then |V (X)| is divisible by four.

6-7. Assume the graph X is connected, with A = A(X), and a and b two of its
vertices. Consider the R[A]-module M generated by ea and eb. Assume
thatM is the direct sum of two non-trivial A-invariant submodules, each
generated by a linear combination of ea and eb. Prove that there exists
real numbers p and q, both non-zero, so that, for all Er,

(Er)a,a − (Er)b,b =
(
p

q
− q

p

)
(Er)a,b.

For a bonus point, adapt the remaining conditions of Theorem 6.2.1 to
this situation.

6-8. With the same hypotheses of the exercise above, prove that if a is adja-
cent to b, or if X is regular, or if a and b have the same degree and are
at distance 2, then p2 = q2.

6-9. Show that if X is regular and its complement is connected, and if a and
b are strongly cospectral in X, then they are strongly cospectral in X.
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State Transfer and Periodicity
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Chapter 7

State transfer

Much of the work in connecting algebraic graph theory and quantum walks
was motivated by the study of perfect state transfer. In Section ??, we
introduced a Hamiltonian Hxy, and verified that it is block diagonal—the
block corresponding to the subspace spanned by fS with S ⊆ V (X) and
|S| = 1 is the adjacency matrix of the underlying graph. Upon initializing
the system in a state given by f{a} for some a ∈ V (X), perfect state transfer
means that after some time the state of the system will be f{b} for some
b 6= a. The block decomposition of Hxy and Schrödinger’s equation imply
that the dynamics is given by U(t) = exp(itA), and, as we have already seen
in Section 1.3, perfect state transfer is equivalent to having |U(t)a,b| = 1 for
some t. The goal of this chapter is to study this phenomenon in depth.

To start this chapter we derive a chain of inequalities, starting with

|U(t)a,b| ≤
d∑
r=0
|(Er)a,b|.

Using this we provide an alternate proof that if we have perfect state transfer
from a to b, then a and b must be strongly cospectral. This will also lead us
to understand certain rationality and parity conditions that the eigenvalues
in the eigenvalue support of a must satisfy.

In the remainder of the chapter we develop some of the consequences
of these results, in particular we can show that that only finitely many
connected graphs with maximum valency at most k admit perfect state
transfer.
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7.1 Three Inequalities
We derive three inequalities for |U(t)a,b|, from which our results follow. We
note that in this section, we assume only that A is symmetric and real.
Hence our results will also apply to Laplacians or weighted adjacency ma-
trices.

We have

U(t)a,b =
d∑
r=0

eitθr(Er)a,b

and we get the chain of inequalities

|U(t)a,b| ≤
d∑
r=0
|(Er)a,b| (7.1.1)

≤
d∑
r=0

√
(Er)a,a

√
(Er)b,b (7.1.2)

≤
√∑

r

(Er)a,a
∑
r

(Er)b,b (7.1.3)

= 1.

We aim to develop a better understanding of these three inequalities,
starting with (7.1.1). Let σr denote the sign of (Er)a,b. (Its value when
(Er)a,b = 0 will be irrelevant, we follow custom and take it to be zero.)

7.1.1 Lemma. We have |U(t)a,b| ≤
∑
r |(Er)a,b|. Equality holds if and only

if there is a complex number γ such that eitθr = γσr whenever (Er)a,b 6= 0.

Proof. We have

U(t)a,b =
d∑
r=0

eitθr(Er)a,b

Taking absolute values and applying the triangle inequality, the inequality
(7.1.1) follows, and equality holds if and only if the stated condition holds.

If a ∈ V (X), the numbers (Er)a,a are nonnegative and sum to 1. Hence
they determine a probability density on the eigenvalues of A (whose actual
support is the eigenvalue support of a). We call it the spectral density of
X relative to a. Two vertices have the same spectral density if and only if
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they are cospectral. If (pr) and (qr) are two probability densities with the
same finite support, their fidelity is defined to be∑

r

√
prqr.

By Cauchy-Schwarz, the fidelity of the densities lies in the interval [0, 1],
and it is equal to 1 if and only if the two densities are equal.

7.1.2 Lemma. The fidelity of the spectral densities of vertices a and b in
X is bounded below by ∑r |(Er)a,b|. Equality holds if and only if a and b
are parallel.

Proof. In (7.1.2), if a and b are vertices in X then by Cauchy-Schwarz

(Er)a,a(Er)b,b − ((Er)a,b)2 = ‖Erea‖2‖Ereb‖2 − 〈Erea, Ereb〉2 ≥ 0

and equality holds if and only if Erea and Ereb are parallel.

7.1.3 Lemma. The fidelity of the spectral densities of vertices a and b in
X is bounded above by

√∑
r(Er)a,a

∑
r(Er)b,b. Equality holds if and only if

a and b are cospectral.

Proof. In (7.1.3), Cauchy-Schwarz applied to the vectors ((
√

(Er)a,a)r) and
((
√

(Er)b,b)r), with r = 0, ..., d, gives

d∑
r=0

√
(Er)a,a

√
(Er)b,b ≤

√√√√ d∑
r=0

(Er)a,a

√√√√ d∑
r=0

(Er)b,b

and equality holds if and only if (Er)a,a = (Er)b,b for all r, that is, if a and
b are cospectral.

We have already studied cospectral and parallel vertices in the previ-
ous chapters. So in order to complete our understanding of perfect state
transfer, we will devote some attention to the condition in Lemma 7.1.1
that says that there must be a complex number γ such that eitθr = γσr
whenever (Er)a,b 6= 0. This will be a main topic in this Chapter. However,
in the next section we explore another connection between quantum walks
and cospectrality.
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7.2 Near Enough: Cospectrality
If the initial state of the system is represented by the unit vector ea, then its
state at time t is given by U(t)ea. We can however use density matrices to
represent these states instead, as we did in Chapter 2. It will be convenient
to use the notation Da = eae

T
a for the density matrix of a, and

Da(t) = U(t)DaU(−t),

to represent the density matrix of the state obtained after the evolution.
We prove that if the orbits under U(t) of DT

a and DT
b are close enough,

then a and b must be cospectral.
Recall from Chapter 5 that the walk matrix of X relative to x is the

n× n matrix with columns

x,Ax, . . . , An−1x.

When x = ea, we will use Wa to denote the walk matrix of X relative to
a. The non-zero vectors Erea form an orthogonal basis for col(Wa), thus
rk(Wa) is equal to the size of the eigenvalue support of a.

7.2.1 Lemma. Let n = V (X) and let ρ be the largest eigenvalue of A. If
there is a time t such that

‖Da(t)−Db‖ <
7

8n2ρ4n .

then a and b are cospectral.

Proof. Our first step is to relate ‖Da(t)−Db‖ to |U(t)a,b|. Thus,

‖Da(t)−Db‖2 = tr((Da(t)−Db)2)
= tr(Da(t) +Db −Da(t)Db −DbDa(t))
= 2− 2〈Da(t), Db〉

and, since U(t) = U(−t) and since U(t) (along with A) is symmetric,

〈Da(t), Db〉 = tr(U(t)eaeTaU(−t)ebeTb )
= eTb U(t)ea eTaU(t)eb
= |U(t)a,b|2.
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As a rough summary, ‖Da(t) −Db‖ is small if and only if |U(t)a,b| is close
to 1. It is an immediate consequence of the inequalities (7.1.1), (7.1.2) and
(7.1.3) that if |U(t)a,b|2 gets arbitrarily close to 1 upon choosing a suitable
t, then a and b must be strongly cospectral. We intend now to provide a
good bound for the threshold.

Assume now that
d∑
r=0

√
(Er)a,a

√
(Er)b,b = δ.

Let x =
(√

(Er)a,a
)
r=0,...,d

and y =
(√

(Er)b,b
)
r=0,...,d

. Note that these
are unit vectors, and 〈x, y〉 = δ. Whence,

〈x− y, x− y〉 = 2− 2〈x, y〉 = 2− 2δ.

As each entry of 〈x− y, x− y〉 is a square, it follows that, for all r,(√
(Er)a,a −

√
(Er)b,b

)2
≤ 2− 2δ,

and since, (Er)a,a ≤ 1 and (Er)b,b ≤ 1, we finally have our upper bound:

((Er)a,a − (Er)b,b)2 ≤ 2(2− 2δ). (7.2.1)

We next derive a lower bound on |(Er)a,a − (Er)b,b|. We are assuming
A has exactly (d+ 1) distinct eigenvalues and n = |V (X)|. Let Na and Nb

respectively denote the n× (d+ 1) matrices with columns consisting of the
vectors Erea and Ereb. Let F be the (d+ 1)× n matrix with Fr` = θ`−1

r . If
Wa and Wb are the walk matrices of a and b respectively, then

Wa = NaF, Wb = NbF

and
W T
a Wa −W T

b Wb = F T (NT
a Na −NT

b Nb)F. (7.2.2)
The matrices NT

a Na and NT
b Nb are diagonal with

(NT
a Na)r,r = (Er)a,a, (NT

b Nb)r,r = (Er)b,b.

Hence

F T (NT
a Na −NT

b Nb)F =
d∑
r=0

((Er)a,a − (Er)b,b)F T ere
T
r F. (7.2.3)
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Let η denote the maximum value of |(Er)a,a− (Er)b,b|. Then by the triangle
inequality∥∥∥∥∥∑

r

((Er)a,a − (Er)b,b)F T ere
T
r F

∥∥∥∥∥ ≤ η
∑
r

∥∥∥F T ere
T
r F

∥∥∥ , (7.2.4)

where we are using the trace-norm. We have∥∥∥F T ere
T
r F

∥∥∥2
= tr(F T ere

T
r F F

T ere
T
r F ) = (eTr FF T er)2,

whence ‖F T ere
T
r F‖ = (FF T )r,r and therefore the right side in (7.2.4) is

equal to η tr(FF T ).
If a and b are not cospectral then, from Theorem 6.2.1,W T

a Wa 6= W T
b Wb

and, since these matrices are integer matrices, the norm of W T
a Wa−W T

b Wb

is at least 1. So Equations (7.2.2), (7.2.3) and (7.2.4) imply that

1
tr(FF T ) ≤ η.

Combining this with Equation (7.2.1) yields that

1
tr(FF T ) ≤ max

r
|(Er)a,a − (Er)b,b| ≤ 2

√
1− δ,

and so we have proved that if a and b are not cospectral, then

δ ≤ 1− 1
4 tr(FF T )2

Denote the largest eigenvalue by ρ. Since

tr(FF T ) =
d∑
r=0

n−1∑
i=0

θ2i
r ≤ (d+ 1)

n−1∑
i=0

ρ2i = (d+ 1)ρ
2n − 1
ρ2 − 1 ≤ nρ2n.

Therefore
δ ≤ 1− 1

4n2ρ4n .

The result now follows from ‖Da(t) − Db‖2 = 2 − 2|U(t)a,b|2, and from
|U(t)a,b|2 ≤ δ2, which is a consequence of Equations (7.1.1) and (7.1.2).

120



7.3. Ratio Condition

7.3 Ratio Condition
In Corollary 1.4.2 we saw that if perfect state transfer happens between
a and b, then both these vertices are periodic at double the time. In the
language of density matrices, vertex a is periodic at time t if and only if
Da(t) = Da, that is,(

d∑
r=0

eitθrEr

)
Da

(
d∑
r=0

e−itθrEr

)
= Da,

and equivalently,

d∑
r,s=0

eit(θr−θs)ErDaEs =
d∑

r,s=0
ErDaEs.

The matrices {ErDaEs}r,s are orthogonal, thus the equality above is equiv-
alent to having, for all r and s so that ErDaEs 6= 0, that is, for all θr and
θs in the eigenvalue support of a,

eit(θr−θs) = 1.

This can also be obtained immediately as a consequence of Lemma 7.1.1
by making a = b, and noting that eitθr will be constant for all r whenever
Erea 6= 0.

The ratio condition on the eigenvalue support of a vertex a holds if, for
any four eigenvalues θr, θs, θk, θ` in the eigenvalue support of a with θk 6= θ`,
we have

θr − θs
θk − θ`

∈ Q.

7.3.1 Corollary. A graph X is periodic at the vertex a if and only if the
ratio condition holds at a.

Proof. Periodicity at a is equivalent to having, for all θr and θs in its
eigenvalue support,

eit(θr−θs) = 1.
Hence there are integers mr,s such that

t(θr − θs) = 2mr,sπ
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and consequently
θr − θs
θk − θ`

= mr,s

mk,`

∈ Q.

Hence if X is periodic at a, the ratio condition holds.
Conversely, if the ratio condition holds, then taking θk and θ` distinct

and in the eigenvalue support, it follows that
mk,`

θk − θ`
(θr − θs) ∈ Z

for all r and s, and thereforeX is periodic at a at time t = 2mk,`π/(θk−θ`).

7.4 Algebraic Numbers
For the next section, some knowledge in algebraic number theory is desir-
able. Now we will recall a few concepts and results.

A complex number is an algebraic number if it is the root of a polynomial
with integer coefficients. It is an algebraic integer if it is the root of a monic
polynomial with integer coefficients.

7.4.1 Lemma. A complex number µ is an algebraic integer if and only if
it is the eigenvalue of a matrix with integer coefficients.

Proof. One direction follows because the characteristic polynomial of a
matrix with integer coefficients is a monic polynomial with integer coeffi-
cients. The other is consequence of the fact that the polynomial p(x) =
xn + an−1x

n−1 + ...+ a0 is the characteristic polynomial of the matrix

0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
... . . . . . . ...
0 . . . 0 1 0 −an−2
0 . . . 0 0 1 −an−1



The matrix that appears in the proof above is called the companion ma-
trix of the polynomial p(x). It is well-known that the eigenvalues of the
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companion matrix are the roots of p(x), and that it is diagonalized by the
inverse of the Vandermonde matrix whose rows correspond to the roots of
p(x).

If µ is eigenvalue ofM and ν is eigenvalue of N , then µ+ν is eigenvalue
of M ⊗ I + I ⊗N , and µν is eigenvalue of M ⊗N . As a consequence of the
lemma, we have the corollary.

7.4.2 Corollary. The set of algebraic integers is closed under addition and
multiplication.

It is not difficult to show that the same conclusion holds for algebraic
numbers.

For the algebraic integers, a stronger statement also follows.

7.4.3 Theorem. Roots of monic polynomials whose coefficients are alge-
braic integers are algebraic integers themselves.

The minimal polynomial of an algebraic number µ is the monic poly-
nomial p(x) ∈ Q[x] of minimal degree such that p(µ) = 0. It is a useful
exercise to use the Euclidean Algorithm to show that the minimal polyno-
mial of an algebraic integer has integer coefficients, and also to show that
the minimal polynomial of an algebraic number is irreducible in Q[x]. The
algebraic conjugates of an algebraic number µ are the other roots of its
minimal polynomial.

For every algebraic number µ, there is another (unique!) algebraic num-
ber ν so that µν = 1. In fact, if p(x) = ∑n

j=0 ajx
j is the minimal poly-

nomial of µ, and because p(x) is irreducible, it must be that a0 6= 0, and
then ν = −a−1

0 (∑n
j=1 ajx

j). This is the key step in showing that the set
of algebraic numbers forms a field. We are interested in the intermediate
fields that lie between Q and the algebraic numbers.

Let Q[x] denote the ring of all finite sums of monomials on the element
{x} with rational coefficients. If some monomial can be written as a lin-
ear combination of smaller powers with rational coefficients, then x is an
algebraic number. Otherwise, we can think of x as an indeterminate (or
variable), and Q[x] as the ring of polynomials on x. We use Q[x1, ..., xn] to
denote the ring of all finite sums of monomials on the elements {x1, ..., xn}
with coefficients from Q.
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If µ is an algebraic number with minimal polynomial p(x), and if 〈p(x)〉 =
{q(x)p(x) : q(x) ∈ Q[x]} denotes the ideal generated by p(x) in Q[x], the
First Isomorphism Theorem says that

Q[µ] ∼= Q[x]/〈p(x)〉. (7.4.1)

Thus, any other algebraic number ν whose minimal polynomial is also p(x)
generates the extension Q[ν] isomorphic to Q[µ]. As Q is a field, Q[x] is a
principal ideal domain and thus the ideal generated by irreducible elements
is maximal. The quotient of a ring by a maximal ideal is a field, and
therefore Q[µ] is a field. Alternatively, we can easily show that if p(x) is the
minimal polynomial of µ and q(µ) ∈ Q[µ] is non-zero, then the inverse of
q(µ) can be obtained applying the extended Euclidean algorithm, because
p(x) is irreducible and does not divide q(x), therefore there are polynomials
a(x) and b(x) so that

a(x)p(x) + b(x)q(x) = 1,

hence b(µ)q(µ) = 1.
If p(x) ∈ Q[x] and {µ1, ..., µn} are its roots, then Q[µ1, ..., µn] is a field

extension of Q that contains all roots of p(x), and in fact, it is minimal with
this property. It is called the splitting field of p(x) over Q.

Any bijection σ from a field F to itself that preserves the field structure
is called a field automorphism. This means that (µ+ν)σ = (µ)σ+(ν)σ, and
(µν)σ = (µ)σ(ν)σ, for all µ, ν ∈ F. Assume F is a field that contains Q. Note
that 0σ = 0, and 1σ = 1, for all field automorphisms, and it is not difficult
to extend these observations and show that µσ = µ for all µ ∈ Q. Moreover,
if µ is an algebraic number with minimal polynomial p(x) = ∑

ajx
j, then

0 = 0σ = (p(µ))σ = pσ(µσ) =
∑
j

ajµ
σ,

thus µσ is also a root of p(x). Using the inverse of σ, it is immediate to
show that p(x) is in fact the minimal polynomial of µ.

If Q[µ1, ..., µn] is an algebraic extension of Q, and if µ ∈ Q[µ1, ..., µn],
Galois showed that µ is fixed by all automorphisms of Q[µ1, ..., µn] if and
only if µ ∈ Q.

As we saw, a consequence of Equation (7.4.1) is that if µ and µ′ are
roots of the same minimal polynomial p(x), then Q[µ] ∼= Q[µ′], and the
field isomorphism that takes one to the other can be extended to a field
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automorphism of the splitting field of p(x). If M is an integer matrix,
and µ is one of its eigenvalues with correspondent projector Eµ, then the
entries of this matrix lie in Q[µ], and µ′ = µσ is also an eigenvalue of
M , with corresponding projector Eσ

µ (obtained from Eµ upon applying σ
entry-wise).

An algebraic integer µ whose minimal polynomial has degree two is
called a quadratic integer. A real number µ is a quadratic integer if and
only if there are integers a, b and ∆ such that ∆ is square-free and one of
the following cases holds.

(i) µ = a+ b
√

∆ and ∆ ≡ 2, 3 (mod 4).

(ii) µ = 1
2

(
a + b

√
∆
)
, ∆ ≡ 1 (mod 4), and either a and b are both even

or both odd.

7.5 Perron-Frobenius Theory
Let M be a real n × n matrix with nonnegative entries. For example, the
adjacency matrix of a graph. This matrix is called primitive if, for some
integer k, Mk > 0, and it is called irreducible if for all indices i and j, there
is an integer k so that (Mk)ij > 0. All primitive matrices are irreducible,
but the converse is not necessarily true.

It is not difficult to see that the adjacency matrix of a graph is irreducible
if and only if the graph is connected, and also that the adjacency matrix of
a connected bipartite graph is irreducible but not primitive.

Results below are part of what is usually known as the Perron-Frobenius
theory. This theory applies generally to matrices which are assumed to be
irreducible and nothing else. We shall however add the hypothesis that
the matrices are also symmetric, as the proofs become simpler and will be
enough for our purposes.

7.5.1 Lemma. Let M be a nonnegative symmetric matrix, M 6= 0. If λ is
the largest eigenvalue of M , then λ > 0.

Proof. Follows immediately from trM ≥ 0.
For any vector u ∈ Rn, and symmetric matrix M , define

RM(u) = uTMu

uTu
.
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This is known as the Rayleigh quotient of u with respect to M . Note that
RM(αu) = RM(u) for all α 6= 0, so we shall typically assume u 6= 0 has been
normalized. In a sense, this is a measurement of how much M displaces
u, also proportional to how much M stretches or shrinks u. Therefore
one should expect that this is maximum when u is an eigenvector of M ,
corresponding to a large eigenvalue.

7.5.2 Lemma. If u is eigenvector of M with eigenvalue θ, then RM(u) = θ.
If λ is the largest eigenvalue ofM , then, for all v ∈ Rn, RM(v) ≤ λ. Equality
holds for some v only if v is eigenvector for λ.

Proof. The first claim is straightforward. Let now M = ∑d
r=0 θrEr be the

spectral decomposition ofM . Assume λ0 is the largest eigenvalue, and that
v is a normalized vector. Then

RM(v) = vTMv = θ0(vTE0v) + θ1(vTE1v) + ...+ θd(vTEdv)
≤ θ0((vTE0v) + (vTE1v) + ...+ (vTEdv) = θ0.

Equality holds if and only if (vTErv) = 0 for all r > 0, which is the same
as saying that v belongs to the θ0-eigenspace.

7.5.3 Lemma. Let M be symmetric, non-negative and irreducible, with
largest eigenvalue λ. There is a corresponding eigenvector u to λ so that
u > 0.

Proof. Let v be a normalized eigenvector for λ, and define u to be made
from v by taking the absolute value at each entry (also denoted by u = |v|).
Note that u is still normalized, and, moreover

λ = RM(v) = |RM(v)| ≤ RM(u) ≤ λ.

(Second equality follows from λ > 0. First inequality is simply the triangle
inequality. Second follows from Lemma 7.5.2.)

Hence RM(u) = λ, and u is an eigenvector for λ, with u ≥ 0. To see
that u > 0, note that as M is irreducible, it follows easily that I + M is
primitive, and so there is a k so that (I + M)k > 0. The vector u is also
eigenvector for this matrix (with eigenvalue (1 + λ)k), but

0 < (I +M)ku = (1 + λ)ku,

implying u > 0.
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7.5.4 Lemma. The largest eigenvalue λ of a symmetric, non-negative and
irreducible matrix is simple.

Proof. From the proof of the past lemma, we know that no eigenvector for
λ contains an entry equal to 0. No subspace of dimension larger than 1 can
be such that all of its non-zero vectors have no non-zero entries.

And finally:

7.5.5 Lemma. Let M be symmetric, non-negative and irreducible. Let λ
be its largest eigenvalue. Let µ be any other eigenvalue. Then λ ≥ |µ|, and,
moreover, if −λ is an eigenvalue, then M2 is not irreducible.

Proof. Let v be an eigenvector for µ. As v is orthogonal to the positive
eigenvector corresponding to λ, at least one entry of v is negative. Thus

|µ| = |RM(v)| < RM(|v|) ≤ λ.

Now note that λ2 is the largest eigenvalue of M2 (which is, still, symmetric
and non-negative). If −λ is eigenvalue of M , then the eigenspace of λ2 in
M2 is at least 2-dimensional, thus M2 cannot be irreducible.

It is quite surprising at first sight that the hypothesis on M being sym-
metric can be dropped entirely from the results above. The geometric in-
tuition remains the same: a nonnegative irreducible matrix acts in the
nonnegative orthant and there it encounters a unique direction which is an
eigenvector. In the notes we leave some references for these more general
results.

7.6 Periodicity and Integrality
We saw in Corollary 7.3.1 that periodicity is equivalent to a condition on the
ratio of differences of eigenvalues. This condition implies a severe restriction
on the algebraic nature of the eigenvalues that lie in the eigenvalue support
of a periodic vertex, as we will see below.

In this section, we will assume the results in Section 7.4.

7.6.1 Theorem. Assume S = {θ0, ..., θd} is a set of real algebraic integers,
closed under taking algebraic conjugates, and with d ≥ 3. Then, for all
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r, s, k, ` with θk 6= θ`, we have
θr − θs
θk − θ`

∈ Q

if and only if either of the following holds.

(a) The elements in S are integers.

(b) The elements in S are quadratic integers, and, moreover, there is a
square-free integer ∆ > 1, an integer a and integers b0, ..., bd so that
θr = 1

2(a+ br
√

∆).

Proof. It is straightforward to verify that if either of our stated conditions
holds, then the stated ratio condition is satisfied.

We assume the ratio condition holds. If two elements in S are integers,
say θ0 and θ1 then since the ratio condition asserts that

θr − θ0

θ1 − θ0
∈ Q,

we conclude that all elements of S are integers.
So we may assume at most one element of S is an integer. Let θ0 and θ1

be two distinct elements of S; we will show that (θ1− θ0)2 is an integer. By
the ratio condition, if θr, θs ∈ S there is a rational number ar,s such that

θr − θs = ar,s(θ1 − θ0)

and therefore ∏
r 6=s

(θr − θs) = (θ1 − θ0)d2−d∏
i 6=j

ar,s.

The product on the left is fixed by any field automorphism of Q[θ0, ..., θd],
thus it is an integer, and the product of the ar,s’s is rational, and hence

(θ1 − θ0)d2−d ∈ Q.

Since θ1 − θ0 is an algebraic integer, this implies that

(θ1 − θ0)d2−d ∈ Z.

Suppose m is the least positive integer such that (θ1 − θ0)m is an integer.
Then there are m distinct conjugates of θ1 − θ0 of the form

βe2πik/m (k = 0, . . . ,m− 1)
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where β is the positive real m-th root of an integer. Since the elements of
S are real and closed under taking conjugates, we conclude that m ≤ 2.

Therefore θ1−θ0 is either an integer or an integer multiple of the square
root of a square-free integer ∆ (we assume θ1 − θ0 is a multiple of

√
∆ in

both cases for convenience, and take ∆ = 1 in the former case). Since

(θr − θs)2 = a2
r,s(θ1 − θ0)2

it follows that (θr− θs)2 is rational and therefore it is an integer. So θr− θs,
again, is multiple of the square root of an integer ∆r,s. More so, its square
free part is the same as the one (θ1 − θ0)2, thus ∆r,s = ∆, for all r and s.

Therefore there are integers mr such that, for each r,

θr = θ0 −mr

√
∆. (7.6.1)

If we sum this over the elements of S we find that

|S|θ0 −
√

∆
∑
r

mr =
∑
r

θr ∈ Z,

the last claim following from the fact that the sum is fixed by all automor-
phisms of the extension containing the elements of S. Therefore θ0 lies in
Q(
√

∆), and so do all other elements of S. The fact that their rational
parts are the same follows immediately from Equation (7.6.1).

The results in Section 7.5 imply that if θ0 is the largest eigenvalue of a
connected graph, then it belongs to the eigenvalue support of all vertices.

7.6.2 Corollary. Suppose X is an integer weighted connected graph with
at least two vertices and let S be the eigenvalue support of the vertex a.
Then X is periodic at a if and only if either of the following holds.

(a) The eigenvalues in S are integers.

(b) The elements in S are quadratic integers, and, moreover, there is a
square-free integer ∆ > 1, an integer a and integers b0, ..., bd so that
θr = 1

2(a+ br
√

∆).

Moreover, if the either condition holds, and taking ∆ = 1 if the eigenvalues
are all integers, let

g = gcd
{
θ0 − θr√

∆

}
θr∈S

.
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7. State transfer

Then the smallest positive τ so that Da(τ) = Da is τ = 2π
g
√

∆ , and if Da(t) =
Da, then t is an integer multiple of t.

Proof. As X is connected with at least two vertices, |S| ≥ 2. If θr and
θs are algebraic conjugates, then Er and Es are algebraic conjugates and
so Erea = 0 if and only if Esea = 0. Therefore S contains all algebraic
conjugates of each of its elements. If |S| = 2, then either both elements of
S are integers, or they are roots of a quadratic polynomial (and (b) holds).
So we can assume that |S| ≥ 3, and therefore apply Corollary 7.3.1 and
Theorem 7.6.1.

If periodicity occurs at time t, we can write

t = τ
2π
g
√

∆
,

where τ is a suitable real number. From the proof of Corollary 7.3.1, we
see that

τ
θ0 − θs
g
√

∆
∈ Z,

so, from the choice of g, it follows that τ is an integer.

7.7 Consequences of Integrality
One of the most important consequences of Corollary 7.6.2 is that the dis-
tinct eigenvalues in the support of a periodic vertex differ by at least 1.
This is not the standard behaviour for typical vertices in graphs, as the two
results below will indicate.

The first is an attempt to formally justify why is it so difficult to find
examples of periodic vertices or perfect state transfer (as the latter phe-
nomenon implies the former). Among such examples, it is even rarer that
the graph looks sparse—the second result will explain why is this the case.

Recall that the dual degree of a vertex is the size of its eigenvalue support
minus 1. Lemma 5.2.5 stated that if a is a vertex of V (X) with covering
radius r and dual degree s∗, then r ≤ s∗.

7.7.1 Corollary. There are only finitely many connected graphs with max-
imum valency at most k which contain a periodic vertex.
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Proof. Suppose X is a connected graph where vertex a is periodic, and let
S be its eigenvalue support. From Corollary 7.6.2, the distance between
two distinct elements of S is at least 1, and since all eigenvalues of X lie in
the interval [−k, k], we see that |S| ≤ 2k+1. In other terms we have shown
that the dual degree of a is at most 2k and so, by Lemma 5.2.5, it follows
that the covering radius of a is at most 2k. Since the maximum valency is
bounded, it follows that |V (X)| is bounded.

Following, let us now explore another consequence of the fact that the
covering radius of a is at most the dual degree.

7.7.2 Corollary. Assume X has m edges. If a is a periodic vertex with
covering radius r, then

r3 ≤ 54m.

Proof. We list the eigenvalues of A with possible repetition by λ1, . . . , λn,
assuming that λ2

1 ≥ . . . ≥ λ2
n. The trace of A(X)2 is the sum of the degrees,

and also the sum of the eigenvalues squared, when counted with multiplicity.
Thus,

λ2
j ≤

2m
j
.

Let S be the eigenvalue support of a. With a periodic, the eigenvalues in
S are separated by at least 1, thus, for all 1 ≤ j ≤ n,

(|S| − j + 1) ≤ 2|λj|+ 1.

Thus,

r + 1 ≤ |S| ≤ 2
√

2m
j

+ j.

Make j = d 3
√

2me. Note that j ≤ n, and thus

r ≤ 3 3
√

2m.

As we have already seen, if there is perfect state transfer between a and
b, then both are periodic. Hence, both results above can be seen as conse-
quences of Corollary 7.6.2 to limit when is perfect state transfer possible in
a graph. In the next section, we will see that we can also use this corollary
provide a characterization.
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7.8 Perfect state transfer
The three inequalities (7.1.1), (7.1.2) and (7.1.3) and their respective equal-
ity characterizations in the subsequent lemmas allow for a characterization
of perfect state transfer between a and b. They must be parallel and cospec-
tral, hence strongly cospectral, and the eitθr must alternate sign according
to (Er)a,b. With a and b both periodic, we can use Corollary 7.6.2 to ask
when eigenvalues which are integers or quadratic integers of the prescribed
form give the correct alternating pattern. In the following theorem, we
make this analysis explicit.

Given a rational m and a prime p, we can write m = pα r
s
, where r and

s are integers not divisible by p. Then the p-adic norm of m is defined by

|m|p = p−α.

Thus, if m is integer, the larger the power of p dividing m is, the smaller
its p-adic norm is.

7.8.1 Theorem. Let a and b be vertices in a graph X, and assume the
eigenvalue support of a consists of eigenvalues S = {θ0, . . . , θk}. There is
perfect state transfer between a and b if and only if:

(a) Vertices a and b are strongly cospectral;

(b) The eigenvalues in S are either integers or quadratic integers, and, more-
over, there are integers a,∆, b0, . . . , bk, with ∆ positive and square-free,
so that

br = 1
2(a+ br

√
∆);

(c) There is a non-negative integer α so that

• (Er)a,b > 0 if and only if |(θ0 − θr)/
√

∆|2 < 2−α,
• (Er)a,b < 0 if and only if |(θ0 − θr)/

√
∆|2 = 2−α.

If the above conditions hold, let

g = gcd
{
θ0 − θr√

∆

}
r=0,...,k

.

Then the minimum time we have perfect state transfer between a and b is
τ = π/g

√
∆, and any other time it occurs is an odd multiple of τ .
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Proof. We have seen that conditions (a) and (b) are necessary, so we assume
they hold and prove that perfect state transfer is equivalent to condition
(c). Note first that (a) implies the eigenvalue support of a and b are the
same. Let τ = t π

g
√

∆ . We have

U(τ)ea = λeb

if and only if, for all θr, eiτθrErea = λEreb. We can assume θ0 is the
spectral radius, and thus E0 is a non-negative matrix. Thus the condition
is equivalent to having λ = eiτθ0 , and

eiτ(θ0−θr) = ±1,

where the sign is determined by whether Erea = ±Ereb, or equivalently the
sign of (Er)a,b. If m1, · · · ,mk are reals satisfying

t
π

g
√

∆
(θ0 − θr) = mrπ,

perfect state transfer is equivalent tomr being an even integer if (Er)a,b > 0,
and mr being an odd integer if (Er)a,b < 0. As t is constant, it must be
an odd positive integer that plays no role whether it happens or not. Thus,
perfect state transfer is equivalent to (θ0−θr)/g

√
∆ being even if (Er)a,b > 0,

and (θ0 − θr)/g
√

∆ being odd if (Er)a,b < 0. This is precisely equivalent to
the condition stated in (c).

Note that the minimum time perfect state transfer occurs depends only
on the eigenvalue support of the vertex a. The following corollary is an
immediate consequence.

7.8.2 Corollary. In the graph X, if there is perfect state transfer between
a and b, and between a and c, then a = c.

The conditions presented in the Theorem are quite useful, in the sense
that they allow for an efficient and effective method of testing whether
perfect state transfer occurs, given the graph X. Efficient here meaning
precisely “in a time bounded by a polynomial in n = |V (X)|”, and effective
meaning “in exact arithmetic”.

In Theorem 6.8.2, the characterization of strongly cospectral vertices in
terms of whether φ(X\a, t) = φ(X\b, t) and the poles of φ(X\ab, t)/φ(X, t)
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are simple can be tested in polynomial time in n. The multiplicity of θ as a
pole of φ(X\a, t)/φ(X, t) indicates whether it lies in the eigenvalue support
of a or not, as a consequence of Corollary 4.5.2. This multiplicity is equal
to one if and only if θ is a root of the integral polynomial

φ(X, t)
gcd{φ(X, t), φ(X \a, t)} .

Thus, we can test with symbolic arithmetic whether the eigenvalues in the
support of a are integers or quadratic integers. As the candidates lie within
a given interval of size bounded by a polynomial in n, this can also be
carried out efficiently.

Once the eigenvalues have been found, if they satisfy condition (b) of
Theorem 7.8.1, then it is easy to check condition (c).

7.9 Bipartite and Regular Graphs
We spell out yet more consequences of Theorem 7.6.1.

7.9.1 Lemma. If X is bipartite and a is a periodic vertex, then either the
eigenvalues in the eigenvalue support of a are all integers, or else they are
integer multiples of

√
∆ for some square-free integer ∆.

Proof. Suppose X is bipartite and the eigenvalue support S of the vertex a
contains a non-integer eigenvalue. Then each element of S can be written
in the form

1
2(a+ br

√
∆)

for some r, where a and br are integers and ∆ is a square-free integer, but by
Lemma 5.2.4 the set S is closed under multiplication by −1, and therefore
a = 0. Since eigenvalues are algebraic integers, it follows that br is even.

We derive an interesting consequence of the previous result.

7.9.2 Lemma. If X is connected, bipartite and det(A) = ±1, and perfect
state transfer occurs on X, then X = P2.

Proof. If X is periodic at the vertex a, then the eigenvalue support of a
consists of integers, or of integer multiples of

√
∆ for a square-free integer ∆.

Since det(A) = ±1, the product of the eigenvalues distinct from θ is equal
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to θ−1. Therefore θ−1 is an algebraic integer, and this implies that θ = ±1.
It is straightforward to show that in this case the connected component of
X that contains a is P2.

The largest eigenvalue of a regular graph is the degree of the vertices,
ergo an integer. In this case, we can also restrict even further the candidates
to lie in the eigenvalue support of a periodic vertex.

7.9.3 Lemma. Suppose X is connected and its spectral radius is an integer.
Then if X is periodic at a, all elements of the eigenvalue support of a are
integers.

Proof. Assume by way of contradiction that X is periodic at a and some
element θ of S is not an integer. Then the algebraic conjugate θ of θ lies in
S as does the spectral radius ρ of X. By the ratio condition

θ − ρ
θ − ρ

∈ Q

and therefore, since ρ = ρ,

θ − ρ
θ − ρ

= θ − ρ
θ − ρ

.

Hence
(θ − ρ)2 = (θ − ρ)2,

from which we deduce that
θ + θ = 2ρ.

Since no eigenvalue if X is greater than ρ we infer that θ = ρ, which
contradicts our assumption on θ.

The main application of the above lemma is to regular graphs.

7.10 No Control
We will prove that a controllable vertex cannot be periodic, and thus cannot
be involved in perfect state transfer. This will be yet another application
of Corollary 7.6.2. For this we need the following:
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7.10.1 Lemma. Let X be a graph with n = |V (X)|. If σ is the minimum
distance between two eigenvalues of X, then

σ2 <
12

n+ 1 .

Proof. Assume that the eigenvalues ofX in non-increasing order are θ1, . . . , θn.
If we have

M := A⊗ I − I ⊗ A,
then the eigenvalues of M are the numbers

θi − θj, 1 ≤ i, j ≤ n.

Now
M2 = A2 ⊗ I + I ⊗ A2 − 2A⊗ A,

and consequently, if m = |E(X)|, then
n∑

i,j=1
(θi − θj)2 = tr(M2) = 2n tr(A2) = 4nm.

Since
θi − θj ≥ (i− j)σ,

we have
n∑

i,j=1
(θi − θj)2 ≥ σ2

n∑
i,j=1

(i− j)2.

As
n∑
i=1

i2 = n(n+ 1)(2n+ 1)
6 ,

we find that
n∑

i,j=1
(i− j)2 = 2n

n∑
i=1

i2 − 2
(

n∑
i=1

i

)2

= n2(n2 − 1)
6 ,

and since m ≤ n(n− 1)/2, this yields

σ2n
2(n2 − 1)

6 ≤ 4nm ≤ 2n2(n− 1).

This gives our stated bound but with ≤ in place of <. To achieve strictness
we note that if equality were to hold then m = n(n − 1)/2 and X = Kn.
Since σ(Kn) = 0, we are done.
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7.10.2 Theorem. Let X be a connected graph on at least four vertices. If
we have a periodic vertex a in X, then a is not controllable.

Proof. Let n = |V (X)|. We assume by way of contradiction that (X, a) is
controllable. Then the eigenvalue support of a contains all eigenvalues of
X and these eigenvalues are distinct. From Corollary 7.6.2 we know that
the separation σ(X) between distinct eigenvalues is at least 1.

By Lemma 7.10.1 we can assume that n = |V (X)| ≤ 10. This leaves us
with six cases. First suppose ∆ = 1. Assume n = 10. Then the sum of the
squares of the eigenvalues of X is bounded below by the sum of the squares
of the integers from −4 to 5, which is 85, and hence the average valency of
a vertex is at least 8.5 (We are now going to use the well-known fact that
the average valency of a graph is a lower bound to the largest eigenvalue.)
This implies that θ0 = 9, not 5, consequently the sum of the squares of the
eigenvalues is at least

85− 25 + 81 = 141,

and now the average valency is 14.1, which is impossible. The cases where
n is 7, 8 or 9 all yield contradictions in the same way. If ∆ > 1, it is even
easier to derive contradictions.

Next, brute force computation (using Sage [54]) shows that the path
P4 is the only graph on 4, 5 or 6 vertices where the minimum separation
between consecutive eigenvalues is at least 1. The positive eigenvalues of
P4 are

(
√

5± 1)/2,

so from Lemma 7.9.1 it cannot contain a periodic vertex.

Note that the vertex a is controllable if and only if φ(X \ a, t) and
φ(X, t) are coprime. By Lemma 5.3.4, if either of these polynomials is
irreducible over Q, the vertex a is controllable. It seems very plausible that
almost graphs have irreducible characteristic polynomial, and therefore do
not admit periodic vertices, and thus do not admit perfect state transfer as
well.

Notes
Early versions of the ratio condition appear in Saxena et al [52] and in
Christandl et al [20].
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In Section 7.3 we condensed several results from algebraic number theory
in a few paragraphs. Our favorite reference for those results is Cox [25].
Most of them date back at least to Galois. The characterization of quadratic
integers is due to Dedekind.

Notes to pst is polytime paper, and qwalks and size of the graph papers.
(It is Theorem 7.2 from Coutinho and Liu [24].)

Exercises
7-1. Prove (or research) each of the claims made on the paragraphs preceding

Theorem 7.6.1.

7-2. Show that if a vertex is periodic according to the Laplacian matrix, then
all eigenvalues in its eigenvalue support are integers.

7-3. Assume X has largest degree k. Find an upper bound for the largest
eigenvalue of L(X) in terms of k. Use it to conclude that there are only
finitely many graphs with maximum degree k that contain a periodic
vertex.

7-4. Prove a version of Theorem 7.6.1 where the elements satisfying the ratio
condition are partitioned into two sets S1 and S2 of real algebraic integers,
each with at least two elements and both closed under taking conjugates,
and we can only assume that

θr − θs
θk − θ`

∈ Q

for when θr, θs ∈ S1 and θk, θ` ∈ S2.

7-5. Let X be a graph on n vertices. Show that if X has simple eigenvalues
and is periodic, then

n ≤ 11.
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Chapter 8

Recurrence and
approximations

The concept of periodicity is key to the understanding and study of continuous-
time quantum walks. Thus we have seen that if a graph X admits perfect
state transfer from a to b at time t, then X is periodic at both vertices at
time 2t. In Section 2.7 we studied orbits of density matrices and proved (in
Theorem 2.7.2) that quantum walks are “approximately” recurrent.

In this chapter we study recurrence and periodicity from a group theo-
retic perspective.

The main result we state and prove in this chapter in Kronecker’s The-
orem on Diophantine approximation.

8.1 The Unitary Group
The unitary group U(d) is the group of d × d unitary matrices. It is a
compact subset of Cd2 . We have made extensive use of the fact that, if A
is Hermitian, the matrices

exp(itA), t ∈ R

are unitary. They form a subgroup of the unitary group, subgroups of this
form are so-called 1-parameter subgroups. Each continuous quantum walk
is a manifestation of a 1-parameter subgroup.

8.1.1 Lemma. A matrix U is unitary if and only if there is a Hermitian
matrix H such that U = exp(iH).
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Proof. We have seen this condition is sufficient. For the necessity we note
that is U is unitary it is normal and so has. a spectral decomposition

U =
∑
r

λrEr.

Since U is unitary, each eigenvalue λr has norm one and so we may assume

λr = exp(iθr).

It follows that U = exp
(∑

r iθrEr
)
.

The unitary group has a number of actions of interest to us. If ‖z‖ = 1
and Q is unitary, then ‖Qz‖ = 1. Hence U(d) fixes the complex unit sphere.
Its action on the unit sphere is transitive: if y and z are unit vectors, there
is a unitary matrix Q such that Qy = z. If U(t) is the transition matrix of
a continuous walk with initial state z, then the set

{U(t)z : t ∈ R}

is the orbit of z under the action of the 1-parameter subgroup given by
U(t).

For the second action, let Ω denote the set of positive semidefinite ma-
trices of order d × d. If M ∈ Ω and Q ∈ U(d), then QMQ∗ is positive
semidefinite. This gives us an action of U(d) on Ω. As tr(QMQ∗) = tr(M),
the density matrices of order d×d form a subset invariant under this action
of U(d). Since rk(QMQ∗) = rk(M), we also see that U(d) acts on the set
of pure states.

The set of matrices U(t)D)tU(−t) for t ≥ 0 may be called the forward
orbit of D0. We have state transfer from D0 to D1 if and only if D1 is in
the forward orbit of D0. In this case D0 lies in the backwards orbit of D0.
If D0 and D1 are real, then D1 lies in the backwards ordbit of D0 if and
only if it lies in the forwards orbit.

The set of positive definite matrices is also invariant under U(d), this
set is a Riemannian manifold (but this fact will play no explicit role in our
work).

We restate some of the discussion from Section 2.7.

8.1.2 Lemma. Let D0 and D1 be density matrices of order d × d and set
U = {U(t) : t ∈ R}. Then:
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(a) There is perfect state transfer from D0 to D1 under the continuous walk
given by U(t) if and only if D1 lies in the forward orbit of D0 under the
action of U .

(b) There is pretty good state transfer from D0 to D1 under the continuous
walk given by U(t) if and only if D1 lies in the closure of the forward
orbit of D0 under the action of U .

8.2 Discrete Subgroups
Formally, a subgroup H of a topological group G is a discrete if there is a
cover of G by open sets, each of which contains exactly one element of H.
For the groups of interest to us, we may say that H is discrete if no point
in G is a limit point for H.

Thus the integers are a discrete subgroup of R, but the subgroup H of
R generated by {1,

√
2} is discrete (every real number is limit point of H.)

A subgroup G of Rd is discrete if there is a positive real number ε such
that the balls of radius ε about the elements of G are pairwise disjoint. A
discrete subgroup of R consists of all integer multiples of some real number
α. A subgroup of R is dense if its closure is R.

8.2.1 Lemma. An additive subgroup of R is either discrete or dense.

If U(t) is the transition matrix for a continuous quantum walk, the map
t 7→ U(t) is a homomorphism from R to the group

U := {U(t) : t ∈ R}.

8.2.2 Lemma. If U(t) is not contant, U is isomorphic to R or R/Z.

Proof. The kernel K of this homomorphism is an additive subgroup of R,
and we distinguish three cases according as K is 〈0〉, discrete or dense. If
K = 〈0〉 then U ∼= R. If K is discrete, U is isomorphic to R/Z. If K is
dense then, by continuity, U(t) = I for all t.

If U ∼= R/Z, the quantum walk is periodic. We will use T to denote
R/Z and we call the group Tm a torus. We will feel free to identify T with
the multiplicative group of complex numbers of norm 1. A torus is a Lie
group.
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Why do we need to work with torii? If

U(t) =
∑
r

eitθrEr

we can factor the homomorphism from R to U into a map

t 7→ (eitθ1 , . . . , eitθm)

(from R to Td) followed by a homomorphism from Td to U . Both maps here
are continuous, and the second map is injective. The problem of determin-
ing the image of the first map in Tm is important, and we wil take it up in
Section sec:Kronecker.

8.3 Periods
Define the set Per(a) of periods of the graph X at a to be the set of times
t such that U(t)ea is a scalar multiple of ea. (Equivalently it is the set of
times t such that ea is an eigenvector for U(t).) Clearly Per(a) is empty if
X is not periodic at a.

8.3.1 Lemma. If a is not an isolated vertex in X and X is periodic at a,
then Per(a) consists of all integer multiples of some positive real number τ .

Proof. Note that Per(a) is an additive subgroup of R and, as such, is either
discrete or dense in R.

If Per(a) is dense then there is a sequence of elements (tk)k≥0 of Per(a)
with limit 0. We note that U(t) is differentiable and so

lim
k→∞

1
tk

(U(tk)− I)ea = U ′(0)ea = iAea.

On the other hand, since tk is a period we have that ea is an eigenvector
for U(tk) − I for each k, and the limit above must be a scalar multiple of
ea. Since a is not isolated, this is impossible and we conclude that Per(a)
cannot be dense. Hence there is a unique positive real number τ such that
Per(a) consists of all integral multiples of τ .

We call τ the minimum period of X at a. (Corollary 7.6.2 provides a
more explicit proof that the minimum period exists.)

If we use Q to denote the set of times at which we have perfect state
transfer from a to b, then 2Q ⊆ Per(a), and therefore if we have perfect
state transfer at time t, then 2t is an integral multiple of τ .
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8.3.2 Lemma. Suppose u is a vertex in X with positive valency and X is
periodic at u with minimum period σ. Then if there is perfect state transfer
from u to v, there is perfect state transfer from u to v at time σ/2.

Proof. Suppose we have uv-pst with minimum time τ . Then X is periodic
at u, with minimum period σ (say).

If σ < τ , then U(τ − σ)eu = γev for some γ and so τ is not minimal.
Hence τ < σ. Since X is periodic at u with period 2τ , we see that σ ≤ 2τ .
If σ < 2τ then u is periodic with period dividing 2τ − σ and so σ ≤ 2τ − σ,
which implies that σ ≤ τ . We conclude that σ = 2τ .

Thus if the minimum period of X at u is σ and there is perfect state
transfer from u to v, then there is perfect state transfer from u to v at time
σ/2 (and not at any shorter time).

This result has the following important consequence, first noted by Kay
[45, Section D].

8.3.3 Corollary. If we have perfect state transfer in X from u to v and
from u to w, then v = w.

It is worth noting that, even though the set of periods Per(a) is discrete,
the corresponding phases need not be. If U(t)ea = γea, then

γea =
d∑
r=0

eitθrErea.

Assume the graph is connected, E0 corresponds to the largest eigenvalue,
and so all of its entries are positive (according to Perron-Frobenius—see for
instance [38, Chapter 8]). Multiplying both sides by E0, we have

γE0ea = eitθ0E0ea,

thus γ = eitθ0 . If the graph is not connected (but a is not an isolated vertex),
simply use the projector onto the eigenspace corresponding to the largest
eigenvalue of the connected component containing a.

Consequently all integer powers of eitθ0 are phases of a periodic time,
and these powers are dense if and only if tθ0/2π is irrational. It follows
from Section 12.3 that cones over a regular graph provide examples where
this ratio is indeed irrational.

143



8. Recurrence and approximations

8.4 Bounding the Minimum Period
It is possible to derive a lower bound on the minimum period in terms of
the eigenvalues of X.

8.4.1 Lemma. Suppose X is a graph with eigenvalues θ1, . . . , θm in de-
creasing order and transition matrix U(t). If x is a non-zero vector, then
the minimum time τ such that xTU(τ)x = 0 is at least π

θ1−θm .

Proof. Assume ‖x‖ = 1. We want

0 = xTU(t)x =
∑

eitθsxTEsx,

where the sum is over the eigenvalues θs such that Erx 6= 0, i.e., over the
eigenvalue support of x. Since

1 = xTx =
∑

xTEsx,

the right side is a convex combination of complex numbers of norm 1. When
t = 0 these numbers are all equal to 1, and as t increases they spread out
on the unit circle. If they are contained in an arc of length less than π,
their convex hull cannot contain 0, and for small(ish) values of t, they lie in
the interval bounded by tθ1 and tθm. So for xTUX(t)x to be zero, we need
t(θ1 − θm) ≥ π, and thus we have the constraint

t ≥ π

θ1 − θm
.

If u ∈ V (X) and x = eu, then this bound is tight for P2 but not for P3.

8.4.2 Lemma. If X is a graph with eigenvalues θ1, . . . , θm, the minimum
period of X at a vertex is at least 2π

θ1−θm .

Proof. We want
γ =

∑
r

eiθrt(Er)u,u,

where ‖γ‖ = 1, and for this to hold there must be integers mr,s such that

t(θr − θs) = 2mr,sπ.

This yields the stated bound.
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In the previous lemma, θ1 is the spectral radius of A(X). However θm
can be replaced by the least eigenvalue in the eigenvalue support of the
relevant vertex. If the entries of x are non-negative, these comments apply
to Lemma 8.4.1 too. For more bounds along the lines of the last two lemmas,
go to [45, Section IIIC].

For vertex-transitive graphs we can specify the true period: if the eigen-
values are integers and 2d is the largest power of 2 that divides the great-
est common divisor of the difference of the eigenvalues, then the period is
π/2d−1.

It follows from Corollary 7.6.2 that the minimum period is at most 2π.
Let a be a vertex in X with dual degree m. Then the vectors Area for

r = 0, . . . ,m form a basis for the walk module relative to a. If N is the
matrix with these vectors as its columns then, since col(N) is A-invariant,
there is a matrix B such that AN = NB. Consequently

U(t)N = N exp(itB).

We can use the following to show that in certain cases, the phase factor
γ arising in perfect state transfer is an m-th root of 1, for some m.

8.4.3 Lemma. Suppose X is periodic at the vertex a at time t and with
phase γ. If tr(B) = 0 and the dual degree of a is m, then γm+1 = 1.

Proof. If U(t)ea = γea then since U(t) and A commute, U(t)Area = γArea
and hence U(t)N = γN . As the columns of N are linearly independent, we
deduce that

exp(itB) = γI.

Now det(exp(itB)) = 1 for all t and det(γI) = γm+1.

8.5 Kronecker’s Theorem
Each continuous quantum walk determines a map R→ Tm:

t 7→ (eitθ1 , . . . , eitθm)

The image of R under our first map is a subgroup of Tm. From the theory
of Lie groups we know that the closure of this group is isomorphic to T`, for
some integer `. The question we address here is simple to state, we want to
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know when ` = m. We say that an element (θ1, . . . , θm) is a generator of
the torus Tm if the additive subgroup it generates is dense.

Our principal tool will be Kronecker’s theorem. We first state its more
general strong form.

8.5.1 Theorem. Let λ1, . . . , λn and θ1, . . . , θn be arbitrary real numbers.
For each δ in R+, there is t in R+ so that, for k = 1, . . . , n

|λkt− θk| < δ (mod 2π)

if and only if, for all integers `1, . . . , `n such that `1λ1 + . . . + `nλn = 0, it
also holds that

`1θ1 + . . .+ `nθn ≡ 0 (mod 2π).

Proof. One direction is simple. If for any δ it is possible to find t satisfying
(8.5.1), then we have, for all k = 1, . . . , n,

−δ < λkt− θk − 2πmk < δ.

Given integers `1, . . . , `n so that `1λ1 + . . . + `nλn = 0, multiply each of
these pairs of inequalities by the corresponding `k, and add all together, to
recover

−δ
(

n∑
k=1
|`k|

)
< −

(
n∑
k=1

`kθk

)
− 2π

(
n∑
k=1

`kmk

)
< δ

(
n∑
k=1
|`k|

)
.

Making δ → 0, it follows immediately that

n∑
k=1

`kθk ≡ 0 (mod 2π).

For the other direction, define

f(t) = 1 + ei(λ1t−θ1) + . . .+ ei(λnt−θn).

Note that, for any δ there is a t ∈ R+ so that (8.5.2) holds if, and only if,
supt∈R+ |f(t)| = n + 1. We will show that if this sup is not attained, then
the condition on λs and θs cannot hold.
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Let m be a positive integer. Then

f(t)m =
∑

a,`1,...,`n≥0
a+`1+...+`n=m

m!
a!`1! . . . `n!

(
ei(λ1t−θ1)

)`1 · . . . · (ei(λnt−θn)
)`n

=
∑

a,`1,...,`n≥0
a+`1+...+`n=m

m!
a!`1! . . . `n! · ei(`1θ1+...+`nθn) cdote

it(`1λ1+...+`nλn).

By collecting terms, it is possible to write

f(t)m =
∑
µ

aµeiµt,

where each µ is unique and aµ is a sum of multinomial coefficients multiplied
by some complex phases. If

`1λ1 + . . .+ `nλn = `′1λ1 + . . .+ `′nλn

then, by hypothesis,

`1θ1 + . . .+ `nθn ≡ `′1θ1 + . . .+ `′nθn (mod 2π).

So the phases of the coefficients summing to each aµ align, and, as a conse-
quence,

∑
µ

|aµ| =
∑

a,`1,...,`n≥0
a+`1+...+`n=m

m!
a!`1! . . . `n! = (n+ 1)m. (8.5.1)

Now assume for the sake of contradiction that

sup
t∈R+

|f(t)| = ρ < n+ 1.

As a consequence,
lim
T→∞

1
T

∫ T

0
|f(t)m|dt ≤ ρm.

However, from the expression of f(t)m, it holds that, for each µ,

aµ = lim
T→∞

1
T

∫ T

0
f(t)me−iµtdt.
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Thus
|aµ| ≤ ρm,

and, as the number of terms in the sum in Equation (8.5.1) is at most
(m+ n)!/m!n!, we have

ρm · (m+ n)!
m! · n! ≥

∑
µ

|aµ| = (n+ 1)m.

However, dividing by (n+ 1)m and taking the limit on both sides,

1 = lim
m→∞

(
ρ

n+ 1

)m
· (m+ n)!
m! · n! ≤ lim

m→∞

(
ρ

n+ 1

)m
mn = 0,

a contradiction.

8.5.2 Theorem. The element (α1, . . . , αm) of Tm is a generator if and only
if the numbers 1, α1, . . . , αm are linearly independent over the rationals.

If A is a symmetric matrix whose eigenvalues are linearly independent
over Q, this theorem implies that, for m in Z, the vectors

(einθ1 , . . . , einθm)

form a dense subgroup of Tm. This is more than we will need: if Λ(t)
denotes the diagonal matrices of eigenvalues of UA(t), for our purposes it
will suffice if the matrices Λ(t) generate a dense subgroup of the torus, but
Kronecker’s theorem assures us that the matrices Λ(n) are already dense.

On the other hand, in the cases of interest to us the matrix A is an integer
matrix, whence it follows that the sum of its eigenvalues is an integer, and
therefore these eigenvalues together with 1 are not linearly independent
over Q. However we will see that we can sometimes find a way around this
difficulty, for example, if X is bipartite then it may be enough that the
positive eigenvalues are linearly independent over Q.

Bt way of example, we show that pretty good state transfers occus on
P5. The eigenvalues of P5 are

±
√

3, ±1, 0.

We number the eigenvalues so that there are exactly r eigenvalues greater
than θr. You may check that

T = E0 − E1 + E2 − E3 + E5
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is the permutation matrix corresponding to the non-identity automorphism
of P5. Since 1 and

√
3 are linearly independent over Q, we can choose t so

that
(eitθ0 , eitθ1) ≈ (1,−1)

(where ≈ denotes “differs from by some specified small amount”). Since
θ4 = −θ0 and θ3 = −θ1 it follows that at the same t we have eitθ3 ≈ −1 and
eitθ3 ≈ −1. As θ2 = 0, we conclude that at time t,

(eitθ0 , eitθ1 , eitθ2 , eitθ3 , eitθ4) ≈ (1,−1, 1,−1, 1).

8.6 Dense Subgroups of U(n)
We show how we can use controllable pairs to generate dense subgroups of
the unitary group. This treatment is taken from Godsil and Severini [39].

For our purposes, a Lie algebra is a vector space L of n × n matrices
over a field (R or C) such that if A,B ∈ L, then

AB −BA ∈ L

The term AB − BA is known as the Lie bracket and is often denoted by
[A,B]. We note that [B,A] = −[A,B]. If L is a Lie algebra, then the
matrices

{exp(M) : M ∈ L}
form a group. Groups constructed in this way are Lie groups.

The set L of all n× n matrices is a real Lie algebra and the associated
group is the group of all invertible real matrices. The subspace of L formed
by the matrices with trace zero is a Lie algebra and its group is the group
of real matrices with determinant one. The real skew symmetric matrices
form the a Lie algebra, corresponding to the orthogonal group. The skew
Hermitian matrices form a Lie algebra because

(AB −BA)∗ = B∗A∗ − A∗B∗

= (−B)(−A)− (−A)(−B)
= BA− AB
= −(AB −BA);

the corresponding Lie group is the unitary group U(n).
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8.6.1 Lemma. Let X be a graph and let z be the characteristic vector
of a subset S of V (X). Set B = zzT . If (X,S) is controllable, the real
Lie algebra generated by A and B is Matn×n(R) and the real Lie algebra
generated by iA and iL is the space of n× n skew-Hermitian matrices.

Proof. We recall that if (X,S) is controllable, then the matrices

ArBAs, (0 ≤ r, s ≤ n− 1)

form a basis for the full matrix algebra. Let L be the Lie algebra generated
by A and B; we aim to show that the elements of this basis lie in L.

Note that
BArB = z(zTArz)zT = crB

where cr = zTArz. We prove by induction on k that L contains the matrices

Ak−rBAr

for r = 0, . . . , k and for all k. The case k = 0 is trivial, so assume inductively
that L contains the above k + 1 matrices. Then it contains the matrices

[A,Ak−rBAr] = Ak−r+1BAr − Ak−rBAr+1

and hence it contains the partial sums Ak−r+1BAr −BAk+1 for each r.
In particular L contains Ak+1B −BAk+1. Since

[B,Ak+1B −BAk+1] = BAk+1B − Ak+1B2 −B2Ak+1 +BAk+1B

= 2ck+1B − c0(Ak+1B +BAk+1),

we see that L contains both Ak+1B − BAk+1 and Ak+1B + BAk+1, and
therefore it contains BAk+1. Therefore L contains Ak−r+1BAr when 0 ≤
r ≤ k + 1.

Now we consider the real Lie algebra generated by the skew-Hermitian
matrices iA and iB. Note that if M and N are symmetric matrices their
commutator [M,N ] is skew symmetric and if M is symmetric and N skew
symmetric, then [M,N ] is symmetric. We define the degree of a commutator
as follows: A and B have degree zero and if M has degree zero and N
has degree k then the degree of [M,N ] is k + 1. Therefore commutators
of even degree are symmetric and commutators of odd degree are skew
symmetric. Since the intersection of the subspace of symmetric matrices
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with the subspace of skew symmetric matrices is the zero subspace, and
since the commutators span the space of all matrices, it follows that the
span of the odd commutators consists of all skew symmetric matrices. Given
this it is not hard to verify that the Lie algebra generated by iA and iB
has dimension n2 and consists of all skew-Hermitian matrices.

8.6.2 Theorem. Let X be a graph and let z be the characteristic vector
of a subset S of V (X). Set B = zzT . If (X,S) is controllable, the matrices
in the sets

{exp(itA) : t ∈ R}, {exp(itB) : t ∈ R}

together generate a dense subgroup of the unitary group.

Proof. The two given sets are subgroups of unitary matrices and therefore
the group they generate lies in U(n). The closure Γ of this group is a Lie
subgroup whose Lie algebra is generated by iA and iB. By the lemma, this
Lie algebra consists of all skew-Hermitian matrices and therefore Γ is a Lie
group locally isomorphic to U(n). Therefore it is U(n).

We recall that if X is controllable, then A and J generate the full matrix
algebra. The pair consisting of the path Pn and a vertex of degree one is
controllable, this is in some sense the sparsest possible example.

If X is connected and ∆ is the diagonal matrices of valencies if X, then
J is a polynomial in ∆ − A. Therefore 〈A, J〉 ≤ 〈A,∆〉. If 〈A,∆〉 is the
full matrix algebra then the arguments we have used above do not imply
that iA and i∆ generate the Lie algebra of skew-Hermitian matrices. This
might be true, but we cannot prove it.

8.7 Almost Periodic Functions
In Section 2.7, we saw that any continuous quantum walk is ‘approximately
recurrent’: given τ > 0 and ε > 0 there is an integer k such that ‖U(kτ)−
I‖ < ε. This leaves open the question as to how often the walk returns and,
if it returns infinitely often, whether the time between returns bounded? In
this section we give precise answers to this these questions.

A trigonometric polynomial is a finite sum
m∑
r=1

aRE
iθrt
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where a1, . . . , am are complex and θ1, . . . , θm are real. The trigonometric
polynomials form a complex vector space, in fact a complex algebra—the
product of two trigonometric polynomials is a trigonometric polynomial. If
A is the adjacency matrix of X and U(t) = exp(itA), then U(t)a,b is a
trigonometric polynomial. For by the spectral decomposition,

U(t)a,b =
∑
r

eiθrt(Er)a,b.

The trigonometric polynomials form a subspace of the space of continu-
ous functions in R and so, given a norm on continuous functions, we may
take its completion. If we choose the norm ‖·‖∞, the completion we get is
the space of almost periodic functions. Since it is a completion, this is a
Banach space and it is not too hard to show that it is actually a Banach
algebra—the product of two almost periodic functions is almost periodic.

Almost periodic functions are ‘approximately recurrent’; we set about
explaining what we mean by this.

A real number τ is an ε-period for a complex-valued function f(t) if, for
all t,

‖f(t+ τ)− f(t)‖ < ε.

A sequence of real numbers is relatively dense if there is a real number L
such that every real interval of length L contains at least one element of
the sequence.

8.7.1 Theorem. A complex-valued function f(t) is almost periodic if it is
continuous and, for each positive real number ε, there is a relatively dense
set of ε-periods for f .

Note that if
f(t) =

∑
r

are
iθrt

is a trigonometric polynomial, then the map

f 7→
∑
r

|ar|

is a norm on the space of trigonometric polynomials; the closure of the
trigonometric polynomials relative to this norm gives a proper subspace of
the space of almost periodic functions. In fact there are a number of classes
of almost-periodic functions.
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We treat some applications of almost-periodic functions to continuous
quantum walks. There are two slightly different approaches. One is to
take the view that U(t) is an almost-periodic function taking values in the
algebra of n× n complex matrices. The second is to work with the entries
of U(t), which are almost periodic according to our definition.

8.7.2 Theorem. For any graph X and positive ε, there is a relatively dense
set of times P such that ‖U(t)− I‖ < ε for all t in P .

Proof. Set U0 = U(t0). Then

tr((U(t)− U0)∗(U(t)− U0)) = tr(2I − U(t)∗U0 − U∗0U(t))

is an almost periodic function that is zero at t0. Hence there is a relatively
dense subset P of R such that ‖U(t) − U(t0)‖ < ε for all t in P . Since
U(0) = I, the theorem follows.

If ‖U(τ)− I‖ < ε, then

‖U(t+ τ)− U(t)‖ = ‖(U(τ)− I)U(t)‖
≤ ‖U(τ)− I‖ ‖U(t)‖
= ‖U(τ)− I‖.

Thus if ‖U(τ) − I‖ < ε, then τ is an ε-period for U(t). Note that Theo-
rem 2.7.2 implies the existence of ε-periods, the problem we have addressed
here is to get a relatively dense set.)

8.8 Means
8.8.1 Theorem. If f is almost periodic then

lim
T→∞

1
T

∫ T

0
f(t) dt

exists.

If f(t) = U(t)a,b, then

M(f) = (E0)a,b.

(With the understanding that E0 = 0 if 0 is not an eigenvalue of X.)
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We denote the limit in the theorem byM(f), and call it the mean of f .
See Corollary 3.1 to Theorem 3.4 in Constantin Corduneanu “Almost

Periodic Oscillations and Waves” (Springer, New York) 2008 for existence
of the mean. See Proposition 3.15 in the same source for the following.

8.8.2 Theorem. The map f 7→ M(|f |) is a norm on the space of almost-
periodic functions.

8.8.3 Corollary. If f is a real non-zero almost-periodic function andM(f) =
0, then f changes sign.

Proof. If f does not change sign, then we may assume without loss that
f ≥ 0. Now

0 =M(f) =M(|f |)

and consequently f is identically zero.

Of course if f changes sign, then it follows that its zeros form a relatively
dense subset of R. Our next result shows that an almost periodic function
assumes its mean value on a relatively dense subset of R.

8.8.4 Corollary. If f is real and almost periodic and M(f) = f̂ , then
{t : f(t) = f̂} is a relatively dense subset of R.

Proof. Apply the above to f − f̂ .

8.8.5 Lemma. IfA is invertible thenM(U(t)) = 0, and otherwiseM(U(t)) =
E0.

Proof. We have
U(t) =

∑
r

(cos(θrt) + i sin(θrt))Er,

since M(sin(θrt)) = 0 and since M(cos(θrt)) = 0 is θr 6= 0, the result
follows.
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8.9 Zeros of Transition Functions
This section is unpublished joint work of the second author with Tino Ta-
mon and Hisao Tamaki. It is motivated by the plots of M(t)a,b, which show
that this function is often zero, or very close to zero. The difficulty is to
decide which. The following lemma gives a sufficient condition.

8.9.1 Lemma. Suppose a and b are vertices in the graph X. If a and b are
at odd distance in X, or if X is bipartite and 0 is not eigenvalue of X, then
the zeros of U(t)a,b form a relatively dense subset of R.

Proof. Suppose d = dist(u, v) > 0. Since

U(t)u,v =
∑
k

(it)k
k! (Ak)u,v

We see that 0 is a zero of the function U(t)u,v with multiplicity exactly
d. Since zeros of odd multiplicity of a function f are stable under small
perturbations of f , and since U(t)a,b is almost periodic, it follows that it
has a relatively dense set of zeros.

Now assume X is bipartite and 0 is not an eigenvalue of A. Then

U(t)a,b =
∑
r

eiθrt(Er)u,v.

If d is odd, we are already done. If d is even, then

(Eλ)u,v = (E−λ)u,v

and therefore
U(t)a,b = 2

∑
r:θr>0

(Er)u,v cos(θrt).

Thus the mean of U(t)a,b is 0, and again this function has a relatively dense
set of zeros.

We note that if X = Kn and n > 4, then U(t)u,u is never zero.
For P5 (bipartite, eigenvalues {±

√
3,±1, 0}) you may show that U(t)0,4

is never zero when t > 0. (This is not obvious from the plot of M(t)0,4
shown on the next page.)
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Figure 8.1: P5: M(t)0,4
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Notes
unitary group kronecker almost periodic: References. Not always physically
meaningful

Exercises
8-1. Show that UP5(t)0,4 = 0 if and only if t = 0.
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Chapter 9

Real State Transfer

We have seen the the existence of perfect state transfer on a graph has a
number of consequences. To summarize, if there is pst from a to b at time
t, then:

(a) There is pst from b to a at time t.

(b) Da(2t) = Da.

(c) If θk, θ`, θr and θs lie in the eigenvalue support of a and θk 6= θ`, then

θr − θs
θk − θ`

∈ Q

(d) The vertices a and b are strongly cospectral.

If the initial state of a continuous quantum walk on a graph X is given
by a density matrix D, then the state D(t) at time t is given by

D(t) = U(t)DU(−t).

We have perfect state transfer from a to b if Da(t) = Db at some time t.
In this chaper we will see that most of the consequences of perfect state
transfer follow simply from the assumption that the density matrices Da

and Db are real.
We will also see that interesting things happen if we assume that the

entries of D and D(t) are algebraic numbers.
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9.1 Real State Transfer
A state is real if its density matrix is real. We recall that we have perfect
state transfer at time t from a density matrix P to a density matrix Q if
P (t) = Q. We say that we have pretty good state transfer from a state
P to Q if for each positive real number ε there is a time tε such that
‖(U(t)PU(t)−Q)‖ < ε.

We define the eigenvalue support of a density matrix P to be the set of
pairs (θr, θs) such that ErPEs 6= 0. (This definition extends the one given
in the introduction to density matrices not of the form Da.) We say that
the eigenvalue support of P satisfies the ratio condition if, for each two
pairs of distinct eigenvalues in the eigenvalue support of P , we have

θr − θs
θk − θ`

∈ Q.

Note that if P is pure, that is, P = xx∗ for some unit vector x, then
ErPEs = 0 if and only if Erx or Esx is zero. (In this case we could
define the eigenvalue support to be the the set of eigenvalues θr such that
ErPEr 6= 0, which what we do elsewhere.)

9.1.1 Theorem. Let U(t) be the transition matrix corresponding to a
graph X. If P is a real density matrix, there is a positive time t such
that U(t)PU(−t) is real if and only if the eigenvalue support of P satisfies
the ratio condition.

Proof. We have
P (t) =

∑
r,s

eit(θr−θs)ErPEs

and therefore the imaginary part of P (t) is∑
r,s

sin(t(θr − θs))ErPEs.

The non-zero matrices ErPEs are linearly independent, and therefore the
imaginary part of P (t) is zero if and only if sin(t(θr − θs)) = 0 whenever
ErPEs 6= 0. Hence if (θr, θs) lies in the eigenvalue support of P then there
is an integer mr,s such that t(θr − θs) = mr,sπ.

9.1.2 Lemma. Let P be a real density matrix. If P (t) is real, then P (2t) =
P and U(2t) commutes with P and Q.
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Proof. If U(t)PU(−t) = Q where Q is real, then taking complex conjugates
yields

U(−t)PU(t) = Q

and consequently P = U(t)QU(−t). It follows at one that U(2t) commutes
with P .

9.1.3 Lemma. If A is real and symmetric and we have state transfer at t
between real density matrices P and Q, then

(a) ErPEr = ErQEr.

(b) If t(θr − θs) is not a multiple of π then ErPEs = ErQEs = 0.

(c) Otherwise ErPEs = ±ErQEs.

Proof. If A is real and symmetric then the idempotents Er are real and
symmetric. Assume

Q = U(τ)PU(−τ) =
∑
r,s

eiτ(θr−θs)ErPEs.

If we multiply this expression on the left by Er and on the right by Es, then

ErQEs = eiτ(θr−θs)ErPEs

and, since all matrices here are real, eit(θr−θs) must be real.
Since ∑r,sErPEs = P , we see that if A is real and there is pst from P

to Q, there are signs εr,s = ±1 such that

Q =
∑
r,s

εr,sErPEs.

Consider the rank-one case. If P = uuT then EruuTEs = 0 if and only
if Eru = 0 or Esu = 0. Hence the constraint in (b) gives a constraint on
the eigenvalue support of u. (In fact this is the usual ratio condition, so (b)
generalizes this.)

In the rank-one case, if ErPEs = 0 then either PEr = 0 or PEs = 0.
So the known results for pure states will extend to the case where, for all r
and s,

ErPEs = 0 ⇐⇒ ErPEr = 0 or EsPEs = 0.
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Note that ErPEr = 0 if and only if P 1/2Er = 0.
If ErPEs = 0 whenever r 6= s, then

P =
∑
r

ErPEr

and PA = AP ; thus U(t)PU(−t) = P for all t.

9.2 Pretty Good State Transfer
We have pretty good state transfer from a state P to a state Q if, for each
ε > 0, there is a time t such that

‖U(t)PU(−t)−Q‖ < ε.

Since the complex conjugate of

U(t)PU(−t)−Q

is
U(−t)PU(t)−Q = U(−t) (P − U(t)QU(−t))U(t)

and since U(t) is unitary,

‖U(t)PU(−t)−Q‖ = ‖P − U(t)QU(−t)‖.

Hence if we have pretty good state transfer from P to Q, then we have
pretty good state transfer from Q to P .

9.2.1 Lemma. Suppose A is real and we have pretty good state transfer
from P to Q. Then ErPEs = ±ErQEs (for all r and s) and ErPEr =
ErQEr.

Proof. By assumption there is an increasing sequence of times (tk)k≥0 such
that

U(tk)PU(−tk)→ Q

as tk →∞. Hence
ei(θr−θs)tkErPEs → ErQEs

as tk →∞. Since ErPEs and ErQEs are real, the result follows.
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9.2.2 Corollary. If A is real and P is real, there are only finitely many
real density matrices Q for which there is pretty good state transfer from
P to Q.

Proof. Since Q = ∑
r,sErQEs it follows that Q = ∑

r,s εr,sErPEs, where
εr,s = ±1.

9.3 Algebras
Because they are trace-orthogonal, the non-zero matrices ErPEs are linearly
independent. The “off-diagonal” terms ErPEs are nilpotent, indeed the
matrices

ErPEs, (r < s)

generate a nilpotent algebra, where the product of any two elements is zero.
The “diagonal” terms ErPEr generate a commutative semisimple algebra;
their sum is the orthogonal projection of P onto the commutant of A (see
[23] for further details).

Since U(t) is a linear combination of the spectral idempotents of A, it
is a polynomial in A and therefore, for each t we that P (t)in〈A,P 〉. In
consequence

〈P (t), A〉 = 〈P,A〉

for all t.

9.3.1 Lemma. If we have pretty good state transfer from P to Q, then
〈A,P 〉 = 〈A,Q〉.

Proof. The algebra 〈A,P 〉 is closed and as Q is a limit of a sequence of
matrices in it, it follows that Q ∈ 〈A,P 〉. If we have pretty good state
transfer from P to Q, then as we noted st the beginning of Section ??,
there is pretty good state transfer from Q to P and so 〈A,P 〉 = 〈A,Q〉.

If 〈A,P 〉 is the full matrix algebra, we say that P is controllable. If P
is real and P (t) is real, then U(2t) commutes with A and P . If P is also
controllable it follows that U(2t) must be a scalar matrix, say U(2t) = ζI.
Since det(U(t)) = 1, we have ζ |V (X)| = 1 and therfore ζ is a root of unity.
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9.4 Timing
9.4.1 Lemma. Let P be a density matrix and let S be given by

S := {σ : U(σ)PU(−σ) = P}.

Then there are three possibilities:

(a) S = ∅.

(b) There is a positive real number τ and S consists of all integer multiples
of τ .

(c) S is a dense subset of R and U(t)PU(−t) = P for all t.

Proof. Suppose S 6= ∅. Then S is an additive subgroup of R and there
are two cases. First, S is discrete and consists of all integer multiples of
its least positive element. Second, S is dense in R and there is sequence of
positive elements (σi)i≥0 with limit 0. Since for small values of t we have

U(t) ≈ I + itA

it follows that AP = PA and U(t)PU(−t) = P for all t.
If U(t)PU(−t) = P when t = τ > 0, but not for all t, we say that P is

periodic with period τ . If a density matrix is periodic, it has a well defined
minimum period. If there is perfect state transfer from P to Q, then P and
Q are both periodic with the same minimum period.

9.4.2 Lemma. Suppose P and Q are distinct real density matrices. If
there is perfect state transfer from P to Q, then P is periodic and if the
minimum period of P is σ, then pst occurs at time σ/2.

Proof. Suppose we have pst from P to Q and define

T := {t : U(t)PU(−t) = Q}

Assume that the minimum period of P is σ. If t ∈ T then P is periodic
with period 2t and so T is a coset of a discrete subgroup of R. Also T = −T .
Let τ be the least positive element of T . Then 2τ ≥ σ and thus

τ ≥ 1
2σ.

If τ ≥ σ then τ − σ ∈ T and since τ is not a period, τ < σ. As σ must
divide 2τ , it follows that τ = σ/2.
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9.4.3 Corollary. For any real density matrix P , there is at most one real
density matrix Q such that there is perfect state transfer from P to Q.

9.4.4 Lemma. Suppose we have pst from P to Q at time t and that
θ1, . . . , θm are the distinct eigenvalues of A in nonincreasing order. If
tr(PQ) = 0 then

t ≥ π

θ1 − θm
.

Proof. Since P < 0, it has a unique positive semidefinite square root which
we denote by P 1/2. We calculate that

〈P,U(t)PU(−t)〉 = tr(PU(t)PU(−t)) = tr(P 1/2U(t)P 1/2P 1/2U(−t)P 1/2)
= tr((P 1/2U(t)P 1/2)(P 1/2U(t)P 1/2)∗),

and from this it follows that 〈P,U(t)PU(−t)〉 = 0 if and only if

P 1/2U(t)P 1/2 = 0.

Now
P 1/2U(t)P 1/2 =

∑
r

eitθrP 1/2ErP
1/2;

here the matrices P 1/2ErP
1/2 are positive semidefinite and hence their eigen-

values are real and non-negative.
When t is small, the eigenvalues of U(t) on a small arc of the unit circle

in the complex plane, and this arc contains 1. If the eigenvalues of U(t) lie
on arc of the unit circle with length less than π, then ∑r e

itθrP 1/2ErP
1/2

cannot be zero.
Therefore if P and U(t)PU(−t) are orthogonal, then t(θ1 − θm) ≥ π.
Note that in this lemma we do not need P and Q to be real.

9.5 Periodicity and Eigenvalues
A state D is periodic (relative to the continuous walk on X), if there is
non-zero time τ such that

D(τ) = D.

Theorem 9.1.1 tells us that if D and D(τ) are both real, the eigenvalues
of the Hamiltonian satisfy the ratio condition. We derive a version of this
result for periodic states.
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9.5.1 Theorem. Let D be a rational state. If D is periodic at some time
τ , there is a square-free integer ∆ such that if (r, s) lies in the eigenvalue
support of D, then (θr − θs) is an integer multiple of

√
∆.

Proof. We have
D(t) =

∑
r,s

eiτ(θr−θs)ErDEs

and, since ∑Er = I,
D =

∑
r,s

ErDEs.

Therefore
EkDE` = EkD(t)E` = eiτ(θk−θ`)EkDE`

which yields that
eiτ(θk−θ`) = 1

whenever EkDE` 6= 0. If eiτ(θk−θ`) = 1, there is an integer mk,` such that
τ(θk−θ`) = 2mk,`π and hence if (r, s) and (k, `) lie in the eigenvalue support
of D, we have the ratio condition:

θr − θs
θk − θ`

∈ Q.

Let Γ denote the Galois group of the splitting fieldK of the characteristic
polynomial of X over Q. If M is a matrix over K and γ ∈ Γ, let Mγ be
the result of applying γ to each entry of M . If γ ∈ Γ and E is a spectral
idempotent of A with eigenvalue θ, then

AEγ = (AE)γ = (θE)γ = θγEγ,

which implies that Eγ is a spectral idempotent of A.
Let S denote the eigenvalue support of D. If ErDEs 6= 0, then since D

is rational, (Er)γD(Es)γ 6= 0, and therefore the set

{(θr, θs) : (r, s) ∈ S}

is closed under γ. Consequently if (k, `) ∈ S,

∏
(r,s)∈S

θk − θ`
θr − θs

= (θk − θ`)|S|∏
(r,s)∈S (θr − θs)

.
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The product ∏
(r,s)∈S

(θr − θs)

is invariant under Γ, and this it is an integer; given the ratio condition, this
implies that

(θk − θ`)|S| ∈ Q.
Arguing as in the proof of Theorem 7.6.1, we deduce that (θr − θs)2 is an
integer and that the integers

(θr − θs)2, (r, s) ∈ S,

all have the same square-free part.

9.6 Periodic Subsets
If S ⊆ V (X), define DS to be the diagonal matrix with (DS)a,a = 1 if a ∈ S
and (DS)a,a = 0 otherwise. Then |S|−1DS is a density matrix and we mat
refer to it as a subset state. In fact we will abuse notation and refer to DS

as a state. A subset S of V (X) is periodic if there is a time τ such that U(τ)
and DS commute. (Thus periodic vertices are one-element subset states.)

The matrix DS is idempotent, and represents orthogonal projection onto
the subspace

span{ea : a ∈ S}.
Accordingly a matrix M commutes with DS if and only if this subspace is
M -invariant. In particular S is periodic at time τ if and only if, for each
vertex b in S,

U(τ)eb ∈ span{ea : a ∈ S}.
Assume S is a subset of V (X). If M is a square matrix indexed by

V (X), we use MS,S to denote the submatrix of M with rows and columns
indexed by elements of S. We define the induced adjacency algebra of X
on S to be the matrix algebra generated by the matrices

(Er)S,S, r = 1, . . . ,m.

We denote it by A(S) and observe that it is isomorphic to the algebra
generated by the n× n matrices

DSErDS, r = 1, . . . ,m.
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(We may not always distinguish between these two representations.) It is
an easy exercise to verify that A(S) is also generated by the matrices

(Ak)S,S, k ≥ 0.

From Corollary 4.5.2 we see that if S is a parallel subset of V (X), then
rk((Er)S,S) ≤ 1 for each r.

9.6.1 Lemma. If the subset S of V (X) is periodic relative to the continuous
walk on X at time τ , then U(τ)S,S belongs to the center of the induced
algebra on S.

Proof. Since U(τ) is block diagonal and commutes with Er for each r, it
follows that (U(τ)S,S) commutes with (Er)S,S for each r.

9.7 Algebraic States
We say that a state with density matrix D is algebraic if the entries of D
are algebraic numbers. Clearly the vertex states Da are algebraic; we give
a second class of examples.

Suppose D is a pure state. Then D(t) is pure for all t. If D = zz∗, then
D(t) = ww∗, where w = U(t)z. We say that a matrix or vector is flat if all
its entries have the same absolute value. We see that a vector w is flat if
and only the diagonal entries of ww∗ are all equal. (Note that these entries
are non-negative and real.)

We say that a quantum walk has uniform mixing relative to a pure state
D if there is a time t such that

D(t) ◦ I = 1
n
I.

The walk has uniform mixing if it admits uniform mixing relative to each
vertex. In many of the cases where uniform mixing is known to occur, the
underlying graph is vertex transitive, and then uniform mixing occurs if
and only if uniform mixing relative to a vertex occurs. The only examples
we know of graphs that are not regular and admit uniform mixing are the
complete bipartite graph K1,3 and its Cartesian powers. If n ≥ 2, the stars
K1,n admit uniform mixing relative to the vertex of degree n.
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9.7.1 Lemma. Assume X is bipartite and a ∈ V (X). If the quantum walk
on X has uniform mixing at time relative to the pure state Da, then Da(t)
is algebraic.

9.7.2 Theorem. If the density D is algebraic and, for some t, the density
D(t) is algebraic, then the ratio condition holds on the eigenvalue support
of D.

Proof. We have
D(t) =

∑
r,s

eit(θr−θs)ErDEs

The matrices ErDEs are pairwise orthogonal, and so, for all r and s,

〈D(t), ErDEs〉 = eit(θr−θs)〈ErDEs, ErDEs〉.

The entries of the spectral idempotents are algebraic, and if the entries of
D and D(t) are algebraic, then the values of the two inner products in the
above identity are algebraic numbers.

It follows that eit(θr−θs) must be algebraic, for all r and s. Now if k 6= `,
then

eit(θr−θs) =
(
eit(θk−θ`)

) θr−θs
θk−θ` .

The Gelfond-Schneider theorem tells us that if α and β are algebraic num-
bers and α 6= 0, 1 and β is irrational, then αβ is transcendental, whence we
deduce that if D and D(t) are algebraic, then the ratios

θr − θs
θk − θ`

are all rational.
We say that the continuous quantum walk on X is periodic at a if there

is a time τ such that Da(τ) = Da.

9.7.3 Corollary. IfX is bipartite and there is uniform mixing onX relative
to the vertex a, then X is periodic at a and the eigenvalue support of a
consists of integer multiples of ∆, where ∆2 ∈ Z.
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9.8 Fractional Revival
Having seen that perfect state transfer is rare, it is natural to look for
relaxations of the idea. We have already considered one, pretty good state
transfer. We introduce a second variant.

If a and b are two vertices in X, we say that we have fractional revival
on {a, b} if there is a time t and scalars α and β such that

U(t)ea = αea + βeb.

When the values of α and β are significant, we may say that we have
fractional (α, β)-revival. As U(t) is unitary must have |α|2 + |β|2 = 1. (It
might appear that we should have “fractional revival from a to b”; the
reason for the given wording will become clear shortly.) If β = 0, then
fractional revival reduces to periodicity at a, and if α = 0, we have perfect
state transfer. We say we have proper fractional revival if β 6= 0. (This
condition excludes the case that the vertex a is periodic.)

To provide an example, we consider the graph K2 ⊗Kn. If n ≥ 3, this
has diameter three and, moreover, it is antipodal—for each vertex there is
a unique vertex at distance three.

9.8.1 Lemma. At time 2π/n, there is fractional revival between antipodal
vertices in K2 ×Kn.

Proof. From Equation (12.6.1), we have

UK2×Y (t) = 1
2

(
UY (t) + UY (−t) UY (t)− UY (−t)
UY (t)− UY (−t) UY (t) + UY (−t)

)
.

Now if we set
E0 = 1

n
J, E1 = I − E0,

then

UKn(t) = e−it(enitE0 + E1), UKm(−t) = eit(e−nitE0 + E1)

Set t = 2π/n. Then enit = 1 and

UKn(t) + UKn(−t) = 2 cos(2π/n)I,
UKn(t)− UKn(−t) = 2 sin(2π/n)I,

170



9.9. Symmetry

which in turn implies that

UK2⊗Kn(2π/n) =
(

2 cos(2π/n) 2 sin(2π/n)
2 sin(2π/n) 2 cos(2π/n)

)
⊗ In.

We describe another class of examples using the Cartesian product.

9.8.2 Lemma. Assume that the quantum walk on X is periodic at time
τ , where τ < π/2. Let V (K2) = {1, 2}. Then for each vertex u in X, the
Cartesian product X � K2 admits fractional revival on {(u, 1), (u, 2)} at
time τ .

Proof. Recall that
UX�K2(t) = UX(t)⊗ UK2(t).

This describes a setup where Alice is running the continuous walk on X (in
her lab) and Bob the walk on K2 in his. If the initial state is eu ⊗ e1, then
at time τ there is a complex scalar γ such that the state is

UX(τ)eu ⊗ UK2(τ)e1 = γeu ⊗ UK2(τ)e1.

Since τ is less than the period of the walk on K2, we see that

UK2(τ) = αe1 + βe2

with αβ 6= 0.
This construction works in part because K2 admits fractional revival at

any time that is not an integer multiple of π/2.
The path P4 admits fractional revival between its vertices of valency 1

at time 2π/
√

5 (and hence between its vertices of degree two at the same
time). Proving this requires more effort, so we leave it as an exercise.

9.9 Symmetry
We work towards showing that fractional revival is symmetric in the vertices
involved.

9.9.1 Lemma. If U(t)ea = αea + βeb, and β 6= 0 then

U(t)eb = βea −
αβ

β
eb.
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If U(t)ea = αea + βeb, then

ea = αU(−t)ea + βU(−t)eb

and, taking complex conjugates, this implies that

ea = αU(t)ea + βU(t)eb.

Therefore
ea = α(αea + βeb) + βU(t)eb

and (if β 6= 0), this yields

U(t)eb = β
−1((1− αα)ea − αβeb)

and, as 1− αα = ββ, the lemma follows.
This shows that admitting fractional revival is a property of the pair of

vertices, not of the ordered pair. Hence we have:

9.9.2 Lemma. There is fractional revival on S = {a, b} if and only if S is
periodic.

We note another useful consequence of Lemma 9.9.1.

9.9.3 Corollary. If we have proper fractional revival on a and b, then a
and b are parallel with the same eigenvalue support.

Proof. If U(t)ea = αea + βeb, then

(U(t)− αI)ea = βeb

If Er is a spectral idempotent of A with eigenvalue θr, then multiplying
both sides of this equation by Er yields that

(eiθrt − α)Erea = βEreb.

As β 6= 0, we see that |α| < 1 and so eiθrt − α 6= 0.
This result implies, among other things, that if we have fractional revival

on {a, b}, then Aut(X)a = Aut(X)b. (See Lemma 6.5.1.)
We present a description of fractional revival in matrix form.
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9.9.4 Corollary. If we have fractional (α, β)-revival on vertices a and b at
time τ , the subspace spanned by ea and eb is U(τ)-invariant; if β 6= 0 the
matrix that represents the action of U(τ) on this subspace is(

α β

β −αβ

β

)
.

You should convince yourself that the matrix R is unitary (its determi-
nant is β/β). Since it is unitary and not a scalar matrix, its eigenvalues
are distinct. Note that this result shows that U(τ) is block-diagonal, with
one block of order 2 × 2 and, if n = |V (X)|, the other block of order
(n− 2)× (n− 2).

Since DS is real, Theorem 9.1.1 tells us that the eigenvalue support of
{a, b} must satisfy the ratio condition. Recall that the eigenvalue support
of D is the set of eigenvalue pairs (θr, θs) such that ErDEr 6= 0. You might
show (see the Exercises) that if ErDEs 6= 0, then neither ErDEr nor EsDEs
is zero.

9.10 Commutativity
We investigate the interaction of commutativity (of the induced algebra)
and fractional revival.

9.10.1 Lemma. If we have proper fractional revival on S = {a, b}, then
A(S) is commutative.

Proof. Assume S = {a, b}. If we have fractional (α, β)-revival at time τ and
if we set R(t) = (U(t)S,S). If R(τ) has only one eigenvalue then, since R(τ)
is unitary, it must be a scalar multiple of I2. Since our revival is proper
β 6= 0 and so, by Corollary 9.9.4, the eigenvalues of R(τ) are distinct. From
this we infer that any matrix that commutes with R(τ) is a polynomial in
R(τ).

To help us make use of this lemma, we provide a characterization of
commutativity for symmetric matrices.

9.10.2 Lemma. If β 6= 0, the matrices(
α β
β γ

)
,

(
a b
b c

)
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commute if and only if
a− c
b

= α− γ
β

.

Proof. Two symmetric matrices commute if and only their product is sym-
metric. Denote the matrices in the statement of the lemma by A and B. If
we compute the off-diagonal entries of AB, we see that AB is symmetric if
and only if

αb+ βc = βa+ γc.

If β = 0 and α = γ, then A is a scalar matrix and commutes with all
2× 2 matrices; if β = 0 and α 6= γ then the matrices that commute with A
are the polynomials in A, and are all diagonal.

(In some sense, the previous lemma still holds when b = 0.)

9.10.3 Corollary. If we have proper fractional (α, β)-revival on {a, b} at
time τ and

B =
(
a b
b c

)
commutes with (U(τ))S,S, then

a− c
b

=
(
α

β
+ α

β

)
.

Proof. We recall that

(U(τ))S,S =
(
α β

β −αβ

β

)

and apply the lemma.
There are a number of places where we can apply this corollary. If

S = {a, b} and we set

((tI − A)−1)S,S =
(
φ(X \ t) φa,b(X, t)
φa,b(X, t) φ(X \ b, t)

)
,

then ((tI − A)−1)S,S lies in A(S) and so it commutes with (U(τ))S,S. If
P(a, b) denotes the set of paths from a to b in X, then (from Section 4.3)

φa,b(X, t) =
∑

P∈P(a,b)
φ(X \P, t)

= (φ(X \a, t)φ(X \ b, t)− φ(X, t)φ(X \{a, b}, t))1/2.
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9.10.4 Corollary. If we have proper fractional (α, β)-revival on {a, b} at
time τ , then

φ(X \a, t)− φ(X \ b, t) =
(
α

β
+ α

β

)
φa,b(X, t).

Note that if φ(X \a, t)− φ(X \b, t) is a scalar times φa,b(X, t), then the
scalar is determined by the leading coefficients of φ(X \ a, t) − φ(X \ b, t)
and ϕa,b(t). Hence this corollary holds if φ(X \a, t)− φ(X \ b, t) is a scalar
times φa,b(X, t). In fact:

9.10.5 Lemma. If a, b ∈ V (X), there is a constant µ such that

φ(X \a, t)− φ(X \ b, t) = µφa,b(X, t),

if and only if the induced algebra on {a, b} is commutative.

Proof. If the stated condition holds, then for all t, the matrices(
φ(X \ t) φa,b(X, t)
φa,b(X, t) φ(X \ b, t)

)

commute. But if S = {a, b},(
φ(X \a, t) φa,b(X, t)
φa,b(X, t) φ(X \ b, t)

)
= ((tI − A)−1)S,S =

∑
r

1
t− θr

(Er)S,S

from which we deduce that the matrices (Er)S,S commute.

If a and b are cospectral vertices, then φ(X \ a, t) = φ(X \ b, t) and so
the induced algebra is commutative. In this case all matrices in it have
constant diagonal, and so they have the form(

a b
b a

)

and we can see, without appeal to the above machinery, that they commute.

9.10.6 Corollary. If we have proper fractional (α, β)-revival on {a, b} and
a ∼ b, then a and b are cospectral.
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9. Real State Transfer

Proof. If a ∼ b, then P(a, b) contains unique path of length two, and so
deg(ϕa,b) = n − 2. On the other hand both φ(X \ a, t) and φ(X \ b, t) are
monic polynomials of degree n− 1 and in both polynomials, the coefficient
of tn−2 is zero (no loops). Hence the degree of φ(X \ a, t) − φ(X \ b, t) is
at most n − 3. It follows that φ(X \ a, t) − φ(X \ b, t) must be the zero
polynomial.

Other simple conditions that imply cospectrality are given in the Exer-
cises.

We say two vertices a and b are fractionally cospectral if their induced
algebra A({a, b}) is commutative. They are strongly fractional cospectral
if they are fractionally cospectral and parallel.

We have balanced fractional (α, β)-revival on {a, b} at time τ if |α| = |β|.

9.10.7 Lemma. If a and b are cospectral, then there is balanced fractional
revival at time τ if and only if there is perfect state transfer at time 2τ .

Proof. If a and b are cospectral, then (US(t))a = (US(t))b (for all t). If we
have pst at time 2τ , then

US(2τ) = γ

(
0 1
1 0

)

Now (
α β
β α

)2

=
(
α2 + be2 2αβ

2αβ α2 + β2

)

and so if (US(2τ))a,a = 0, then β = ±iα. So there is a complex scalar ζ of
norm one such that

US(2τ) = ζ

(
1 ±i
±i 1

)
and thus we have balanced fractional revival at time τ .

We leave the converse as an exercise.

If we have balanced fractional revival on cospectral vertices at time τ ,
you may show that there is a complex scalar ζ of norm one such that

(U(τ)S,S)4 = ζI2

and hence there is perfect state transfer from a to b at time 2τ .
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If DS is periodic at time t, then

DS = U(t)DSU(−t),

and

DS = (DSU(t)DS)(DSU(−t)DS) = U(t)S,SU(−t)S,S = U(t)S,S(U(t)S,S)∗.

It follows that if DS is periodic at time τ , then U(τ)S,S is unitary. (Note
that (DS)S,S is the identity matrix I|S|.)

9.11 Cospectrality
We investigate fractional revival on cospectral vertices. If a and b are cospec-
tral vertices and M is a polynomial in A, them Ma,a = Mb,b. Setting
S = {a, b}, we conclude consists all matrices(

γ σ
σ γ

)
, γ, σ ∈ R.

It follows at once that if a and b are cospectral, the induced algebra on S
is commutative. We see that

U(τ) =
(
α β
β α

)

where |α|2 + |β|2 ≤ 1, and equality holds if and only if U(t) is unitary (in
which case we have fractional revival at time τ).

9.11.1 Theorem. Assume a and b are cospectral vertices in X and that
we have fractional revival on S = {a, b}. Then one of the following holds:

(a) There is time τ at which both a and b are periodic.

(b) There is perfect state transfer from a to b.

(c) There is pretty good state transfer from a to b.

Proof. Assume that fractional revival takes place at time τ . Then

U(τ) =
(
α β
β α

)
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with |α|2 + |β|2 = 1. In particular, U(τ) is unitary and this implies that

αβ + βα = 0.

Consequently
α

β
= −α

β

and therefore there is a complex number ζ of norm 1 and a real number θ
such that

U(τ) = ζ

(
cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
.

As (
cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
=
(
i 0
0 1

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
−i 0
0 1

)
,

we see that ζ−1U(τ) is conjugate to rotation by θ.
If the multiplicative order of ζ−1U(τ) is 2m+1, then we have periodicity

at a and b at time (2m+ 1)τ .
If the multiplicative order of ζ−1U(τ) is 2m, then

U(mτ) = ζm
(

0 i
i 0

)

and so we have perfect state transfer at time mτ (and simultaneous period-
icity at time 2mτ).

If the multiplicative order of ζ−1U(τ) is infinite, θ is irrational. It follows
that if ε > 0, there an integer m such that ζ−1U(mτ) lies within ε of(

i 0
0 1

)(
0 1
−1 0

)(
−i 0
0 1

)
=
(

0 i
i 0

)
.

Accordingly there is pretty good state transfer from a to b.
The results from the previous section show that, in many cases, frac-

tional revival implies cospectrality. However that are graphs where there is
fractional revival between non-cospectral vertices; we describe one example.
Let S and T be the stars K1,a+k and K1,b+k (with a, b ≥ 1 and k ≥ 2) and
let X the graph we get by identifying k vertices of degree one in S with k
vertices of degree one in T . Then the two vertices of X of degree greater
that two are fractionally cospectral and there are infinitely many triples
(a, k, b) such that there is fractional revival on these vertices (the first of
which is (3, 2, 6)).
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9.12 Characterizing Fractional Revival
Assume S = {a, b} ⊆ V (X) and D = DS. Set US(τ) = (U(t)S,S) and
Fr = (Er)S,S.

9.12.1 Lemma. If S is parallel, the eigenvalue support of DS is the set of
pairs

{(θr, θs) : FrFs 6= 0}.

Proof. As defined, the eigenvalue support consists of the pairs (θr, θs) such
that ErDEs 6= 0. We note that

〈ErDEs, ErDEs〉 = trEsDErErDEs = trEsDErDEs

and, as D = D2,

trEsDErDEs = trDEsDErD = trDEsDDErD = trFsFr.

Since Fr and Fs are positive semidefinite, tr(FrFs) = 0 if and only if FrFs =
0.

It is worth noting that if M and N are rank-one matrices, then MN =
NM if and only if MN = 0 or N = cM for some scalar c.

9.12.2 Theorem. Let a and b be distinct vertices of the connected graph
X. We have fractional revival on S = {a, b} at time τ if and only if the
following hold:

(a) a and b are parallel.

(b) The induced adjacency algebra on S is commutative.

(c) Let C+ be set of indices r such (Er)a,b > 0, and let C− be set of indices
r such (Er)a,b < 0. Then the square of the difference of two eigenvalues
from C+ or C− is an integer, and all these integers have the same
square-free part.

Proof. We show that the stated conditions are necessary, and leave their
sufficiency as an exercise.

We have fractional revival on S if and only if DS is periodic, and there-
fore the conclusions in part (c) are consequences of Theorem 9.5.1.
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We first treat the case where US is diagonal. If U(t) = γI, and we have
simultaneous periodicity on a and b, which counts as fractional revival. If
US(τ) is diagonal but not a scalar, then any matrix that commutes with
US(τ) is diagonal. This implies that (Er)a,b = 0 for all r and therefore

(Ak)a,b =
∑
r

θkr (Er)a,b = 0

for all k. This implies that a and b lie in different components of X, con-
tradicting our assumption that X is connected.

We assume now that US(τ) is not diagonal, and that its eigenvalues are
distinct. Since S is parallel, rk(Fr) ≤ 1 for all r. If

Fr = xxT , Fs = yyT

then
FrFs = (xTy)xyT

and it follows that Fr and Fs commute if and only if x and y are parallel or
orthogonal; equivalently either FrFs = 0 or Fs is a nonzero scalar multiple
of Fr. If

x =
(
w
z

)

and xTy = 0, then y must be a scalar multiple of(
−z
w

)
.

Therefore Fr is a scalar multiple of one the matrices(
w2 wz
wz z2

)
,

(
z2 −wz
−wz w2

)
.

Note that one of these matrices has all entries non-negative while, in the
other, only the off-diagonal entries are negative.

The matrix US(τ) is normal, so has a spectral decomposition with idem-
potents Φ and I − Φ, where we may assume that the entries of Φ are
non-negative. For each r, one of the following holds:

Fr = tr(Fr)Φ, Fr = tr(Fr)(I − Φ)
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Choose indices r in C+ and s in C− and set θ+ = θr and θ− = θs. If r ∈ C+

we have US(τ)Fr = eiτθ+
Fr and if r ∈ C− we have US(τ)Fr = eiτθ−Fr.

We note that if r, s both lie in C+ or in C− if and only if FrFs 6= 0,
implying that C+ and C− are closed under taking algebraic conjugates. We
can paraphrase Theorem 7.6.1 as stating that if the ratio condition holds for
a set Φ of eigenvalues, closed under algebraic conjugates, then the squared
difference of any two eigenvalues from Φ is an integer and the square-free
part of each squared difference is the same. Because eiτθr is constant on C+

and C−, it follows that the ratio condition holds for the sets
{θr : r ∈ C+}, {θs : s ∈ C−}.

Therefore there is a square-free integer ∆ and integers mr,s such that for
each r, s ∈ C+, or r, s ∈ C−, we have

θr − θs = mr,s

√
∆.

If g is the gcd of the integers mr,s, then

τ = 2π
g
√

∆
.

We see that
US(τ) =

∑
r∈C+

eiτθrFr +
∑
r∈C−

eiτθrFr

= θ+

 ∑
r∈C+

tr(Fr)
Φ + θ−

 ∑
r∈C−

tr(Fr)
 (I − Φ)

This is a version of the spectral decomposition of US(τ). Since US(τ) is
normal, it is unitary if and only if its eigenvalues have norm one, and it is
unitary if and only DS is periodic at time τ , i.e., if only there is fractional
revival at time τ . As ∑r Fr = I2, we have ∑r tr(Fr) = 2 and therefore the
eigenvalues of US(τ) have norm one if and only if∑

r∈C+

tr(Fr) = 1. (9.12.1)

(In which case, ∑r∈C+ Fr = Φ.) Now

I2 =
∑
r

Fr =
 ∑
r∈C+

tr(Fr)
Φ +

 ∑
r∈C−

tr(Fr)
 (I − Φ).

and, since both eigenvalues of I2 are equal to 1 we deduce that (9.12.1)
holds.

181



9. Real State Transfer

Notes

Exercises
9-1. Prove that if the induced algebra on {a, b} is commutative, there is a

constant µ such that

(Er)a,a − (Er)b,b = µ(Er)a,b.

Deduce that if X is regular and connected, the vertices a and b are
cospectral.

9-2. Prove that if we have proper fractional revival on {a, b} and either of the
following conditions hold, then a and b are cospectral:

(a) X is bipartite and dist(a, b) is odd.
(b) a and b have the same valency and dist(a, b) = 2.

9-3. Assume S is a periodic subset of V (X), with period τ . Show that if the
eigenvalues of (U(τ)S,S) are simple, the induced algebra at S is commu-
tative with dimension at most |S|.

9-4. Prove that if ErDSEr = 0, then ErDSEs = 0 for all s.

9-5. Assume S = {1, 2} and

A =
(
A0 B
BT A1

)
, U(τ) =

(
U0 0
0 U1

)
.

(So we have fractional revival on S at time τ and U0 = (U(τ)S,S).) Show
that U0 commutes with BBT .

9-6. Assume we have fractional revival on {a, b} at time τ . Show that if
deg(a) 6= deg(b) and a and b have no common neighbour, then a and b
are simultaneously periodic at time τ .
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Chapter 10

Paths and Trees

We investigate the spectral properties of paths, and show that there is no
perfect state transfer on paths with more than three vertices. We present
the proof, due to Coutinho and Liu, that perfect state transfer relative to
the Laplacian does not occur on any tree with more than two vertices.

10.1 Recurrences for Paths
Let Pn denote the path on n vertices and let φn(t) denote its characteristic
polynomial. Then it’s simple enough to verify that

φ0(t) = 1, φ1(t) = t, φ2(t) = t2 − 1, φ3(t) = t3 − 2t.
(For example, use the fact that paths are bipartite and that the coefficient of
xn−2 in the characteristic polynomial of a graph on n vertices is the number
of edges.) To go further we note that

det
(
a bT

b A1

)
= det

(
a 0
b A1

)
+ det

(
0 bT

b A1

)
and hence

det
(

t −eT1
−e1 tI − A(Pn)

)

= det
(

t 0
−e1 tI − A(Pn)

)
+ det

(
0 −eT1
−e1 tI − A(Pn)

)

= det
(

t 0
−e1 tI − A(Pn)

)
− det(tI − A(Pn−1)).
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10. Paths and Trees

This leads to the basic recurrence:

10.1.1 Theorem.

φ(Pn+1(t)) = tφ(Pn, t)− φ(Pn−1, t) (n ≥ 1).

Using this we can prove by induction that

φn(t) =
∑
k≥0

(−1)k
(
n− k
k

)
tn−2k.

We list the characteristic polynomials of the first six paths.

n φ
1 t
2 t2 − 1
3 t3 − 2t
4 t4 − 3t2 + 1
5 t5 − 4t3 + 3t
6 t6 − 5t4 + 6t2 − 1

If G andH are graphs then their 1-sum is the graph we get by identifying
a vertex in G with a vertex in H. The resulting graph will depend on our
choice of vertex and there is no harm in calling both vertices u (say). If Y
is the 1-sum of G and H at the vertex u, then by Lemma 4.7.1

φ(Y ) = φ(G\u)φ(H) + φ(G)φ(H \u)− tφ(G\u)φ(H \u).

If X is obtained by joining a vertex u in G to a vertex v in H by an edge,
then

φ(X) = φ(G)φ(H)− φ(G\u)φ(H \v).

It is easy to derive this identity from the previous one, and it is also easy to
use it to prove Theorem 10.1.1. You should also use it to prove the following
generalization.

10.1.2 Lemma. We have

φm+n(t) = φm(t)φn(t)− φm−1(t)φn−1(t).
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We note some further interesting identities which we will not be using,
the first is related to a property of the Fibonacci numbers:

φn(t)2 − φn−1(t)φn+1(t) = 1.

The second is an instance of a Christoffel-Darboux identity, which hold for
orthogonal polynomials in general and not just for characteristic polynomi-
als of paths:

n−1∑
r=0

φr(s)φr(t) = φn−1(s)φn(t)− φn(s)φn−1(t)
t− s

This is easily verified by induction and implies that

n−1∑
r=0

φr(t)2 = φn−1(t)φ′n(t)− φ′n−1(t)φn(t).

10.2 Eigenvalues and Eigenvectors
We write our recurrences in matrix form:(

φn+1
φn

)
=
(
t −1
1 0

)(
φn
φn−1

)

(
φn+1
φn

)
=
(
t −1
1 0

)n (
t
1

)

and then convert to generating functions:

∑
n≥0

un
(
φn+1
φn

)
=
(
I − u

(
t −1
1 0

))−1 (
t
1

)

=
(

1− ut u
−u 1

)−1 (
t
1

)

= 1
1− ut+ u2

(
1 −u
u 1− ut

)(
t
1

)

= 1
1− ut+ u2

(
t− u

1

)
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10.2.1 Lemma. ∑
n≥0

unφn = 1
1− ut+ u2

If
α = 1

2(t+
√
t2 − 4), β = 1

2(t−
√
t2 − 4)

then

1
1− ut+ u2 = 1

(1− αu)(1− βu)

= 1
α− β

(
α

1− αu −
β

1− βu

)

and
φn = αn+1 − βn+1

α− β
.

Now put t = 2 cos(ζ). Then

α = cos(ζ) + i sin(ζ) = eiζ , β = cos(ζ)− i sin(ζ) = e−iζ

and
φn(2 cos(ζ)) = e(n+1)iζ − e−(n+1)iζ

eiζ − e−iζ
.

10.2.2 Theorem.
φn(2 cos(ζ)) = sin(n+ 1)ζ

sin(ζ) .

10.2.3 Corollary. The eigenvalues of Pn are

2 cos
(

πk

n+ 1

)
, k = 1, . . . , n.

Once we have the eigenvalues, the eigenvectors are easy. If A = A(Pn)
then

(tI − A)


φ0(t)
...

φn−1(t)

 = φn(t)en,
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where en is the last vector in the standard basis. Hence if θj is the j-th
eigenvalue of Pn, then the corresponding eigenvector is

zj =


φ0(θj)

...
φn−1(θj)


We could use the Christoffel-Darboux identity to deduce that

n−1∑
r=0

φr(θj)2 = −φn−1(θj)φ′n(θj),

but instead we will use the following:

10.2.4 Lemma.

2
n∑
r=0

cos(rθ) =
sin((n+ 1

2)θ)
sin(1

2θ)
+ 1.

Proof. If q := eiθ then

2
n∑
r=0

cos(rθ) =
n∑
r=0

(eirθ + e−irθ) =
n∑
r=0

(qr + q−r)

= qn+1 − 1
q − 1 + q−n−1 − 1

q−1 − 1

= qn+1 − q−n

q − 1 + 1

= qn+1/2 − q−1/2−n

q1/2 − q−1/2 + 1

=
sin((n+ 1

2)θ)
sin(1

2θ)
+ 1.

Using Theorem 10.2.2, we have
n−1∑
r=0

φr(2 cos(u))2 = 1
sin2(u)

n−1∑
r=0

sin2(ru)

and
n∑
r=0

sin2(ru) =
n∑
r=0

1
2(1− cos(2ru))

= n+ 1
2 − 1

4

(
sin((2n+ 1)u)

sin(u) + 1
)
.
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Now set u = jπ/(n+ 1). Then (2n+ 1)u = 2jπ − u and

sin((2n+ 1)u)
sin(u) = sin(2jπ − u)

sin(u) = −1

whence
n−1∑
r=0

φr(2 cos(u))2 = n+ 1
2 sin(u) .

10.2.5 Lemma. The idempotents E1, . . . , En in the spectral decomposition
of Pn are given by

(Er)j,k = 2
n+ 1 sin

(
jrπ

n+ 1

)
sin

(
krπ

n+ 1

)
.

Proof. If A = A(Pn) and en is the n-th vector in the standard basis of Rn,
then

A


sin(β)
sin(2β)

...
sin(nβ)

 =


sin(2β)

sin(β) + sin(3β)
...

sin((n− 1)β)

 = 2 cos(β)


sin(β)
sin(2β)

...
sin(nβ)

−sin((n+1)β)en

So if sin((n+ 1)β) = 0 then

z(β) :=


sin(β)
sin(2β)

...
sin(nβ)


is an eigenvector for A with eigenvalue 2 cos(β). Letting β vary over the
values

2πr
n+ 1 , r = 1, . . . , n

we obtain n distinct eigenvalues. Therefore each eigenvalue of Pn is simple
and the projection onto the eigenspace spanned by z(β) is

1
z(β)T z(β)z(β)z(β)T ).

We can compute the value of the inner product z(β)T z(β) using 10.2.4, and
this yields the stated expression for Er.
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10.2.6 Lemma. The polynomials φn and φn−1 are coprime.

Proof. Since
φm+1(t) = tφm(t)− φm−1(t)

we see that any common factor of φm+1 and φm must divide φm−r for r =
0, 1, . . . ,m.

10.2.7 Corollary. If θ is a zero of φn(t) then no two consecutive entries
of the corresponding eigenvector are zero, and the first and last entries are
not zero.

10.2.8 Theorem. If
θj = 2 cos

(
πj

n+ 1

)
then

φm−1(θj) = φmj−1(θ1)
φj−1(θ1)

It is very easy to derive this from the sine-formula for φn. Hence we
obtain

φr(θ2) = φ2r+1(θ1)
φ1(θ1) ;

if 2r + 1 > n then

φ2r+1 = φnφ2r+1−n − φn−1φ2r−n

and therefore

φ2r+1(θ1) = −φn−1(θ1)φ2r−n(θ1) = −φ2r−n(θ1).

10.3 Line Graphs and Laplacians
10.3.1 Theorem. If X is bipartite on m + n vertices with color classes
{1, . . . ,m} and {m+ 1, . . . ,m+ n}, then

A =
(

0 B
BT 0

)
.

If D is the diagonal matrix of order (m+ n)× (m+ n) with Di,i = 1 when
i ≤ m and Di,i = −1 otherwise, DAD = −A.
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Since D2 = I, if DAD = −A then A and −A are similar. This implies
that the spectrum of X is symmetric about 0. Further if Az = θz then

ADz = D(DAD)z = −DAz = −θDz

and so D pairs the eigenvectors of A.
Let ∆ denote the diagonal matrix of valencies of X. Then ∆−A is the

Laplacian matrix of X. If X is bipartite and D is as before, then

DLD = ∆−DAD = ∆ + A.

The matrix ∆ + A is known as the unsigned Laplacian.
If B is the vertex-edge incidence matrix of X, then

BBT = A(X) + ∆

and
BTB = A(L(X)) + 2I

Therefore A(X) + ∆ and A(L(X)) + 2I have the same nonzero eigenvalues
with the same multiplicities.

10.3.2 Corollary. If X is bipartite then A(L(X))+2I and ∆−A(X) have
the same non-zero eigenvalues with the same multiplicities.

For the path Pn we have

L(Pn) = Pn−1.

10.3.3 Corollary. A(Pn−1) + 2I and ∆ − A(Pn) have the same nonzero
eigenvalues with the same multiplicities.

If BBT z = λz then

(BTB)BT z = BTBBT z = λBT z

Thus if z is an eigenvector for BBT with eigenvalue λ and λ 6= 0, then BT z
is an eigenvalue for BTB with eigenvalue λ.

Similarly if BTBy = λy then

(BBT )By = BBTBy = λBy
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and so if λ 6= 0 we see that By is an eigenvector for BBT with eigenvalue
λ.

Suppose θ is an eigenvalue of Pn−1 and B is the vertex-edge incidence
matrix of Pn. Then

BTB = 2I + A(Pn−1), BBT = ∆ + A(Pn)

and so if θ is an eigenvalue of A(Pn−1) then θ+2 is an eigenvalue of ∆+A(Pn).
We know that Zn−1 is the eigenvector of Pn−1 with eigenvalue θ, and so Bz
is an eigenvector of ∆ + A(Pn) with eigenvalue θ + 2. By changing the
sign of the entries indexed by a color class, we obtain an eigenvector for
∆− A(Pn) with the same eigenvalue.

Since
cos

(
(n− r)π

n

)
= − cos

(
rπ

n

)
,

for Laplacian eigenvalues of Pn we have

θr + θn−r = 4.

10.4 Inverses
If n is even, A(Pn) is invertible. If we order the odd vertices before the even
vertices then

A(Pn) =
(

0 B
BT 0

)
where if n = 8 we have

B =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

 .
If N := B − I, then N4 = 0 and so in general

B−1 = (I +N)−1 =
n−1∑
k=0

(−1)kNk.

Note that A is invertible if and only if B is:

A−1 =
(

0 B−T

B−1 0

)
.
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If n = 8, this yields

B−1 =


1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1


and if

D =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
then

DB−1D =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .
If we denote this matrix by C then we see that(

D 0
0 D

)(
0 B−T

B−1 0

)(
D 0
0 D

)
=
(

0 CT

C 0

)

and the last matrix is the adjacency matrix of a graph with P8 as a subgraph.

10.5 Eigenthings for Laplacians of Paths
Let ∆ denote the diagonal matrix with i-th diagonal entry equal to the
valency of the i-th vertex of X. Then the Laplacian of X is ∆− A. Let B
be the n× (n− 1) matrix with

Bi,i = 1, Bi,i−1 = −1

and all other entries zero. Then B is the incidence matrix of an orientation
of Pn and

BBT = ∆− A(Pn), BTB = 2I − A(Pn−1).

We can also determine the idempotents in the spectral decomposition
of ∆− A(Pn).
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10.5.1 Lemma. If E1, . . . , En−1 are the idempotents in the spectral decom-
position of Pn−1, then the idempotents of ∆− A(Pn) are n−1J and

1
2− θr

BErB
T , . . . , r = 1, . . . , n− 1.

Proof. Since

BErB
TBEsB

T = BEr(2I − A(Pn−1)EsBT )

and since ErEs = 0 if r 6= s and (2I − A(Pn−1)Es = (2 − θs)Es, it follows
that

BErB
TBEsB

T = δr,s(2− θr)BErBT .

Therefore (2− θr)−1BErB
T is an idempotent. Next

(∆−A(Pn))BErBT = BBTBErB
T = B(2I−A(Pn−1))ErBT = (2−θr)BErBT

and therefore (2 − θr)−1BErB
T represents orthogonal projection onto an

eigenspace of A(Pn). The lemma follows.

10.5.2 Lemma. If E1, . . . , En−1 are the idempotents in the spectral decom-
position of Pn−1, and 1 ≤ j, k ≤ n, then

(2− θr)−1(BErBT )j,k = 2
n

cos
(

(2j − 1)rπ
2n

)
cos

(
(2k − 1)rπ

2n

)
.

Proof. From 10.2.5, we have

(Er)j,k = 2
n

sin
(
jrπ

n

)
sin

(
krπ

n

)
, 1 ≤ j, k ≤ n− 1.

Let α = rπ/n and let σ denote the column vector of length n − 1 where
σj = sin(jα). Then

BErB
T = 2

n
Bσ(Bσ)T

and

Bσ =



sin(α)
sin(2α)− sin(α)

...
sin((n− 1)α)− sin((n− 2)α)

− sin((n− 1)α)

 = 2 sin(α/2)



cos(α/2)
cos(3α/2)

...
cos((2n− 3)α/2)
cos((2n− 1)α/2)

 ,
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10. Paths and Trees

where in computing the last entry we have used the fact that nα = rπ,
whence sin(nα) = 0 and

− sin(n− 1)α = sin(nα)− sin(n− 1)α.

Finally for Pn−1 we have

2− θr = 2− 2 cos
(
rπ

n

)
= 4 sin2

(
rπ

2n

)

10.6 No Transfer on Paths
In [20] Christandl et al. proved that perfect state transfer between the end-
vertices of a path on n vertices did not occur if n ≥ 4. We use our results on
periodicity to show that perfect state transfer does not occur on any path
on four or more vertices.

10.6.1 Theorem. If n ≥ 4, perfect state transfer does not occur on Pn.

Proof. Suppose we have ab-pst on Pn, where n ≥ 4, and let S denote the
eigenvalue support of a. The spectrum of Pn lies in the open interval (−2, 2)
and, by Corollary ?? any two distinct eigenvalues in S differ by at least 1.
It follows |S| ≤ 4 and consequently the covering radius of a is at most three.
An immediate consequence of this is that n ≤ 7.

If n = 7 then the central vertex cannot be involved in pst, but the
covering radius of any non-central vertex is at least four. If n = 6, the
vertices with covering radius three are 3 and 4 and if U(t)e3 = γe4, then

γ(e3 + e5) = γAe4 = AU(t)e3 = U(t)Ae3 = U(t)(e2 + e4);

Thus we also have pst from 2 to 5, but these vertices have covering radius
four and therefore they cannot be involved in pst. We can rule out pst on
P5 by a similar process. For P4 we also find that if we have pst between the
central vertices, we have it between the end-vertices, and we have already
ruled out this possibility.

10.7 PST on Laplacians
In some respects, analysing perfect state transfer relative to the Laplacian
is easier than that relative to the usual adjacency matrix:
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10.7.1 Lemma. If U(t) is the transition matrix relative to the Laplacian
of a graph and perfect state transfer from a to b occurs, then U(t)ea = eb.

Proof. Since (∆−A)1 = 0, it follows that U(t)1 = 1. If U(t)ea = γeb, then

γ = γ1T eb = 1TU(t)ea = 1T ea = 1.

If L is the Laplacian of P2, then L = I − A and

U(t) = exp(it(I − A)) = eit exp(−itA).

It follows that we have perfect state transfer on P2 when we use the Lapla-
cian.

We need to work with strongly cospectral vertices relative to the Lapla-
cian. The proofs we gave for strongly cospectral vertices relative to the
adjacency matrix go through without change but, since such claims are
often risky, we briefly derive what we are about to use.

Assume L has the spectral decomposition

L =
m∑
r=1

λrFr

where λ1 = 0 and λ1 ≤ · · · ≤ λm and suppose U(t) = exp(itL). If we have
ab-pst then U(t)ea = eb at some time t and so

Freb = FrU(t)ea = eitλrFrea;

since Fer and Feb are real, this implies that eitλr = ±1. We also see that

eTb Freb = eTaFrea

and thus if we have Laplacian pst from a and b, then a and b are strongly
cospectral. As with the adjacency matrix, cospectral vertices have the same
eigenvalue support.

If a and b are strongly cospectral, then

(Fr)a,b = eitλr(Fr)a,a = ±(Fr)a,a.

We will refer to the value of eitλr as the sign of λr relative to b. Equivalently
it is the sign of (Fr)a,b, for the eigenvalues λr in the eigenvalue support of a.
If S is the eigenvalue support of a, we define S+ and S− to be the elements
of S whose sign, relative to b, is respectively positive or negative. We recall
that, by Lemma ??, if X is periodic at a relative to the Laplacian, the
eigenvalue support of a consists of integers. Hence we have the following
characterisation of S+.
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10. Paths and Trees

10.7.2 Lemma. Suppose we have perfect state transfer between vertices a
and b in X relative to the Laplacian. Let S be the eigenvalue support of a
and let g be the gcd of the elements of S. If λ ∈ S, then λ ∈ S+ if and only
if λ/g is even.

10.8 Twins
We define two vertices a and b to be twins if either N(a) = N(b) or a ∪
N(a) = b ∪N(b). Our next result comes from Coutinho and Liu [24].

10.8.1 Lemma. Suppose a and b are vertices in the connected graph X
that are strongly cospectral, relative to the Laplacian. Then |S+| ≥ 1 and
|S−| ≥ 1. If |S+| = 1, then |V (X)| = 2; if |S−| = 1, then a and b are twins.

Proof. Define
z+ =

∑
S+

Frea, z− =
∑
S−

Frea.

Then z+ + z− = ea and z+ − z− = eb, whence

z+ = 1
2(ea + eb), z− = 1

2(ea − eb).

The vector 1 is an eigenvector for L with eigenvalue zero. Hence 0 ∈ S+.
If |S+| = 1, then ea + eb must be an eigenvector for L; since X is connected
this implies that |V (X)| = 2.

Since z− 6= 0 we see that |S−| ≥ 1 and, if equality holds then ea − eb is
an eigenvector for L. Let δ be the common valency of a and b. If a ∼ b,
then

L(ea − eb) = (δ + 1)(ea − eb).

If a 6∼ b then
L(ea − eb) = δ(ea − eb).

In either case it follows that a and b are twins.

The machinery at hand allows us to rule out perfect state transfer rela-
tive to the Laplacian on a large class of graphs. (This result is Lemma 4.2
from [24].)
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10.8.2 Lemma. If X is a graph with an odd number of vertices and an
odd number of spanning trees, then Laplacian perfect state transfer does
not occur on X.

Proof. Assume |V (X)| = n. Suppose have pst from a to b and let S be the
eigenvalue support of a. Since 0 ∈ S+, all elements of S+ must be even.
As is well known, n times the number of spanning trees in X is equal to
the product of the non-zero eigenvalues of the Laplacian of X. This implies
that S+ = {0}, and hence that n = 2.

10.9 No Laplacian Perfect State Transfer
on Trees

The results in this section all come from Coutinho and Liu [24] http:
//arxiv.org/abs/1408.2935. Our first theorem implies that if we have
Laplacian pst on a tree, then the vertices involved are twins (and therefore
they have valency one).

Recall from Lemma ?? that if X is periodic at a vertex relative to the
Laplacian, then the eigenvalue support consists of integers.

10.9.1 Theorem. LetX be a connected graph and assume that the number
of spanning trees in X is a power of two. If there is Laplacian perfect state
transfer from a to b in X and S is the eigenvalue support of a, then |S−| = 1.

Proof. Suppose λ ∈ S−, and assume that p is an odd prime that divides
λ. As λ is an integer we may assume there is an integer eigenvector y with
eigenvalue λ such that the gcd of the entries of y is 1.

We have Ly = 0 modulo p. As the number of spanning trees of X is a
power of two, the kernel of L over GF (p) has dimension one, and is spanned
by 1, hence y = k1 (modulo p), for some integer k. Since λ ∈ S− it follows
that ya = −yb and therefore, modulo p,

ya + yb = 2k.

As p is odd, this implies k = 0 modulo p, and this contradicts our choice
of y. We conclude that the elements of S− are powers of two, and now
Lemma 10.7.2 implies that |S−| = 1.
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10. Paths and Trees

10.9.2 Theorem. If T is a tree with more than two vertices, then we cannot
have perfect state transfer on T relative to the Laplacian.

Proof. Assume that we have Laplacian pst from a to b in T . Then a and
b are twins, whence they have valency one, and there is a unique vertex (c
say) adjacent to a and b. The vector ea − eb is therefore an eigenvector for
L(T ) with eigenvalue 1. (And so 1 ∈ S−.) We can extend ea − eb to an
orthogonal basis for RV (X), and we can assume that the new vectors in this
basis are orthogonal to ea − eb.

By Lemma 10.8.1 ∑
S+

Frea = 1
2(ea + eb)

and therefore ∑
S+

eTaFrea = 1
2

and ∑
S+

eTc Frea = 0. (10.9.1)

We note now that Lea = ea − ec and so ec = (I − L)ea. Hence if λr ∈ S+,
then

eTc Frea = eTa (I − L)Frea = (1− λr)eTaFrea.

Therefore ∑
S+

eTc Frea =
∑
S+

(1− λr)eTaFrea.

Since each element of S+ \1 is at least two,

∑
S+

(1− λr)eTaFrea ≤ −
∑
S+

eTaFrea = −1
2 ,

but this contradicts Equation (10.9.1).

Notes

Exercises
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Chapter 11

Pretty Good State Transfer

In this chapter we describe the known examples of graph on which pretty
good state transfer occurs. The list is not extensive. We determine the
paths that do admit pgst and we study one class of trees.

For paths, the characterization depends in a surprising way on the prime
factors of n+1. Our treatment follows Godsil, Kirkland, Severini and Smith
[37]. Burgath [15] showed that pgst occurs on paths of length n when n is
prime and Vinet and Zhedanov [57] derive related results.

11.1 PGST on Paths
The eigenvalues θr of the path are given by

θr = 2 cos
(

πr

n+ 1

)
.

In consequence, θr is a polynomial with rational coefficients of degree r in
θ1. We also set θ0 = 2.

11.1.1 Lemma. The numbers θ0, . . . , θd are linearly independent over Q if
and only if the degree of the algebraic integer θ1 is greater than d.

11.1.2 Theorem. If n = p− 1 or 2p− 1, where p is prime, or if n = 2m− 1
then we have pgst on Pn.

Proof. Let θ = 2 cos
(

π
n+1

)
and set ζ = eiπ/(n+1). Then θ ∈ Q(ζ) and ζ is a

root of the quadratic
x2 − 2θx+ 1.
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11. Pretty Good State Transfer

So the index of Q(θ) in Q(ζ) is at most two. If n ≥ 3 though, θ is real
and ζ is not. So the index is two. The degree of ζ is φ(2n+ 2), where φ is
Euler’s function, and therefore the degree of θ is φ(2n+ 2)/2.

If n = p− 1 where p is prime then

φ(2(n+ 1))
2 = φ(2p)

2 = φ(p)
2 = p− 1

2 .

If n = 2p− 1 for a prime p, then

φ(2(n+ 1))
2 = φ(4p)

2 = φ(p) = p− 1.

If n = 2m − 1, then φ(2(n+ 1))/2 = 2m−1. Therefore in each of these three
cases the positive eigenvalues of Pn are linearly independent over Q, and
we have pgst.

11.2 Phases and Pretty Good State
Transfer

We show that, aside from the cases already listed, pretty good state transfer
does not occur on a path.

Our first result is an extension of Lemma 1.8.2.

11.2.1 Lemma. Assume X is bipartite and we have pretty good state
transfer from a to b. Suppose U(t)ea is close to γeb. If a and b lie in the
same color class, then γ is close to 1 or −1. If a and b lie in different color
classes, γ is close to i or −i.

Proof. Suppose X is bipartite and let D be the diagonal matrix such that
Du,u is 1 or −1 according as u is in the first or second part of the bipartition.
Then DAD = −A and if U(t)ea ≈ γeb, then

γDeb ≈ DU(t)DDea = U(−t)Dea

But ea and eb are eigenvectors for D with eigenvalues 1 or −1; the eigenval-
ues are equal if and only if u and v are in the same part. So there is a sign
factor σa,b and

γeb ≈ σa,bU(−t)ea.
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Accordingly
U(t)eb ≈ γ−1σa,bea.

Since U(t)eb ≈ γea, we conclude that

γ ≈ γ−1σa,b

Therefore γ ≈ ±1 if a and b are in the same part, and γ ≈ ±i if they are
not.

Let F denote the permutation matrix of order n × n such that Fer =
en+1−r for all r. Let E1, . . . , En be the idempotents in the spectral decom-
position of the path Pn. Then

F =
n∑
r=1

(−1)r−1Er.

If we have pgst at time τ then

U(τ) ≈ γF

and therefore

1 = detU(τ) ≈ γn det(F ) = γn(−1)bn/2c.

Appealing to Lemma 11.2.1, this yields three cases:

(a) n ≡ 1 mod 4: then (−1)bn/2c = 1 and γ ≈ 1

(b) n ≡ 3 mod 4: then (−1)bn/2c = −1 and γ ≈ −1

(c) n is even: here in = (−1)n/2 and γ ≈ ±i.

If pgst occurs then U(t) gets arbitrarily close to γF . This means that

eiθrt ≈ (−1)r−1γ (11.2.1)

for r = 1, . . . , n. Set m = bn/2c.

11.2.2 Lemma. Assume γ = ±1 if n is odd and ±i if n is even. For the
path Pn, if eiθrt ≈ (−1)r−1γ for r = 1, . . . ,m then eiθrt ≈ (−1)r−1γ for all r
and U(t) ≈ γF .
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11. Pretty Good State Transfer

Proof. Assume eiθrt ≈ (−1)r−1γ for r = 1, . . . ,m. Since paths are bipartite,
θn+1−r = θr, and therefore

eiθn+1−rt = e−iθrt ≈ (−1)r−1γ−1.

So for pgst we need
(−1)n−rγ = (−1)r−1γ−1,

or equivalently
γ2 = (−1)n−1.

As this holds for our choice of γ, we are done.

11.3 No PGST on Paths
We show that, in the cases not listed in Section 11.1, pgst does not occur on
Pn. If n+ 1 is not a power of two, then it is divisible by an odd prime p. If
also n is not a prime or twice a prime, then n = mp where m ≥ 4, and thus
our next result completes the classification of the paths that admit pgst.

11.3.1 Theorem. If n = mp−1 where p is odd and m ≥ 3, then pgst does
not occur on Pn.

Proof. Suppose n+ 1 = mp where p is odd. Then

1 + 2
p−1

2∑
r=1

(−1)r cos
(
πr

p

)
= 0.

If we multiply this by cos
(

π
n+1

)
we get

cos
(

π

n+ 1

)
+

p−1
2∑

r=1
(−1)r

[
cos

(
π(mr + 1)
n+ 1

)
+ cos

(
π(mr − 1)
n+ 1

)]
= 0

which yields a relation on eigenvalues:

θ1 +
p−1

2∑
r=1

(−1)rθmr+1 +
p−1

2∑
r=1

(−1)rθmr−1 = 0.
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Similarly if we multiply our first equation by cos
(

2π
n+1

)
we derive:

θ2 +
p−1

2∑
r=1

(−1)rθmr+2 +
p−1

2∑
r=1

(−1)rθmr−2 = 0.

If we subtract the last equation from the previous one, we find that

(θ1 − θ2) +
p−1

2∑
r=1

(−1)r(θmr+1 − θmr+2) +
p−1

2∑
r=1

(−1)r(θmr−1 − θmr−2) = 0.

Denote the three terms on the left by D, E and F respectively. If we have
pgst, we have a sequence of times (tk)k≥0 such that eiθrtk → (−1)r−1γ, and
so

ei(θs−θs+1)tk → −1.

Therefore eiDtk → −1 while eiEtk and eiEtk both tend to 1 or to −1. Thus

ei(D+E+F )tk → −1,

which is impossible since D + E + F = 0.

11.3.2 Theorem. If n = 3k + 2 then pretty good state transfer does not
occur on Pn if k is even or is congruent to 3 mod 4.

Proof. Assume by way of contradiction that we do have pgst. Hence there
is a time t such that (11.2.1) holds.

Now since n ≡ 2 mod 3, we have

θ1 = θk + θk+2

and therefore
eiθ1t ≈ (−1)2keiθkteiθk+2t.

This implies that
γ = γ2

and so γ = 1 and n ≡ 1 modulo 4.
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11.4 Path Laplacians
In the following sections we use the transition operator

U(t) := exp(it(∆− A))

and determine the cases where pgst occurs on the path.
We will see that we have pgst using the Laplacian on P4 and that P2

and P4 are the only cases where we get pst or pgst using the Laplacian on
paths.

We denote the eigenvalues of the Laplacian of the path by θ0, . . . , θn−1,
where θ0 = 0 and θi ≤ θi+1. We recall from Section 10.5 that

θr = 2− 2 cos
(
πr

n

)
, (r = 0, . . . , n− 1).

We use E0, . . . , En−1 to denote the corresponding idempotents in the spec-
tral decomposition. Hence

E0 = 1
n
J.

From Lemma 10.5.2 we have

(Er)j,k = 2
n

cos
(

(2j − 1)rπ
2n

)
cos

(
(2k − 1)rπ

2n

)
.

Let F denote the permutation matrix such that Fer = en+1−r. Since F
is an automorphism of Pn, it commutes with L and since the eigenvalues
of L are simple it follows that F is a polynomial in L. Therefore F is
a linear combination of the idempotents Er; the coefficients in this linear
combination are the eigenvalues of F (and there they are all ±1). Since
FEr = (−1)rEr we conclude that

F =
n−1∑
r=0

(−1)rEr.

Now
U(t)1,n =

n−1∑
r=0

eitθr(Er)1,n.

Since (Er)1,n = (−1)r(Er)1,1 and since ∑e(Er)1,1 = 1, we see that U(t)1,n
is a convex combination of complex numbers of norm 1. If |U(t)1,n| = 1, it
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follows that complex numbers (−1)reitθr , for r = 0, . . . , n− 1, are all equal.
As θ0 = 0, this implies that these numbers are all equal to 1 and further
that

U(t) =
∑
r

(−1)rEr = F.

Similarly we deduce that if |U(t)1,n| ≈ 1 then U(t) ≈ F .
If n ≥ 6 and is not an odd prime or a power of two, the following shows

that we do not get pgst using the Laplacian of Pn.

11.4.1 Theorem. If n = mk where k is odd and m ≥ 2, then we do not
have pgst on Pn using the Laplacian.

Proof. Our argument is modelled on the proof of Theorem 11.3.1. We have
the identity

1 + 2
k−1

2∑
r=1

(−1)r cos
(
πr

k

)
= 0.

If we multiply this by cos
(
π
n

)
we get

cos
(
π

n

)
+

k−1
2∑

r=1
(−1)r

[
cos

(
π(mr + 1)

n

)
+ cos

(
π(mr − 1)

n

)]
= 0;

similarly if we multiply both sides of our identity by cos
(

2π
n

)
we find that

cos
(2π
n

)
+

k−1
2∑

r=1
(−1)r

[
cos

(
π(mr + 2)

n

)
+ cos

(
π(mr − 2)

n

)]
= 0.

If we subtract the first equation from the second and then translate the
cosines to eigenvalues, we find that

(θ1 − θ2) +
k−1

2∑
r=1

(−1)r(θmr+1 − θmr+2) +
k−1

2∑
r=1

(−1)r(θmr−1 − θmr−2) = 0.

Arguing as in the proof of Theorem 11.3.1, we arrive at a contradiction.

11.4.2 Lemma. We have pgst on P4 using the Laplacian.
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Proof. The characteristic polynomial of the Laplacian of P4 is

t(t− 2)(t2 − 4t+ 2)

and so the eigenvalues of the Laplacian are

0, 2−
√

2, 2, 2 +
√

2

We want U(t) to get arbitrarily close to E0 −E1 +E2 −E3 Hence we need
a sequence of times (tk)k≥0 such that

e(2−
√

2)itk , e(2+
√

2)itk → −1

while
e2itk → 1.

Suppose we have sequence of pairs (ak, bk) of integers such that ak/bk
converges to 2−

√
2. Then

bk(2−
√

2) ≈ ak

and
bk(2 +

√
2) = bk(4− (2−

√
2)) ≈ 4bk − ak

This means that if ak is odd then we may choose tk = bkπ. If we set

M =
(

0 1
1 2

)
, α0 =

(
0
1

)

and define αk := Mkα0, then

(αk)1

(αk)2
→
√

2− 1

as k →∞ and so we may take bk = (αk)2− (αk)1 and ak = (αk)2. Since M
is congruent mod 2 to (

0 1
1 0

)

we see that (αk)1 is odd when k is odd. We conclude that we have pgst on
P4.
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11.5 Double Stars
In this section we follow Fan and Godsil [27] http://arxiv.org/abs/1206.
0082. The double star Sk,` is the tree obtained from the stars K1,k and K1,`
by adding an edge joining the two central vertices. We assume k and ` are
both positive. For the proof of the next result we refer you to the above
paper.

u v

1
u

2
u

k
u

1
v

2
v

k
v

Figure 11.1: The double star Sk,k

11.5.1 Theorem. Perfect state transfer does not occur on the double star.

11.5.2 Theorem. Suppose a and b are vertices of degree in one in S2,`
adjacent to the vertex of valency three. If ` 6= 2, we have pretty good state
transfer from a to b.

Proof. Let c be the common neighbour of a and b, and let d be the third
neighbour of c. Then the partition

π = {{a}, {b}, {c}, {d}, N(d)\{c}

is equitable. Let Y be the symmetrized quotient graph of X relative to π,
and let B be the adjacency matrix of Y . Thus

B =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0

√
`

0 0 0
√
` 0


and

φ(B, t) = t(t4 − (`+ 3)t2 + 2`).
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The eigenvalues of B are

θ1 = 0,

θ2 =
√

1
2(`+ 3 +

√
`2 − 2`+ 9),

θ3 = −
√

1
2(`+ 3 +

√
`2 − 2`+ 9),

θ4 =
√

1
2(`+ 3−

√
`2 − 2`+ 9),

θ5 = −
√

1
2(`+ 3−

√
`2 − 2`+ 9).

Let F be the permutation matrix that represents the automorphism
of Y that swaps a and b (and leaves the other vertices fixed). Since the
eigenvalues of B are distinct since F commutes with B, we conclude that F
is a polynomial in B and therefore it is a linear combination of the spectral
idempotents of B. Straightforward calculation yields that

F = −E1 + E2 + E3 + E4 + E5,

where

E1 = 1
2


1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
If UB(t) ≈ γF , then

1 = det(UB(t)) ≈ γ5 det(F ) = −γ5.

So UB(t) ≈ −F and hence

(eitθ1 , eitθ2 , eitθ3 , eitθ4 , eitθ5) ≈ (1,−1,−1,−1,−1).

Since θ1 = 0 and θ3 = −θ2 and θ5 = −θ4, we conclude that we have pgst if
there is sequence of times tr such that both eiθ2 and eiθ4 tend to −1.
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11.5. Double Stars

To prove this we will apply Kronecker’s theorem and so, as a first step,
we verify that θ2 and θ4 are linearly independent over Q. If θ2/θ4 is rational
then so is

θ2
2
θ2

4
= `+ 3 +

√
`2 − 2`+ 9

`+ 3−
√
`2 − 2`+ 9

.

This can hold only if
√
`2 − 2`+ 9 is an integer, that is, if ` = 2. Since θ2

and θ4 are irrational, we conclude by Kronecker’s theorem (Theorem 8.5.2)
that have pgst from a to b.

11.5.3 Theorem. Let a and b be the vertices of degree k+ 1 in the double
star Sk,k. We have pretty good state transfer from a to b if and only if 1+4k
is not a perfect square.

Proof. Let A be the adjacency matrix of Sk,k and let a and b be the central
vertices of degree k + 1. A standard calculation yields that

U(t)a,b = i((1− 2β) sin(αt) + 2β sin(1− α)t
where

α = 1
2(1 +

√
1 + 4k), β = k

1 + 4k +
√

1 + 4k
.

Observe that β ≤ 1/4, and so the above expression shows that −iU(t) is a
convex combination of sin(αt) and sin(1− α)t. It follows that |U(t)a,b| ≈ 1
if and only if sin(αt) and sin(1 − α)t are both close to 1, or both close to
−1. Or, equivalently if sin(αt) sin(1− α)t ≈ 1.

Now, from the distant past, recall that
cos(t) = cos(αt) cos(1− α)t− sin(αt) sin(1− α)t;

since if sin2(αt) ≈ 1 we have cos(αt) ≈ 0, we conclude that if
sin(αt) sin(1− α)t ≈ 1

then cos(t) ≈ −1. Thus to show pgst occurs, we must find a sequence of
times (tr)r≥0 such that

lim
r→∞

cos(t) = −1, lim
r→∞

sin2(αt) = 1.

If 4k+ 1 is not a perfect square, this is another appplication of Kronecker’s
theorem.

If 4k+1 is a perfect square the eigenvalues of Sk,k are integers and so the
graph is periodic. Hence if pgst occurs, then pst occurs, which contradicts
Theorem 11.5.1.
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Notes

Exercises
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Chapter 12

Joins and Products

We have seen that the Cartesian product of graphs is intimately connected
with state transfer. In this chapter we will investigate how other standard
graph theoretic operations can be used to get examples of perfect state
transfer. (Another goal of this chapter is to provide a wide range of exam-
ples where perfect state transfer occurs.)

We start with joins. If X and Y are graphs their join X+Y is the graph
we get by taking a copy of X and a copy of Y and joining each vertex in
X to each vertex in Y . Angeles-Canul et al. [4, 3] and the Ge et al. [30]
provide many interesting results on perfect state transfer in joins. Here we
will focus on the joins of two regular graphs.

The second operation we will study is the direct product X×Y of graphs
X and Y . For our purposes the simplest way to define this is to state that

A(X × Y ) = A(X)⊗ A(Y ).

Roughly speaking, there are many graphs that can be expressed as the edge-
disjoint unions of direct products and, in some cases, we can make use of
this structure.

12.1 Eigenvalues and Eigenvectors of Joins
Let X be a k-regular graph on m vertices and let Y be an `-regular graph
on n vertices. In this section we describe the spectral decomposition of
their join Z := X+Y . Note that the join has an equitable partition π with
cells (V (X), V (Y )). Set A = A(X) and B = A(Y ) and let Â denote the
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12. Joins and Products

adjacency matrix of Z. Then

Â =
(
A J
JT B

)

and the adjacency matrix of the quotient Z/π is

Q =
(
k n
m `

)
.

Its eigenvalues are the zeros of the quadratic

t2 − (k + `)t+ (k`−mn),

thus they are
1
2(k + `±

√
(k − `)2 + 4mn).

We denote them by µ1 and µ2, with µ1 > µ2. Since

(Q− µ1I)(Q− µ2I) = 0

we see that the columns of Q− µ2I are eigenvectors for Q with eigenvalue
µ1, and the columns of Q − µ1I are eigenvectors for Q with eigenvalue µ2.
Hence the eigenvectors of Â belonging to µ1 and µ2 respectively can be
written in partitioned form:(

(k − µ2)1
m1

)
,

(
(k − µ1)1

m1

)
.

The remaining eigenvectors of Â can be taken to be orthogonal to these
two vectors, and therefore such eigenvectors must sum to zero on V (X)
and V (Y ). If x is an eigenvector for X orthogonal to 1 with eigenvalue λ,
then (

x
0

)
is an eigenvector for Z with eigenvalue λ. Similarly if y is an eigenvector
for Y orthogonal to 1, then (

0
y

)

is an eigenvector for Â (with the same eigenvalue as y). As a consequence,
we have just exhibited a full basis of eigenvectors of Â that depends only
on the eigenvectors of A and B, and the parameters k, `, m and n.
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12.2. Spectral Idempotents for Joins

12.2 Spectral Idempotents for Joins
We are going to construct a refinement of the spectral decomposition of the
join Z of X and Y . (If X and Y are connected and have no eigenvalue
in common, this will be the actual spectral decomposition of Z.) This
decomposition will, in large part, be built from the spectral decompositions
of X and Y .

If X is connected, we will use the spectral decomposition of A:

A =
d∑
r=0

θrEr

where θ0 = k and E0 = 1
m
J . If X is not connected, then k has multiplicity

greater than one, and we can choose a basis for its eigenspace formed by the
all ones vector 1, and other vectors which are constant on each component
and whose all entries sum to zero. The idempotent belonging to k can then
be written as the sum of 1

m
J and a second idempotent. Now we have a

refinement of the spectral decomposition of X, with one extra term. We
will still write this in the form above, with the understanding that θ1 = θ0.
A similar fuss can be made if Y is not connected; we write its decomposition
as

B =
f∑
s=0

νsFs.

If Az = θz and 1T z = 0, then

Â

(
z
0

)
= θ

(
z
0

)
.

Similarly if Bz = θz and 1T z = 0, then

Â

(
0
z

)
= θ

(
0
z

)
.

We see that n+m− 2 of the eigenvalues of X +Y are eigenvalues of X and
eigenvalues of Y .

Define
Êr =

(
Er 0
0 0

)
, F̂s =

(
0 0
0 Fs

)
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12. Joins and Products

and let N1 and N2 be the projections belonging to the eigenvalues µ1 and
µ2 of Z. Then we have a spectral decomposition for Â = A(Z):

Â = µ1N1 + µ2N2 +
∑
r>0

θrÊr +
∑
s>0

νsF̂s. (12.2.1)

We determined µ1 and µ2 in terms of k, `, m and n in the previous section.
Since ∑r Er = I and ∑s Fs = I we have

∑
r>0

Êr =
(
I − 1

m
J 0

0 0

)
,

∑
s>0

F̂s =
(

0 0
0 I − 1

n
J

)

and since the sum of the idempotents in (12.2.1) is I, it follows that

N1 +N2 = I −
(
I − 1

m
J 0

0 I − 1
n
J

)
.

The idempotent N1 represents projection onto the span of the eigenvec-
tor (

(k − µ2)1
m1

)
and consequently

N1 = c

(
(k − µ2)2Jm,m m(k − µ2)Jm,n
m(k − µ2)Jn,m m2Jn,n

)

where c is determined by the constraint tr(N1) = 1. This means that

c−1 = m(k − µ2)2 +m2n = m((k − µ2)2 +mn).

If we set
∆ = (k − `)2 + 4mn

then, after some calculation, we find that

(k − µ2)2 +mn =
√

∆(k − µ2).

Hence c−1 = m
√

∆(k − µ2). We can carry out similar calculations for N2,
with the result that

N1 = 1
m
√

∆(k − µ2)

(
(k − µ2)2Jm,m m(k − µ2)Jm,n
m(k − µ2)Jn,m m2Jn,n

)
,

N2 = 1
m
√

∆(µ1 − k)

(
(k − µ1)2Jm,m m(k − µ1)Jm,n
m(k − µ1)Jn,m m2Jn,n

)
.
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12.3. The Transition Matrix of a Join

12.3 The Transition Matrix of a Join
Suppose Z is the join X + Y and a and b are two vertices in X. We want
to determine when we have perfect state transfer from a to b in Z. We
note that if we do have perfect state transfer from a to b at time t, then
UZ(t)a,u = 0 for all vertices u of Y and UZ(t)a,a = 0.

12.3.1 Lemma. Assume Z is the join of graphs X and Y . If a, b ∈ V (X)
and y ∈ V (Y ), then

UZ(t)a,y = 1√
∆

(exp(iµ1t)− exp(iµ2t))

and

UZ(t)a,b−UX(t)a,b = 1
m

(
k − µ2√

∆
exp(iµ1t)−

k − µ1√
∆

exp(iµ2t)− exp(ikt)
)
.

Proof. Since (Êr)a,y = (F̂r)a,y = 0 we have

UZ(t)a,y = exp(iµ1t)(N1)a,y+exp(iµ2t)(N2)a,y = 1√
∆

(exp(iµ1t)−exp(iµ2t)).

From our spectral decomposition,

UZ(t)a,b = k − µ2

m
√

∆
exp(iµ1t)−

k − µ1

m
√

∆
exp(iµ2t) +

∑
r>0

(Er)a,b exp(iθrt).

Since X is regular,

UX(t) = 1
m

exp(ikt)Jn +
∑
r>0

exp(iθrt)Er,

from which our second expression follows.
Therefore UZ(t)a,y = 0 if and only if exp(it(µ1−µ2)) = 1, that is, if and

only if for some integer c,

t = 2cπ
µ1 − µ2

= 2cπ√
∆
.

Since (k − µ2)− (k − µ1) =
√

∆, we find that for these values of t we have

UZ(t)a,b − UX(t)a,b = 1
m

(exp(iµ1t)− exp(ikt)).
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12. Joins and Products

12.4 Joins with K2 and K2

We use the results of the previous section to construct graphs with perfect
state transfer. Our first result is due to Angeles-Canul et al [4]. If q is a
rational number such that

q = 2k(a/b),
where a and b are odd, we define |q|2 to be 2−k. (This is the 2-adic norm
on Q. Note that larger powers of 2 have smaller norms.)

12.4.1 Lemma. (THERE IS SOMETHING WRONG HERE... `2 + 8n
must be integer...) If X = K2 and Y is `-regular on n vertices, we have
perfect state transfer in X +Y between the two vertices of X if and only if

(a) ` = 0, or

(b) ` > 0 and n = `(`+ s)/2

(c) s and n are even and 4|`,

(d) |`/s|2 < 1.

Proof. As above, UX+Y (t)a,y = 0 if and only if exp(it(µ1 − µ2)) = 1.
Since UX(t)a,a = 1 for all t, we see that UX+Y (t)a,a = 0

−1 = 1
2(exp(iµ1t)− exp(ikt)) = 1

2(exp(iµ1t)− 1)

and this holds if and only if exp(itµ1) = −1.
It follows that if perfect state transfer occurs at time t, then exp(itµ1)

and exp(itµ2) both equal −1, and consequently

1 = exp(it(µ1 + µ2)) = exp(it`).

Hence either ` = 0 or t = 2dπ/` for some integer d, from which we deduce
that

√
∆ is rational and ∆ is a perfect square.

If ` = 0, then µ1 =
√

2n and exp(itµ1) = −1 when tµ1 is an odd multiple
of π.

Assume ` > 0. If `2 + 8n is a perfect square, then when t is an even
multiple of π/

√
∆ we have

exp(itµ1) = exp(itµ2)
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12.4. Joins with K2 and K2

and when t is an even multiple of π/` we have

exp(itµ1) = exp(−itµ2).

Let δ denote the greatest commmon divisor of
√

∆ and `. The last pair of
equations hold provided t/2π is an integer multiple of 1/δ. We get perfect
state transfer if and only if

exp(2πiµ1/δ) = −1.

Now
2µ1

δ
= `+

√
∆

δ

and so we have perfect state transfer if and only if ∆ is a perfect square
and (`+

√
∆)/δ is an odd integer.

We see that `2 + 8n is a perfect square if and only if 8n = 4s(`+ s) for
some integer s such that s(`+ s) is even, i.e., so that s is odd if ` is. Then

√
∆ = `+ 2s, µ1 = 1

2(`+ `+ 2s) = `+ s

and δ is the gcd of ` and 2s. Further

`+
√

∆
δ

= 2`+ 2s
δ

from which it follows that perfect state transfer occurs if and only if 2s/δ
is odd.

If ` is odd or s is odd, then δ is odd, and so for perfect state transfer
both ` and s must be even, and therefore n is even. For 2s/δ to be odd
we require that δ is divisible by four, hence 4|`. Further `/δ must be even,
equivalently |`/s|2 < 1.

As a simple example, take Y to be C5 ⊗ C6 (due to Angeles-Canul et
al). Then n = 30, ` = 4 and s = 6 and so all conditions of the theorem
hold, and therefore we have perfect state transfer on K2 + Y . This was the
first example of a graph with perfect state transfer which is not periodic.
(We leave the proof that is not periodic as an exercise. If you choose to do
it by hand, note that any eigenvalue of C5 or C6 that has an eigenvector
orthogonal to 1 is an eigenvalue of the join.)

Angeles-Canul et al also prove the following.
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12. Joins and Products

12.4.2 Lemma. Suppose Y is an `-regular graph on n vertices. Then there
is perfect state transfer in K2 + Y between the vertices of K2 if and only if:

(a) n = s(`− 1 + s)/2 for some even integer s, and

(b) | `+s+1
`+2s |2 > 1.

Proof. We sketch the proof. As before, UX+Y (t)a,y = 0 if and only if

1 = exp(it(µ1 − µ2)) = exp(it
√

∆)

and so t
√

∆ must be an even multiple of π. At these times

UX+Y (t)a,a = UX(t)a,a + 1
2(exp(iµ1t)− exp(ikt)).

Since X = K2,

UX(t) = cos(t) = 1
2(exp(it)− exp(−it))

and since k = 1 we have

UX+Y (t)a,a = 1
2(exp(iµ1t) + exp(−it)).

Therefore we have perfect state transfer between the two vertices of X at
time t if and only if

exp(it
√

∆) = 1, exp(it(µ1 + 1)) = −1.

Accordingly there are integers r and s such that

t
√

∆ = 2rπ, t(µ1 + 1) = (2s+ 1)π,

from which it follows that
µ1 + 1√

∆
= 2s+ 1

2r

and hence
√

∆ and µ1 are integers.
Now (`− 1)2 + 8n is a perfect square if and only if there is an integer s

such that s` is even and

n = 1
2s(`− 1 + s).
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12.5. Irrational Periods and Phases

In this case √
∆ = `− 1 + 2s, µ1 + 1 = `+ s+ 1.

A sufficient condition for (b) to hold is that s ≡ 0 modulo 4 and ` ≡ 1
modulo 8. However other solutions are possible, for example s ≡ 6 and
` ∼= 5 modulo 8. (I suspect an exact description in terms of congruence
classes might be complicated.)

Ge et al. [30] give results for the lexicographic product.

12.5 Irrational Periods and Phases
In our examples of periodic vertices, the period has been rational. We use
the results of the Section 12.3 to construct examples where the period is
irrational. (The associated phases are irrational too.)

A graph X on n vertices is a cone over a graph Y if there is a vertex u
of X with degree n− 1 such that X \u ∼= Y . (Equivalently X is isomorphic
to K1 + Y .) We say u is the conical vertex, or the apex of the cone.

12.5.1 Lemma. Suppose Y is an `-regular graph on n vertices and let Z
be the cone over Y . The Z is periodic at the conical vertex with period
2π/
√
`2 + 4n.

Proof. We view Z as the join of X and Y , with X = K1. If a is the conical
vertex, then |UZ(t)a,a| = 1 if and only if UZ(t)a,y = 0 for all y in V (Y ). This
holds if and only if t/2π is an integer multiple of ∆, where ∆ =

√
`2 + 4n.

We have
U(t)a,a =

∑
r

eitθr(Er)a,a

where (Er)a,a ≥ 0 and ∑r(Er)a,a = 1. Hence |U(t)a,a| = 1 if and only if
eitθr = eitθ1 for all r, and therefore

U(t)a,a = eitθ1 .

So for a periodic cone the phase factor at the period is eitµ1 , where

µ1 = 1
2(`+

√
`2 + 4n).

Now it follows that for some integer c

tµ1 = 2cπ√
`2 + 4n

1
2(`+

√
`2 + 4n) = cπ`√

`2 + 4n
+ cπ.
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12. Joins and Products

In all currently known cases where we have perfect state transfer, the phase
factor is a root of unity. The calculations we have just completed show that
if `2 + 4n is not a perfect square, we have periodicity on the cone over Y
with phase factor not a root of unity.

12.6 The Direct Product
If X and Y are graphs then their direct product X × Y is the graph with
adjacency matrix

A(X)⊗ A(Y ).

12.6.1 Lemma. Suppose X and Y are graphs with respective adjacency
matrices A and B and suppose A has spectral decomposition

A =
∑
r

θrEr.

Then
UX×Y (t) =

∑
r

Er ⊗ UY (θrt).

Proof. First,
A⊗B =

∑
r

θrEr ⊗B

and since the matrices Er ⊗B commute,

UX×Y (t) =
∏
r

exp(itθrEr ⊗B).

If E2 = E then

exp(E ⊗M) = I +
∑
k≥1

1
k!E ⊗M

k = (I − E)⊗ I + E ⊗ exp(M)

and accordingly

UX×Y (t) =
∏
r

(
(I − Er)⊗ I + Er ⊗ UY (θrt)

)
.

Since ErEs = 0 if r 6= s and ∏r(I − Er) = 0, the lemma follows.
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12.6. The Direct Product

We apply this result to relate uniform mixing on Y and K2 × Y .

12.6.2 Lemma. If we have uniform mixing onK2×Y , then there is uniform
mixing on Y .

Proof. The eigenvalues of K2 are 1 and −1 and we denote the corresponding
idempotents by E1 and E2 respectively. Then by the lemma

UK2×Y (t) = E1 ⊗ UY (t) + E2 ⊗ UY (−t)

and since

E1 = 1
2

(
1 1
1 1

)
, E2 = 1

2

(
1 −1
−1 1

)

we have

UK2×Y (t) = 1
2

(
UY (t) + UY (−t) UY (t)− UY (−t)
UY (t)− UY (−t) UY (t) + UY (−t)

)
. (12.6.1)

Here the entries of the diagonal blocks are real and those of the off-diagonal
blocks are purely imaginary. (You can think about the power series expan-
sions, or use the fact that K2 ×X is bipartite.)

If UK2×Y (t) is flat, we can assume each real entry is of the form ±α and
each complex entry has the form ±αi. This implies that each entry of UY (t)
is of form γ(±1± i), for some γ, and consequently UY (t) is flat.

If we do have uniform mixing on K2 × Y at time t, then UY (t) = γH
where the entries of H are eighth roots of unity. In particular they are
algebraic integers. Since

1 = det(UY (t)) = γ|V (Y )| det(H)

it follows that γ is an algebraic integer too. We will see in Section ?? that
this implies that the ratios of the eigenvalues of Y must be rational.

The question of when perfect state transfer occurs on the direct product
X⊗Y is studied by Ge et al. in [30] http://arxiv.org/pdf/1009.1340v1.
pdf Thus they show that if the eigenvalues of X are odd integers and d is
even, then the direct product X × Qd admits perfect state transfer. Some
of their theory is extended in [21] http://arxiv.org/abs/1501.04396

221

http://arxiv.org/pdf/1009.1340v1.pdf
http://arxiv.org/pdf/1009.1340v1.pdf
http://arxiv.org/abs/1501.04396


12. Joins and Products

12.7 Double Covers and Switching Graphs
The results in this section come from Coutinho and Godsil [21] http://
arxiv.org/abs/1501.04396. In particular, Lemma 12.7.2 is Corollary 5.3
in that source.

We begin by introducing a new operation on graphs which includes the
products K2 × Y as a special case.

IfX and Y are graphs with V (X) = V (Y ) and with respective adjacency
matrices A and B, we define X � Y to be the graph with adjacency matrix(

A B
B A

)

We take V (X � Y ) to be {0, 1} × V (X).
One case of interest is when Y is the complement of X, and then we

find that X �X is the switching graph of X. In this case

A−B = 2A− I − J,

which is usually known as the Seidel matrix of X. If X is the empty graph,
then X � Y ∼= K2 ×X,

We can use this product to construct graphs with perfect state transfer.
We see that (

A B
B A

)
=
(

1 0
0 1

)
⊗ A+

(
0 1
1 0

)
⊗B

and so if we define
H = 1

2

(
1 1
1 −1

)
,

then H2 = I and

(H ⊗ I)
(
A B
B A

)
(H ⊗ I) =

(
A+B 0

0 A−B

)
.

Using this we have

(H ⊗ I)UX�Y (t)(H ⊗ I) =
(
UA+B(t) 0

0 UA−B(t)

)

and therefore

UX�Y (t) = 1
2

(
UA+B(t) + UA−B(t) UA+B(t)− UA−B(t)
UA+B(t)− UA−B(t) UA+B(t) + UA−B(t)

)
.
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12.7. Double Covers and Switching Graphs

12.7.1 Theorem. Let X and Y be graphs with the same vertex set V , and
with respective adjacency matrices A(X) and A(Y ). The graph X�Y with
vertex set {0, 1} × V admits perfect state transfer if and only if one of the
following holds:

(a) The matrices A + B and A − B are periodic at time t with respective
phase factors λ and −λ. In this case we get perfect state transfer from
(0, u) to (1, u) at time t.

(b) The matrices A+B and A− B admit perfect state transfer from u to
v at time t with phase factor λ. We get perfect state transfer at time t
between (0, u) and (0, v), and between (1, u) and (1, v).

(c) The matrices A + B and A − B admit perfect state transfer from u
to v at time t with respective phase factors λ and −λ. We get perfect
state transfer at time t between (0, u) and (1, v), and between (1, u) and
(0, v).

Proof. From our partitioned expression for UX×Y (t) above, we see that we
have pst between (0, u) and (1, u) if and only if

|(UA+B(t)− UA−B(t))u,u| = 2.

As |UA+B(t)u,u| ≤ 1 and |UA−B(t)u,u| ≤ 1, this is equivalent to

λ = UA+B(t)u,u = −UA−B(t)u,u, |λ| = 1.

This proves (a). We see likewise that we have pst from (0, u) to (0, v) if and
only if

|(UA+B(t) + UA−B(t))u,u| = 2

and so (b) follows. Case (c) follows similarly.
In cases (b) and (c), we see that pst on the factors lifts to pst on X�Y .

In case (a) we require only periodicity on the factors. We separate out one
useful situation. Let ‖x‖2 denote the 2-adic norm of the rational number x:
if x = 2kp/q where p and q are odd, then ‖x‖2 = 2−k.

12.7.2 Lemma. Let θ1, . . . , θd be the eigenvalues of the Seidel matrix of
X, in non-increasing order and assume n = |V (X)| > 2. If a ∈ V (X), then
X �X admits perfect state transfer from (0, a) to (1, a) if and only if
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12. Joins and Products

(a) n is even.

(b) The eigenvalue support S of a in X consists of integers.

(c) There is a non-negative integer α such that ‖θ + 1‖2 = 2−α for all θ in
S, and ‖n‖2 = 2−α−1.

Proof. We use A and B to denote A(X) and A(X). Note that A + B is
the adjacency matrix of a complete graph Kn, which does not admit pst if
n > 2. So we are in case (a) of the previous theorem.

We have pst from (0, a) to (1, a) in X �X at time t if and only if

UA+B(t)a,a = λ = −UA−B(t)a,a

for some λ with |λ| = 1. As A+B = J − I,

UA+B(t) = e−it
(
eint

1
n
J +

(
I − 1

n
J
))

and consequently |UA+B(t)a,a| = 1 if and only if t = 2kπ/n for some integer
k, and in this case λ = e−2ikπ/n.

Now
(UA−B(t))a,a =

∑
r

eitθr(Er)a,a

and therefore we have pst on X �X at time 2kπ/n if and only if

−λ = e2πikθ1/n = · · · = e2πikθd/n.

The lemma follows immediately.
In a sense, this lemma tells us that if a vertex a in X satisfies a slightly

stricter form of our basic periodicity condition, then we have pst in X �X
from (0, a) to (1, a).

As an example, we note that the eigenvalues of the strongly regular
graph Kn �Kn are {2n − 2, n − 2,−2}. Hence if n is divisible by 4, then
the switching graph of Kn �Kn admits pst at time π/2.

12.8 Laplacians and Complements
In [13] (http://arxiv.org/abs/0808.0748), Bose et al. considered perfect
state transfer on Kn with an edge deleted. They proved that, using the
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Laplacian, there is perfect state transfer between the vertices of degree
n − 2 when n is divisible by 4. Here we follow Alvir et al. [2] (http:
//arxiv.org/abs/1409.5840), and derive a more general result.

Let X be a graph on n vertices with adjacency matrix A and diagonal
matrix of valencies ∆. Then the corresponding matrices for X are J−I−A
and (n− 1)I −∆ and therefore

L(X) = (n− 1)I −∆− J + I + A = nI − J − L(X).

Equivalently
L(X) + L(X) = L(Kn).

Since AJ = ∆J , it follows that L and J commute, and consequently L(X)
and L(X) commute. The eigenvalues of L(Kn) are 0 (with multiplicity
1) and n (with multiplicity n − 1). Any vector that is constant on the
components of X lies in ker(L(X)), and thus 0 is an eigenvalue for L(X)
with multiplicity equal to the number of components of X.

12.8.1 Lemma. LetX be a graph in n vertices. If λ is a non-zero eigenvalue
of L(X), then n− λ is an eigenvalue of L(X) with the same multiplicity.

12.8.2 Theorem. Let a and b be vertices in the graph X. If X admits
perfect state transfer from a to b at time t relative to the Laplacian and t is
an integer multiple of 2π/|V (G)|, then X also admits perfect state transfer
at time t from a to b.

Proof. Assume |V (X)| = n. We have

UKn(t) = ei(n−1)t 1
n
J + e−it

(
I − 1

n
J
)

= e−it
(
ein)t 1

n
J +

(
I − 1

n
J
))

and therefore
UKn(2kπ/n) = e−2kπi/nI.

Since
UX(t)UX(t) = UKn(t)

we see that if we have ab-pst on X at time 2kπ/n, then we have ab-pst on
X at the same time.
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We will see in Lemma 10.7.1 that if perfect state transfer occurs relative
to the Laplacian, then the phase factor must be 1. (It might be more
rewarding to prove this, rather than look it up.)

If the graph X admits perfect state transfer relative to the Laplacian at
time 2kπ/n, then so does the graph X ∪ Y , and does X ∪ Y (which is the
join of the complement of X and Y .)

12.8.3 Corollary. If Y is a graph and |V (Y )| ≡ 2 modulo 4, then the join
K2 +Y admits perfect state transfer relative to the Laplacian at time π/2.

We conclude that Kn with an edge deleted admits perfect state transfer
at time π/2 between the vertices of degree n− 2 provided n ≡ 0 modulo 4.
This is one of the results from Bose et al [13]. The converse to this corollary
is proved in Alvir et al [2]: if there is perfect state transfer on the double
cone K2 + Y at time π/2, then |V (Y )| ≡ 2 modulo 4.

If X is k-regular then L(X) = kI − A. Hence we have:

12.8.4 Corollary. If X is a k-regular graph on n vertices that admits
perfect state transfer relative to the adjacency matrix between vertices a
and b at time an integer multiple of 2π/n, then X admits perfect state
transfer relative to the adjacency matrix between a and b at the same time.

Notes
Although the constructions presented in this chapter are simple, together
they give all examples of pst on graphs with at most nine vertices. The only
other examples of pst come from distance-regular graphs (see Section 14.9),
or from Cayley graphs for abelian groups (Chapter 16).

Exercises
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Chapter 13

Orthogonal Polynomials

Let Pol(n) be the vector space of all real polynomials of degree at most n,
and let Pol denote the vector space of all real polynomials. These vector
spaces come with many possible inner products, for example,

〈p, q〉 =
∫ ∞

0
p(x)q(x) e−xdx.

Once we have chosen an inner product, we use Gram-Schmidt to derive an
orthogonal basis from the basis

1, x, x2, . . . ,

and hence we arrive at a sequence of polynomials

p0, p1, p2, . . .

where pr has degree r and 〈pr, ps〉 = 0 if r 6= s. We call such a sequence
of orthogonal polynomials. Note that the sequence is not unique, we can
replace each pr by a non-zero scalar multiple and the result is still a se-
quence of orthogonal polynomials. There are a number of standard ways to
normalize the sequence. We might arrange that for all r:

(a) 〈pr, pr〉 = 1.

(b) pr(a) = 1 for some suitable real number a.

(c) pr is monic.
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13. Orthogonal Polynomials

For us, the third choice will be most common.
We impose one restriction on the inner product we use: for any polyno-

mials p and q we must have

〈xp, q〉 = 〈p, xq〉.

(In other terms, multiplication by x must be a self-adjoint operator.)

13.1 Examples
We discuss two of the cases where orthogonal polynomials arise in combi-
natorics.

Matching Polynomials
The first is in the theory of matching polynomials. If X is a graph on n
vertices, let p(X, k) denote the number of k matchings in X and define the
matching polynomial µ(X, t) by

µ(X, t) =
∑
k≥0

(−1)kp(X, k)tn−2k.

This can viewed as a modified form of generating function for the matchings
in X, weighted by their size. One effect of the modifications is that if X is
a forest then its matching and characteristic polynomials coincide.

Our next result is a somewhat surprising property of the matching poly-
nomial. (This comes from [34].)

13.1.1 Theorem. The number of perfect matchings in the complement of
the graph X is equal to

1√
2π

∫ ∞
∞

µ(X, t) e−t2/2dt.

Since
µ(Km ∪Kn, t) = µ(Km, t)µ(Kn, t)

and since Km ∪Kn is the complete bipartite graph Km,n, it follows from
this theorem that the polynomials µ(Kr, t) are the orthogonal polynomials
relative to the inner product

〈p, q〉 = 1√
2π

∫ ∞
∞

p(t)q(t) e−t2/2dt.

230



13.1. Examples

They are the Hermite polynomials. Using similar ideas it can be shown
that, for each non-negative integer a, the sequence

µ(Km,m+a, t), m = 0, 1, . . .

is a family of orthogonal polynomials. (They are Laguerre polynomials.)
The sequences (µ(Pr, t))r≥0 and (µ(Cr, t))r≥0 are orthogonal polynomi-

als, corresponding to the two types of Chebyshev polynomials. (I do not
know a nice combinatorial proof that these polynomials are orthogonal.)

Distance-Regular Graphs
Let X be a graph with exactly d+1 distinct eigenvalues θ0, . . . , θd and with
adjacency matrix A. Define an inner product on polynomials by

〈p, q〉 := tr(p(A)q(A)).

Is this an inner product? It is certainly bilinear and symmetric and

〈p, p〉 ≥ 0

for any polynomial p. But if p(A) = 0 then 〈p, p〉 = 0 and therefore 〈p, p〉 =
0 does not imply that p = 0. There are two ways to deal with this. Once is
to confine ourselves to the polynomials of degree at most d. The second, and
preferable, approach is to declare that we are working with “polynomials
restricted to the spectrum of A”. Thus our objects are now equivalence
classes of polynomials—two polynomials are equivalent if they agree on each
eigenvalue of A—and each equivalence class contains a unique polynomial
of degree at most d. If E0, . . . , Ed are the idempotents in the spectral
decomposition of A then Er = fr(A) for some polynomial fr of degree at
most d and therefore when r 6= s,

〈fr, fs〉 = tr(ErEs) = 0.

However the polynomials fr do not form a sequence of orthogonal polyno-
mials because they do not satisfy the degree constraint.

So using Gram-Schmidt on the polynomials

1, x, x2, . . . , xd
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13. Orthogonal Polynomials

we construct a sequence of orthogonal polynomials

p0, p1, . . . , pd.

If we take these to be monic, then p0 = 1 and p1(x) = x. Let sum(M) denote
the sum of the entries of the matrix M . Then for symmetric matrices

tr(MN) = sum(M ◦N).

If r 6= s we have

〈pr, ps〉 = tr(pr(A)ps(A)) = sum(pr(A) ◦ ps(A)).

Now suppose X has diameter d and that its distance matrices are
A0, . . . , Ad. Then if r 6= s

trArAs = sum(Ar ◦ As) = 0.

In general Ar is not a polynomial of degree r in A1, but if X is distance-
regular then there are polynomials p0, . . . , pd such that deg(pr) = r and
Ar = pr(A1). Hence this sequence of polynomials is the sequence of or-
thogonal polynomials relative to our inner product. In these setting it can
be useful to define pd+1 to be the minimal polynomial of A1; it is the zero
polynomial of degree d+ 1 on the spectrum of A1.

13.2 The Three-Term Recurrence
Suppose we have a sequence of orthogonal polynomial relative to an inner
product. Our first observation is simple but important:

13.2.1 Lemma. If (pr)r≥0 is a sequence of orthogonal polynomials then
pr is the unique (up to multiplication by a non-zero scalar) polynomial of
degree r that is orthogonal to all polynomials of degree less than r.

Equivalently if qr is the orthogonal projection of tr on the space of
polynomials of degree less than r, then pr is a scalar multiple of tr − qr.

Now
〈tpr, ps〉 = 〈pr, tps〉,
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whence we see that 〈tpr, ps〉 = 0 unless |r − s| ≤ 1. Consequently there are
scalars αr, βr, γr such that

tpr = γrpr+1 + αrpr + βrpr−1. (13.2.1)

We can be more specific:

13.2.2 Theorem. If (pr)r≥0 is a sequence of monic orthogonal polynomials,
then

pr+1 = (t− ar)pr − brpr−1. (13.2.2)
where

ar = 〈tpr, pr〉
〈pr, pr〉

, br = 〈pr, pr〉
〈pr−1, pr−1〉

(13.2.3)

Proof. If our polynomials are monic then γr in (13.2.1) is 1 and

〈tpr, pr〉 = αr〈pr, pr〉

which yields the expression for ar. Next

〈tpr, pr−1〉 = βr〈pr−1, pr−1〉

and since our polynomials are monic

〈tpr, pr−1〉 = 〈pr, tpr−1〉 = 〈pr, pr〉

from which our formula for br follows.
Clearly we can use the three-term recurrence to compute expressions for

the members of a sequence of orthogonal polynomials, starting with p0 and
p1. It is worth noting that we can run the recurrence in reverse: given pd
and pd−1, we can compute all the initial terms in the sequence. In fact we
do not need the coefficients ai and bi, for there is a unique α such that

pd(t)− (t− α)pd−1(t)

has degree d− 2, and if β is the coefficient of xd−2 in this difference, then

pd−2(t) = 1
β

(pd(t)− (t− α)pd−1(t)).

Continuing in this way, we can reconstruct all the polynomials p0, . . . , pd−2.

233



13. Orthogonal Polynomials

13.3 Tridiagonal Matrices
A matrix T is tridiagonal if Ti,j = 0 whenever |i− j| > 1. It is irreducible
if Ti+1,iTi,i+1 6= 0 for all i. We will assume without comment that our
tridiagonal matrices are irreducible; we also assume that the off-diagonal
entries Ti,i+1 and Ti+1,i are non-negative, for all i. (Although all that is
really needed is that the products Ti+1,iTi,i+1 be non-negative.) We can
view an irreducible tridiagonal matrix as a weighted adjacency matrix for
a matrix, and this viewpoint is useful as well as natural. The index sets for
the rows and columns of a matrix will start at 0.

A tridiagonal matrix T of order d × d determines a sequence of monic
polynomials p0, . . . , pd, where p0 = 1 and pr is the characteristic polynomial
of the leading principal r×r submatrix of T . We call these polynomials the
polynomial sequence associated with T . We will see that any such sequence
is a finite sequence of orthogonal polynomial.

13.3.1 Lemma. If T is the tridiagonal matrix

T :=



a0 1
b1 a1 1

. . . . . . . . .
bd−2 ad−2 1

bd−1 ad−1


and p0, . . . , pd is the associated sequence of orthogonal polynomials, then
these polynomials satisfy the recurrence

pr+1 = (t− ar)pr − brpr−1.

Proof. We leave this to the reader.

There is another, more high-flown, way to view this. The ring R[t]/(pd(t))
is a vector space over R. Multiplication by t is a linear map on this vector
space, and T is the matrix that represents this map, relative to the basis
p0, . . . , pd−1.

If T is tridiagonal and D is a diagonal matrix of the same order as T
with positive diagonal entries, then D−1TD is tridiagonal. The sequence of
polynomials associated with D−1TD is the same as that associated with T
because the sequence belonging to a tridiagonal matrix T is determined by
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13.3. Tridiagonal Matrices

the products Ti+1,iTi,i+1. If S and T are tridiagonal of the same order then

Si+1,iSi,i+1 = Ti+1,iTi,i+1

for all i if and only if there is a diagonal matrix D with positive diagonal en-
tries such that S = D−1TS. For future reference we spell out an important
special case of this.

13.3.2 Lemma. Let T be a tridiagonal matrix of order d×d, with Tr,r+1 = 1
for all r. Let B be the d×d diagonal matrix with B0,0 = 1 and Br,r = ∏r

j=1 bj
when r > 0. Then

B−1/2TB1/2 =



a0
√
b1√

b1 a1
√
b2

. . . . . . . . .√
bd−2 ad−2

√
bd−1√

bd−1 ad−1

 .

Referring back to Theorem 13.2.2, we see that

Br,r = 〈pr, pr〉.

An immediate consequence of the previous lemma is that the eigenvalues
of a tridiagonal matrix are real. Rather more is true:

13.3.3 Theorem. If (pr)r≥0 is a sequence of orthogonal polynomials, then
the zeros of each polynomial are real and simple. Further the zeros of pr+1
are interlaced by those of pr.

Proof. The eigenvalues are real as just noted. The interlacing is the usual
interlacing of eigenvalues for weighted graphs. This leaves simplicity. If T
is tridiagonal of order d×d then the matrix we get from T −λI by deleting
the first row and last column is upper triangular with positive diagonal
entries, and hence its rank is d− 1. Consequently the rank of T − λI is at
least d− 1, for any λ, and therefore the eigenvalues of T are simple.
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13.4 Eigenvectors
We show that the polynomials p0, . . . , pd−1 associated with a tridiagonal
matrix are orthogonal with respect to an inner product.

Assume T is tridiagonal of order d × d and Ti+1,i = 1 for all i. The
reader might verify that

T


p0
p1
...

pd−1

 = t


p0
p1
...

pd−1

− pd(t)


0
...
0
1

 .
and therefore, if θ is an eigenvalue of T ,

p̃(θ) :=


p0(θ)
p1(θ)
...

pd−1(θ)


is an eigenvector for T with eigenvalue θ.

So B−1/2p̃(θ) is an eigenvector for the symmetric matrix B−1/2B1/2, and
therefore if θi and θj are distinct zeros of pd+1, the vectors

B−1/2p̃(θi), B−1/2p̃(θj)

must be orthogonal (with respect to the usual inner product on Rd+1).
Therefore the columns of the matrix

B−1/2
(
p̃(θ0) . . . p̃(θd)

)
are pairwise orthogonal. We set

βi = Bi,i,

and then the squared norm of the r-th column of our matrix of eigenvectors
is

νr :=
∑
i

pi(θr)2

βi
.

If we multiply the r-th column by ν−1
r , for each r, then the rows of the

resulting matrix are orthogonal too, which implies that if i 6= j, then
d−1∑
r=0

ν−1
r pi(θr)pj(θr) = 0.
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We now define
〈pi, pj〉 :=

d−1∑
r=0

ν−1
r pi(θr)pj(θr),

and thus we have an inner product on the space of polynomials of degree
at most d, relative to which the sequence (pr)dr=0 is orthogonal.

Note that if we have an infinite sequence of orthogonal polynomials, then
we have an infinite sequence of inner products. Under reasonable conditions
this sequence will converge to a limit. This is known as Favard’s Theorem.

13.5 Orthogonality
Let A be a symmetric matrix of order d × d. We define a family of inner
products on the algebra of real polynomials in one variable. Let M be a
positive semidefinite matrix of order d× d and set

[p, q] := tr(p(A)q(A)M).

This is a symmetric bilinear function and, since M < 0 we have

[p, p] = tr(p(A)2M) ≥ 0.

However, we need to know when [p, p] > 0. Note that if p and q are
polynomials such that p(A)M = q(A)M = 0 and f and g are polynomials,
then

(f(A)p(A) + g(A)q(A))M = 0.
It follows that there is a unique monic polynomial ψM of least degree such
that if f(A)M = 0, then ψM divides f . (In particular, ψM divides the
minimal polynomial of A.)

Let T be a tridiagonal matrix of order d× d. Let pr(t) be the character-
istic polynomial of the leading r × r submatrix of T and set p0(t) = 1. We
prove that the polynomials p0, . . . , pd are orthogonal.

13.5.1 Lemma. If M < 0 and A is symmetric, the bilinear map

[p, q] = tr(p(A)q(A)M)

is an inner product on the space of polynomials with degree less than
deg(ψM).
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Proof. Since M < 0, it has a positive semidefinite square root M1/2. Now

tr(p(A)2M) = tr(M1/2p(A)2M1/2),

since tr(BTB) = 0 if and only if B = 0 we have that [p, p] = 0 if and only
if p(A)M1/2 = 0, and this holds if and only p(A)M = 0. (Note that M1/2

and M have the same column space.)
We have already made use of an inner product of this form in Subsec-

tion 13.1, with M = I.
There is one important case where inner products of the above form

arise naturally. Suppose A is symmetric matrix and x is a vector such that
the cyclic A-module 〈x〉A it generates has dimension d. Then the vectors

x, Ax, . . . , Ad−1x

are linearly independent, and therefore they are a basis for 〈x〉A. We can
apply the Gram-Schmidt algorithm to these vectors to produce an orthogo-
nal basis y0, . . . , yd1 for 〈x〉A, and it is an easy exercise to see that there are
polynomials p0, . . . , pd−1 such that deg(pr) = r and yr = pr(A)x. Hence

xTpr(A)ps(A)x = 0

if r 6= s and so our polynomials are orthogonal relative to the inner product

[p, q] = tr(p(A)q(A)xxT ).

Finally we note that the matrix B that represents the action of A on 〈x〉A
is tridiagonal. It follows that any algorithm for determining the eigenvalues
of a tridiagonal matrix can be used to get the eigenvalues of a symmetric
matrix. The standard QR-algorithm for computing the eigenvalues of sym-
metric matrices does first convert the input to tridiagonal form (although
it does not use Gram-Schmidt to do this).

13.6 A Trace Inner Product for Orthogonal
Polynomials

13.6.1 Lemma. Let T be a tridiagonal matrix of order d×d with associated
polynomials p0, . . . , pd and set βr = ∏r

i=1 br. Then

pr(T )e0 = βrer.
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Proof. We proceed by induction on r. The result is trivial when r = 0; for
r = 1 we have p1(t) = t− a1 and hence

p1(T )e0 = (T − a1I)e0 = b1e1 = β1e1.

Assume r ≥ 1. Then

Ter = er−1 + arer + br+1er+1

and

pr+1(T )e0 = (T − arI)pr(T )e0 − brpr−1(T )e0

= βr(T − arI)er − brβr−1er−1

= βrbr+1er+1 + (βr − brβr−1)er
= βr+1er+1.

Assume T is tridiagonal of order d× d and

T̂ = B−1/2TB1/2,

as in Lemma 13.3.2. If you completed the exercise assigned there, you know
that Br,r = βr. (We assume β0 = 1.) We have

pr(T̂ )e0 = B−1/2pr(T )B1/2e0 = B−1/2pr(T )e0 = βrB
−1/2er = β1/2

r er,

and consequently
〈pr(T̂ )e0, ps(T̂ )e0〉 = βrδr,s.

13.6.2 Theorem. Let T be a tridiagonal matrix of order d × d and let
p0, . . . , pd be the family of monic polynomials associated to T . Then these
polynomials are orthogonal relative to the inner product on polynomials of
degree at most d− 1 given by

[f, g] = tr(f(T̂ )g(T̂ )e0e
T
0 ).

If we have the spectral decomposition

T̂ =
∑
r

θrEr,

then
[f, g] =

∑
r

f(θr)g(θr) tr(Ere0e
T
0 ) =

∑
r

f(θr)g(θr)(Er)0,0.

To make this useful, in the following section we determine (Er)0,0.
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13.7 Spectral Idempotents
Let T be a tridiagonal matrix with Tr,r+1 = 1 for all r, and let T̂ be the
symmetrized version of T . We determine the spectral idempotents of T̂ .

Let p0, . . . , pd be the sequence of monic polynomials associated with T
and let B be the diagonal matrix such that B−1/2TB1/2 = T̂ . If θr is an
eigenvalue of T , the vector p̃r with i-th entry β−1/2

i pi(θr) is an eigenvector
for T̂ . Let νr denote the squared norm of this vector. As the eigenvalues
of T̂ are simple, this implies that the idempotent Er associated with θr is
equal to ν−1

r p̃rtp
T
r . Hence

(Er)0,0 = 1
νr

and our only problem is to determine νr.
If we use pd to denote det(tI − T ) then, by Equation (4.3.4), we have

(Er)d−1,d−1 = pd−1(θr)
p′d(θr)

and since we also have

(Er)d−1,d−1 = pd−1(θr)2

βd−1νr
,

it follows that
νr = pd−1(θr)p′d(θr)

βd−1
.

We recall that βr = 〈pr, pr〉.

13.8 Interlacing
Suppose p and q are polynomials of degree n−1 and n respectively and the
zeros of q are

ζ1, . . . , ζn.

We say that p interlaces q if the zeros of q are real and for r = 1, . . . , n− 1
each interval [ζr, ζr+1] contains a zero of p.

The canonical example arises when q = p′. If θ1, . . . , θn are the zeros of
p in decreasing order and mr denotes the multiplicity of θr as a zero of p,
then

p′(t)
p(t) =

∑
r

mr

t− θr
.
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The derivative of p′(t)/p(t) is negative wherever it is defined. Since p′/p is
continuous on each open interval (θr, θr + 1) and since it changes sign on
this interval, there is a zero of p′ in (θr, θr + 1). Therefore p′ interlaces p.

13.8.1 Lemma. If q and p are monic polynomials of degree n − 1 and n
respectively. Then the following are equivalent:

(a) q interlaces p.

(b) The poles of the rational function q(t)/p(t) are real and simple, and the
residue at each pole is positive.

(c) If t is not a zero of p then (q(t)/p(t))′ < 0.

(d) If t is not a zero of q then (p(t)/q(t))′ ≥ 1.

Proof. There is no loss in assuming that q and p are coprime. Let θ1, . . . , θn
be the zeros of p in decreasing order. We consider the the rational function
q/p. Since the zeros of p are simple, each pole of q/p is simple and we have
a partial fraction expansion

q(t)
p(t) =

∑
r

cr
t− θr

for some nonzero constants cr. A simple limit computation yields that
cr = q(θr)/p′(θr) and, since the sign of both p′(θr) and q(θr) is (−1)r−1 we
conclude that cr > 0.

If cr > 0 for each r then (q/p)′ is negative wherever it is defined and so
(b) implies (c). It is easy to see that the converse is true.

As an application, we sketch a proof that the zeros of the path Pn are
real. We use induction on n with a stronger claim: we assume that if k < n
then the zeros of Pk are real and φk−1(t) interlaces φk(t). Now using the
recurrence for φn(t), we have

φn(t)
φn−1(t) = t− φn−1(t)

φn(t) .

Suppose the right side has exactly m poles. By looking at its graph, we
see that it has m + 1 distinct zeros. Hence the reciprocal of the left side
has exactly m + 1 poles, since the derivative of the right side is positive
wherever it’s defined it follows that φn−1(t)/φn(t) has m+ 1 poles, all real,
and since the zeros of φn−1(t) are real we conclude that all zeros φn(t) are
real.
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13. Orthogonal Polynomials

13.9 Sturm Sequences
A sequence of polynomials p0, . . . , pm is a Sturm sequence if deg(pr) = r, the
leading term of each polynomial is positive, and consecutive terms interlace.
We note:

13.9.1 Lemma. Suppose p and q are monic polynomials of degree n and
n − 1, where n ≥ 2. If q interlaces p, then there are scalars a and b and a
monic polynomial r such that b > 0 and

p(t) = (t− a)q(t)− br(t).

Furthermore r interlaces q.

Proof. First we note that
p

q
= t− a− br

q

whence (
p

q

)′
= 1− b

(
r

q

)′
.

If we can show that (p/q)′ > 1, then b(q/p)′ < 0. Since (r/q)′ is negative
when t is large it follows that b > 0 and (r/q)′ < 0 and therefore r interlaces
q.

We have
q2
(
p

q

)′
= p′q − pq′ = −p2

(
q

p

)′
(13.9.1)

Next
p2
(
q

p

)′
= −

∑
r

cr
p(t)2

(t− θr)2

and

q2 =
(∑

r

cr
p(t)
t− θr

)2

and so from (13.9.1) we have
(∑

r

cr
p(t)
t− θr

)2 (
p

q

)′
=
∑
r

cr
p(t)2

(t− θr)2 .
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13.10. Balanced Paths

Since p and q are monic, ∑r cr = 1 and therefore(∑
r

cr
p(t)
t− θr

)
≤
∑
r

cr
p(t)2

(t− θr)2 ;

it follows that (p/q)′ ≥ 1. The inequality is strict unless there is only one
term in the sum, in which case n = 1.

The previous lemma yields the following by induction.

13.9.2 Lemma. The sequence of monic polynomials p0, . . . , pn is a Sturm
sequence if and only there are real numbers ar and br for r = 1, . . . , n such
that br > 0

pr+1 = (t− ar)pr − brpr−1.

Our next result follows from, for example, [41, Theorem 6.3a].

13.9.3 Theorem. Suppose p(t) is a polynomial of degree n with real dis-
tinct zeros and let q0, . . . , qn be a Sturm sequence with qn = p. Let ζ1, . . . , ζn
be the zeros of p in decreasing order. Then there are at most r − 1 zeros
and exactly r − 1 sign changes in the sequence

(q0(ζr), q1(ζr), . . . , qn−1(ζr)).

In counting the sign changes in a sequence, we first delete all zeros from
the sequence. (If there is a zero at an internal term of the original sequence,
the terms that bracket it will have opposite sign.)

13.10 Balanced Paths
If a weighted path admits perfect state transfer between its end-vertices at
time t, then the end-vertices must be strongly cospectral. (Recall that for
graphs with only simple eigenvalues, cospectral vertices are automatically
strongly cospectral.) Let P be a weighted path with vertex set {0, . . . , d−1};
we say that P is balanced if the permutation that sends i to d− 1− i (for
each i) is an automorphism.

13.10.1 Lemma. Let P be a weighted path of length d, with vertex set
{0, . . . , d− 1}. and let E0, . . . , Ed−1 be the spectral idempotents for A(P ).
If the end-vertices of P are cospectral, then P is symmetric. Further if R is
the automorphism that swaps the end-vertices of P , then R is a polynomial
in A(P ) and R = ∑d−1

k=0(−1)kEk.
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13. Orthogonal Polynomials

Proof. If the end-vertices of P are strongly cospectral, then by Lemma 6.8.1,
there is an orthogonal matrix R which is a polynomial in A and swaps e0
and ed−1. Hence

Ajed−1 = AjRe0 = RAje0

and it follows, after some effort on the reader’s part, that Rej = ed−1−j.
Therefore R is an automorphism of P .

Suppose z is an eigenvector for A. Then it is an eigenvector for R
(because R is a polynomial in A) and, since R2 = I, it follows that Rz = ±z.
If p0, . . . , pd−1 is the sequence of polynomials associated with A, then we
may assume that zi = β

−1/2
i pi(θk), for some eigenvalue θk. We see that

z0 = 1 and the sign of zd−1 is equal to the sign of pd−1(θk), and thus it is
(−1)k. Consequently if z belongs to the eigenvalue θk, then Rz = (−1)kz.
As the idempotent belonging to θk is a scalar multiple of zzT , we deduce
that REk = (−1)kEk and therefore the spectral decomposition of R is as
stated.

13.10.2 Corollary. Let P be a weighted path on d vertices with adjacency
matrix A. Then P is balanced if and only if pd−1(A) = γR for some γ.

Proof. Assume that P is balanced. By Lemma 13.6.1, we have pd−1(A)e0 =
βd−1ed−1 and, since Red−1 = e0, it follows that Rpd−1(A)e0 = βd−1e0. As R
and pd−1(A) commute with A, it follows that

Rpd−1(A)e0A
k = βd−1A

ke0

for all k and therefore Rpd−1(A) = βd−1I.
Now suppose that pd−1(A) = γR for some γ. The sequence of polyno-

mials p0, . . . , pd can be constructed by running the three-term recurrence
backwards from pd and pd−1. Since R commutes with pd(A) (which is zero)
and with pd−1(A), it follows that R commutes with p1(A) = A−a0I. There-
fore R commutes with A and so P is balanced.

Note that it is easy to constructed weighted paths with given spectrum.
Suppose we are given distinct reals

θ0 > θ1 > · · · > θd−1.

Define pd(t) = ∏
i(t−θi), let `i denote the Lagrange interpolating polynomial

`i(t) =
∏
j:j 6=i

t− θj
θi − θj
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and let a0, . . . , ad−1 be a sequence of positive reals. Define

pd−1(t) :=
d−1∑
i=0

(−1)iai`i(t).

Then pd−1 interlaces pd and so, using the Euclidean algorithm we can con-
struct a sequence of polynomials p0, . . . , pd. The eigenvalues of the associ-
ated tridiagonal matrix are the given reals θ0, . . . , θd−1.

Furthermore, if in this construction, we take ai = 1 for all i, then pd−1
is a scalar multiple of R, and the path we construct will be balanced.

13.11 Designer Transfers
We present a method for constructing weighted paths with perfect state
transfer between their end-vertices. The basic idea is to construct the path
from its eigenvalues.

If A is the adjacency matrix of a weighted path and c and d are real
numbers (with d > 0), then cI + dA is the adjacency matrix of a weighted
path, and we have pst relative to A if and only we have pst relative to
cI + dA. We say that the second path is obtained from the first by shifting
and scaling . If we have pst on P , we have pst on any weighted path obtained
from it by shifting and (non-zero) scaling.

13.11.1 Lemma. Let P be a weighted path on d vertices with eigenvalues
θ1, . . . , θd. If there is perfect state transfer between the end-vertices of P ,
then there is a shifting and scaling of P with all eigenvalues integers.

Proof. Our argument is, at most, a simple variant of the the one we used to
prove Theorem 7.6.1. There we assumed that the entries of A were integers.

Let A denote the adjacency matrix of P and set U(t) = exp(itA). Then

U(t)a,b =
∑
r

eitθr(Er)a,b

and therefore, by the triangle inequality,

|U(t)a,b| ≤
∑
r

|(Er)a,b|.

Equality holds if and only if there is a complex scalar γ such that

eitθr sign((Er)a,b) = γ
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for all r. As in the proof of Theorem 7.6.1, we conclude that if there is
ab-pst on P , then the ratio condition holds:

θr − θs
θk − θ`

∈ Q

for all r, s, k, ` with k 6= `.
It follows that for some rational number C we have

C
∏
r 6=s

(θr − θs) = (θ1 − θ2)(d−1)(d−2).

We assume now that P is scaled so that the product on the left is an integer.
Since θ1 and θ2 are real, we infer that (θ1−θ2)2 is rational, and consequently
we can assume that P is scaled so that the eigenvalue differences are integers.
Now we can shift P so that the eigenvalues themselves are integers.

13.11.2 Theorem. Let θ0, . . . , θd−1 be a strictly decreasing series of inte-
gers. Then there is a unique weighted path P on d vertices with eigenvalues
θ0, . . . , θd−1 and with perfect state transfer between its end-vertices.

Proof. Set

pd(t) =
d−1∏
r=0

(t− θr)

and let f be the unique polynomial of degree d− 1 such that

f(θr) = (−1)r.

If f0 is the leading term of f , set pd−1(t) = f−1
0 f(t).

Let p0, . . . , pd−1 be the sequence of orthogonal polynomials constructed
from pd−1 and pd, let A be the associated symmetric tridiagonal matrix and
let P the weighted path with adjacency matrix A. Then P has perfect state
transfer between its end vertices.

The path just constructed will have no loops if and only if the eigenvalues
are symmetric about the origin.
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13.12 Unbalanced Paths with Perfect State
Transfer

We present a construction due to Kay [45] of unbalanced paths on five
vertices that admit pst between the second and fourth vertices, but not
between the end-vertices.

We consider the weighted path P of length five with symmetric adja-
cency matrix 

0
√
a 0 0 0√

a 0
√
b 0 0

0
√
b 0

√
c 0

0 0
√
c 0

√
d

0 0 0
√
d 0

 .

The characteristic polynomial of this matrix is

t5 − (a+ b+ c+ d)t3 + (ac+ ad+ bd)t = t((t2 − a− b)(t2 − c− d)− bc).

The respective characteristic polynomials of T \2 and T \4 are

t2(t2 − c− d), t2(t2 − a− b)

whence the vertices 2 and 4 are strongly cospectral if and only if

a+ b = c+ d.

In this case the eigenvalues of P are

0, ±
√
a+ b±

√
bc.

Note that the eigenvalue support of 2 (and of 4) consists of the four
non-zero eigenvalues of P . The characteristic polynomials of T \1 and T \2
respectively are

t4 − (a+ b+ c)t2 + ac, t4 − (b+ c+ d)t2 + bd;

these are equal only if a = d and b = c, that is, if and only if P is balanced.
Following Kay, we assume a+ b = c+ d and take

a+ b = 5
2 , bc = 3/2.
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The characteristic polynomial of P is then

t((t2 − 5/2)2 − 3/2) = t(t4 − 5t2 + 4) = t(t2 − 1)(t2 − 4)

and so the eigenvalues of P are

−2, −1, 0, 1, 2.

Some calculation yields that

U(π) = 1
16


4 0 6 0 6
0 0 0 16 0
6 0 9 0 1
0 16 0 0 0
6 0 1 0 9


and so we have pst from 2 to 4 at time π.

Note that we may take a = 0, when we get pst on a weighted path with
four vertices, from vertex 1 to vertex 3.

Notes

Exercises
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Chapter 14

Association Schemes

This chapter provides an introduction to some aspects of association schemes
and related algebras. We use the machinery we develop to construct new
examples of graphs with perfect state transfer. In later chapters we will find
further applications of the theory, in particular when we discuss uniform
mixing.

14.1 Automorphisms and Algebras
The definition of association scheme will seem technical; in this section we
offer one way of motivating it.

Let X be a graph with diameter d. The distance graph Xr has the
same vertex set as X, but vertices u and v are adjacent in Xr if they are at
distance exactly r in X. (Thus X1 = X.) We use Ar to denote A(X)r and
find it convenient to use A0 to denote I.

An automorphism of X can be viewed as a permutation matrix P that
commutes with A1. Clearly if P and A1 commute, P must commute with
each element of the adjacency algebra R[A1] of X, that is, with any poly-
nomial in A1. However if P and A1 commute, then P commutes with each
matrix Ar and consequently P commutes with each element of the distance
algebra D generated by A0, . . . , Ad. Since the distance algebra can be much
larger than R[A1], it can provide much stronger restrictions on the possi-
ble automorphisms of X. (If follows from the observations in 5.9 that, for
almost graphs, D is the full matrix algebra.)

One problem here is that is not precisely clear what we meant when
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14. Association Schemes

we wrote that D is ‘larger’ than R[A1]. We take the view that dimen-
sion is the right notion of size. In |V (X)| = n, then dim(D) ≤ n2 and,
since the distance matrices A0, . . . , Ad are linearly independent, we see that
dim(D) ≥ d+ 1. If D is Matn×n(R), then the only permutation matrix that
commutes with each of its elements if the identity, and therefore Aut(X)
is trivial. Hence we might argue that X has the most ‘regularity’ when
dim(D) = d+ 1.

Let us consider the case dim(D) = d+ 1 further. For any i, j such that
0 ≤ i, j ≤ d, the product AiAj lies in D; since D has a basis of symmetric
matrices this implies that AiAj is symmetric, and therefore

AjAi = (AiAj)T = AiAj.

Thus D is commutative. Since J = ∑
r Ar lies in D, each matrices Ai

commutes with J and therefore the distance graphs X1, . . . , Xd are regular.
The set of matrices

{0, A0, · · · , Ad}

is closed under Schur multiplication, from which we deduce that the algebra
D that they generate is Schur-closed.

We restrict ourselves now to the case with d = 2 and dim(D) = 3. Here

A2 = J − I − A1

and therefore A1 and A2 commute if and only if A1 and J commute, equiv-
alently, if and only if X is regular. But much more is happening. For D
contains all powers of A1 and the matrices I, A1 and A2

1 are linearly inde-
pendent (an easy exercise). Hence these three matrices are a basis for D,
which implies that any power of A1 is a linear combination of I, A1 and
A2

1 and therefore the minimal polynomial of A has degree three. We con-
clude that A1 has exactly three eigenvalues (traditionally k, θ and τ) and
its spectral decomposition is

A1 = kE0 + θE1 + τE2.

Since the spectral idempotents of A1 are polynomials in A1, they belong
to D. Since the spectral idempotents are linear independent, they form a
second basis for D. As D is Schur closed, the Schur products Ei ◦ Ej can
be expressed as a linear combination of spectral idempotents.
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14.2. Strongly Regular Graphs

To summarise, we have a matrix algebra D with a combinatorial basis
A0, A1, A2 of Shcur orthogonal (Ai ◦Aj = 0) Schur idempotents (Ai ◦Ai =
Ai). It also has a basis E0, E1, E2 of pairwise orthogonal matrix idempotents.
In a sense, D is an algebra in two different ways.

14.2 Strongly Regular Graphs
We consider graphs with diameter two where dim(D) = 3 (which, in the
next section, we will define to be strongly regular graphs). In this case, the
matrices I, J and A are linearly independent, and therefore any power of
A lies in their span. So there are constants k, a and c such that

A2 = kI + aA+ c(J − I − A).

We note that k is the valency of X. We write A for J − I − A. Then

A2 − (a− c)A− (k − c)I = cJ

and as (A− kI)J = 0,

(A− kI)(A2 − (a− c)A− (k − c)I) = 0.

It follows that
(t− k)(t2 − (a− c)t− (k − c))

is the minimal polynomial of A, and its three zeros are the eigenvalues of A.
(Since the diameter d is two, X has at least d + 1 = 3 distinct eigenvalues,
so the minimal polynomial of A has degree three.)

Assume the eigenvalues of A are

k > θ > τ

Since X is connected and regular, k is a simple eigenvalue. If the mul-
tiplicities of θ and τ are respectively mθ and mτ and n = |V (X)|, then
since

0 = tr(A) = k +mθθ +mττ

we deduce the equations

mθ +mτ = n− 1, mθθ +mττ = −k.
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Solving these yields that

mθ = (n− 1)τ + k

τ − θ
.

This surprisingly useful, providing a severe restriction on the possible pa-
rameter sets (k, a, c) for a strongly regular graph. (The expression for mθ

must reduce to a non-negative integer.) We also see that mθ is determined
by k, a and c.

We introduce a family of examples. A Latin square is an n× n matrix
with entries from {1, . . . , n} such that each integer occurs exactly once in
each row and once in each column, e.g,

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

 ,


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


If L is an n× n Latin square, we can form. a graph with the n2 triples

(i, j, Li,j), 1 ≤ i, j ≤ n

as vertices, with two triples adajcent if they agree on one of the coordinates.
If A is the adjacency matrix of an n× n Latin square,

A2 = 3(n− 1)I + (n+ 2)A+ 6(J − I − A)

The eigenvalues are A are therefore 3n− 3 and the zeros of

t2 − (n− 4)t− (3n− 9) = (t+ 3)(t− n+ 1);

that is, 3n − 3, n − 1, −3. Since the multiplicities of the eigenvalues are
determined by the parameters, we infer that the two graphs coming from
the ×4 squares above are cospectral although, as it happens they are not
isomorphic.

14.3 Axioms for Association Schemes
We introduce association schemes. We will see that if X has diameter d
and its distance algebra has minimal dimension d + 1, then the distance
matrices A0, . . . , Ad form an association scheme.

An association scheme A with d classes is a set of n × n 01-matrices
{A0, . . . , Ad} such that:
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(a) A0 = I and ∑r Ar = J .

(b) ATr ∈ A for all r.

(c) For all r and s, the product ArAs lies in the span of A over C.

(d) ArAs = AsAr for all r, s.

We can, and do, view the matrices A1, . . . , Ad as the adjacency matrices of
graphs X1, . . . , Xd (with common vertex set), and we may view an associa-
tion scheme as a set of d directed graphs. It follows from (a) and (d) that
each matrix Ar commutes with J , and therefore these directed graphs are
regular. An association scheme is symmetric if each matrix Ar is symmetric,
when we have only graphs in sight. It is a traditional exercise to show that
if each Ar is symmetric, then (d) is a consequence of the other axioms.

From (c) and (d), we see that the span of A is a commutative matrix
algebra, known as the Bose-Mesner algebra of the scheme. Since the matri-
ces Ar are 01-matrices that sum to J , they are linearly independent and so
the dimension of the Bose-Mesner algebra is d + 1. This is the minimum
possible dimension for a set of 01-matrices for which (a) holds.

Since the set consisting of A and the zero matrix is closed under Schur
multiplication, the Bose-Mesner algebra of an association scheme is itself
closed under Schur multiplication. This the Bose-Mesner algebra is an
algebra with two multiplications; this is an extremely important property.

The matrices Ar are Schur idempotents, we refer to them as primi-
tive Schur idempotents, since they cannot be expressed as nonzero sums of
nonzero Schur idempotents from the Bose-Mesner algebra.

We consider examples. If d = 1, the only graph in the scheme is the
complete graph Kn. If d = 2, the two graphs in the scheme are strongly
regular; conversely a strongly regular graph and its complement give rise to
an association scheme with two classes.

Another very relevant example is the Hamming scheme H(n, q). We
define this in terms of its graphs. Let Q be an alphabet with |Q| = q and
let V = Qn. Let Xr be the graph with vertex set Qn, where two n-tuples
are adjacent in X if and only they are at Hamming distance r. We point
out that in H(n, 2) the graph X1 is the n-cube and the graph X1 in H(n, q)
is the Hamming graph—the n-th Cartesian power of Kn. Proving that
the graphs Xr for an association scheme using just this definition and the
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axioms is a non-trivial task at this point. An easier but less direct approach
is possible, as we now outline.

A permutation group G on a set V is generously transitive if, for each
pair of points in V there is an element of G that swaps them. (For example,
the dihedral group of order 2n acting on the cycle Cn.) You are invited to
show that the non-diagonal orbitals of a generously transitive permutation
group form a symmetric association scheme. Important note: in this case
we can meet examples where the Schur idempotents Ar are not the distance
matrices of some graph.

An association scheme is primitive if each of the graphs X1, . . . , Xd is
connected; otherwise it is imprimitive. Any union of the Xr’s has equal in-
and out-valency, hence it is weakly connected if and only if it is strongly
connected.

We define a graph X to be distance regular if it is regular and the
distance partition with any vertex is equitable. If Xr is a graph in an
association scheme A with d classes, then the diameter of Xr is at most
d. If equality holds we say that A is metric relative to Xr. If a scheme
is metric, it is customary to have matters arranged so that the scheme is
metric relative to X1. It can be shown that A is metric relative to X1 if
and only if X1 is distance regular. Strongly regular graphs are the distance-
regular graphs of diameter two, more precisely they are the graphs that
arise as the classes on association schemes with two classes.

14.4 Coherent Algebras
The Bose-Mesner algebra of an association scheme A is a commutative ma-
trix algebra that contains J and is closed under transpose Schur-product.
Any space of matrices closed under Schur product has a unique basis con-
sisting of 01-matrices; these matrices are the adjacency matrices of the
graphs that form A. It is natural to consider what happens if we drop the
assumption of commutativity.

A coherent algebra is a real or complex algebra of matrices that contains
the all-ones matrix J and is closed under Schur multiplication, transpose
and complex conjugation. A coherent algebra always has a basis of 01-
matrices and this is unique, given that its elements are 01-matrices. This
set of matrices determines a set of directed graphs and the combinatorial
structure they form is referred to as a coherent configuration. When we say
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that a graph X is a “graph in a coherent algebra”, we mean that A(X) is
a sum of distinct elements of the 01-basis.

A coherent algebra is homogeneous if the identity matrix is an element
of its 01-basis. If M belongs to a homogeneous coherent algebra, then

M ◦ I = µI

for some scalar µ. Hence the diagonal of any matrix in the algebra is
constant. If A is a 01-matrix in the algebra, the diagonal entries of AAT
are the row sums of A. Therefore all row sums and all column sums of
any matrix in the 01-basis are the same, and therefore this holds for each
matrix in the algebra. In particular we can view the non-identity matrices
as adjacency matrices of regular directed graphs. Any directed graph in a
homogeneous coherent algebra must be regular. We note that if a coherent
algebra is not homogeneous, then it is not commutative.

Any association scheme is a homogeneous coherent configuration. For
a second class of examples we observe that if P is a set of permutation
matrices of order n × n, then the commutant of P in Matn×n(C) is Schur-
closed. Therefore it is a coherent algebra, and this algebra is homogeneous
if and only the permutation group generated by P is transitive. Thus any
graph whose automorphism group acts transitively on its vertices belongs
to a coherent algebra.

Recall from Section 6.3 that a graph is walk regular if its vertex-deleted
subgraphs X \u are all cospectral.

14.4.1 Lemma. If X is a graph in a homogeneous coherent algebra, then
X is walk regular.

Proof. Any matrix in a coherent algebra is a linear combination of basis
matrices, which are Schur orthogonal. If the algebra is coherent then one
of the basis elements is I, and therefore any linear combination of basis
elements has constant diagonal. inally, if A lies in a coherent algebra, so do
all its powers.

The graph in Figure 6.1 is walk regular but not vertex transitive. It
does not lie in a homogeneous coherent algebra—the row sums of the Schur
product

A ◦ (A2 − 4I) ◦ (A2 − 4I − J)

are not all the same.

255



14. Association Schemes

A commutative coherent algebra is the same thing as a Bose-Mesner
algebra of an association scheme. We will not go into this here, but we
do note that the coherent algebra belonging to a distance-regular graph is
commutative.

14.5 State Transfer on Coherent Algebras
The centre of a group is the set of elements in the group that commute with
all elements of the group. The centre always contains the identity of the
group, and if the group is the full symmetric group Sn with n > 2, then
it consists exactly of the identity element only. On the other extreme, the
centre of an abelian group is the entire group.

14.5.1 Theorem. If X is a graph in a homogeneous coherent algebra with
vertices u and v, and perfect state transfer from u to v occurs at time τ ,
then U(τ) is a scalar multiple of a permutation matrix with order two and
no fixed points that lies in the centre of the automorphism group of X.

Proof. First, if A = A(X) where X is a graph in a homogeneous coherent
algebra then, because it is a polynomial in A, the matrix H(t) lies in the
algebra for all t. Hence if

|H(τ)u,v| = 1

it follows that H(τ) = ξP for some complex number ξ such that |ξ| = 1
and some permutation matrix P . Since A is symmetric, so is H(t) for any
t, and therefore P is symmetric. So

P 2 = PP T = I

and P has order two. Since P has constant diagonal, its diagonal is zero
and it has no fixed points. As P is a polynomial in A, it commutes with
any automorphism of X and hence is central.

This result should be compared with Theorem 1.11.1, which it general-
izes considerably.

14.5.2 Corollary. If X is a graph in a homogeneous coherent algebra with
vertices u and v and there is perfect state transfer from u to v, then the
number of vertices of X is even.
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Proof. Since P 2 = I and the diagonal of P is zero, the number of columns
of P is even.

Saxena et al [52] http://arxiv.org/abs/quant-ph/0703236 proved
this corollary for circulant graphs.

A homogeneous coherent algebra is imprimitive if there is a non-identity
matrix in its 01-basis whose graph is not connected, otherwise it is primitive.
If the algebra is the commutant of a transitive permutation group, it is
imprimitive if and only the group is imprimitive as a permutation group.
The above corollary implies that if perfect state transfer takes place on a
graph from a homogeneous coherent algebra, the algebra is imprimitive.

Note that this corollary holds for any vertex-transitive graph, and for
any distance-regular graph.

14.6 Spectral Decomposition of Schemes
Any matrix in an association scheme is normal, and so it has a spectral
decomposition. It is more convenient to define a decomposition for the
entire Bose-Mesner algebra.

Since the Bose-Mesner algebra is commutative and each matrix in it is
normal, we may consider the set E of all possible products of the spectral
idempotents of the matrices Ar. Each nonzero element of E is an idempotent
and belongs to the Bose-Mesner algebra of the scheme. If E and F are
idempotents, we write E ≤ F if EF = E. With respect to this ordering
the minimal non-zero idempotents are orthogonal. It can be shown that
they form a basis for the Bose-Mesner algebra, whence there are exactly
d + 1 minimal nonzero idempotents in E . We denote them by E0, . . . , Ed
and note that they satisfy the following:

(a) 1
n
J ∈ {E0, . . . , Ed},

∑
Er = I.

(b) Er = Es for some s.

(c) Er ◦ Es lies in the span of E0, . . . , Ed.

It is conventional to assume that E0 = 1
n
J . We note that (b) holds because

the Bose-Mesner algebra has a real basis and that (c) holds because the
Bose-Mesner algebra is closed under Schur multiplication. We will refer to
the matrices Er as the primitive spectral idempotents.
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If M ∈ C[A], there is a constant λM such that MEr = λMEr; thus
the columns of Er are eigenvectors for M , all with the same eigenvalue.
Therefore there are scalars pr(s) such that ArEs = pr(s)Es and

A =
∑
s

pr(s)Es.

The scalars pr(s) for s = 0, . . . , d are eigenvalues of A, and we refer to the
matrix P defined by

Pr,s := ps(r)
as the matrix of eigenvalues of the scheme.

For fixed r, the matrices Er ◦As are linearly independent, and it follows
that Er ◦ As must be a scalar multiple of As. If our scheme has n vertices,
there must be scalars qr(s) such that

Es = 1
n

∑
r

qs(r)Ar.

The matrix Q given by
Qr,s := qs(r)

is the matrix of dual eigenvalues of the scheme. We have

PQ = nI.

There is a second relation betwen P and Q. Let ∆m be the diagonal
matrix of order (d + 1) × (d + 1) with i-th diagonal entry equal to rk(Ei)
and let ∆v denote the diagonal matrix of order (d + 1)× (d + 1) with i-th
diagonal entry equal to vr, the row sum of Ar. Then

P∆mP
∗ = n∆v (14.6.1)

and thus the matrix
∆−1/2
v P∆1/2

m

is orthogonal.
Since the product ArAs lies in the span of A, there are scalars pr,s(j)

such that
ArAs =

∑
j

pr,s(j)Aj.

Since all matrices Ar are 01-matrix it is immediate that the number pr,s(j)
are non-negative integers. In fact pr,s(j), for any pair (a, b) of j-related

258



14.7. Translation Schemes

vertices, pr,s(j) counts the number of vertices that are r-related to a and
s-related to b. If vs denotes the sum of a row of As, then the quantity

vspr,s(j)

is invariant under permutations of r, s and j—because this number counts
the triangles of vertices with sides of “length” r, s and j that contain a
gieven vertex.

Naturally there are parameters “dual” to the intersection number, known
as the Krein parameters of the scheme. These are the numbers qr,s(j) such
that

Er ◦ Es = 1
n

∑
j

qr,s(j)Ej.

These numbers are not always integers, and hence have no natural combi-
natorial interpretation. However qr,s(j)/n is an eigenvalue of Er ◦ Es, and
therefore it is real. Since the Schur product of positive semidefinite matrices
is positive semidefinite, the Krein parameters are also non-negative.

14.7 Translation Schemes
Suppose G is a finite group with conjugacy classes C0, . . . , Cd, where C0 =
{1}. Define Xr to be the directed graph with vertex set G, with elements
g and h adjacent in Xr if hg−1 ∈ Cr. (In other terms, Xr is the Cayley
graph X(G,Cr). (Here we allow a Cayley graph to be a directed graph,
the connection set need not be inverse-closed.) Then the directed graphs
X1, . . . , Xd form an association scheme, the conjugacy class scheme of the
group G. We leave the details as an exercise. When G is abelian, each
conjugacy class has size one, and the matrices Ar are permutation matrices.
In this case we call the conjugacy class scheme a translation scheme.

Any graph constructed as the union of a subset of the classes X1, . . . , Xd

from a conjugacy class scheme is a Cayley graph for the underlying group.
Such Cayley graphs are known as normal Cayley graphs and are charac-
terized by the property that their connection sets are unions of onjugacy
classes. When G is abelian, we refer to the Cayley graphs as translation
graphs.

One nice feature of conjugacy class schemes is that we can give some-
thing like an explicit form for their primitive spectral idempotents:
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14.7.1 Lemma. Suppose ψ is an irreducible representation of the group G
and Mψ is the matrix with rows and columns indexed by G such that

(Mψ)g,h = ψ(hg−1)

Then the matrices
Eψ = ψ(1)

|G|
Mψ

are the primitive spectral idempotents of the conjugacy class scheme of G.

For translation schemes we can be more explicit, because we can give the
eigenvectors explicitly. If ψ is a character of the G, then ψ is an eigenvector
for the Bose-Mesner algebra of the scheme. We have

Eψ = ψψ∗,

this is a consequence of the previous lemma, but is very easy to verify
directly.

In a translation scheme we may denote the primitive Schur idempotents
by Ag, for g in G, with

AgAh = Agh.

(Each Ag is a permutation matrix.) If ψ is a character and S ⊆ G, then
define

ψ(S) :=
∑
g∈S

ψ(g).

14.7.2 Lemma. Suppose X = X(G,C) is a translation graph for the
abelian group G and A = A(X). If ψ is a character for G, then

Aψ = ψ(C)ψ.

If A is the scheme of the cyclic group of order v and θ is a primitive
v-th root of 1 then we may assume that

Pi,j = θ(i−1)(j−1). (14.7.1)

Note that this matrix is symmetric, It is easy to verify that PP = nI,
whence Q = P . If G is abelian then G can be expressed as the direct
product of cyclic groups, and its matrix of eigenvalues can be written as a
Kronecker products of matrices of the same form as P . Hence if P is the
matrix of eigenvalues of a translation scheme, we may assume that P is
symmetric and P = Q.
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14.8 Integral Subschemes
Suppose A = {A0, . . . , Ad} and B = {B0, . . . , Be} are association schemes
on the same vertex set. We say that B is a subscheme of A if each matrix Br

is a sum of matrices from A (necessarily B0 = A0 = I). Subschemes are also
known as fusion schemes. Trivial examples is provided by the association
scheme of the complete graph Kn, which is a subscheme of any scheme on
n vertices.

We consider a more interesting class of examples. Consider the subspace
of the Bose-Mesner algebra C[A] spanned by the matrices with only rational
entries and rational eigenvalues. This algebra contains I and J and is closed
under both matrix and Schur multiplication. It follows that it is the Bose-
Mesner algebra of an association scheme B, and this scheme is a subscheme
of A. Since the eigenvalues of an integer matrix are algebraic integers, it
follows that the integer matrices in C[B] have only integer eigenvalues. We
call B the integral subscheme of A.

We can provide a concrete description of the integral subscheme of the
scheme of an abelian group. Suppose G is abelian and, if g ∈ G, let Ag be
the permutation matrix that represents multiplication by g on C[G]. Thus
the matrices Ag are the minimal Schur idempotents of the group scheme.
The characters of G form a group G∗ isomorphic to G, and we use ψg to
denote the image in G∗ of the element g of G. Define a relation ≈ on G
by by declaring that g ≈ h if and only 〈g〉 = 〈h〉, i.e., g and h generate the
same cyclic subgroup of G. We observe that ≈ is an equivalence relation
on the elements of G, and the number of equivalence classes is the number
of cyclic subgroups of G. We have the following important result due to
Bridges and Mena.

14.8.1 Theorem. If X = X(G,C) is a Cayley graph for the abelian group
G, then its eigenvalues are all integers if and only if C is ≈-closed.

Proof. Let [x] denote the ≈-class of x. (This consists of all generators of the
cyclic group 〈x〉.) We claim that if ψ is a character of G, then ψ([x]) ∈ Z;
this implies that the stated condition is sufficient.

The key is that if H ≤ G and ψ ∈ G∗ then either H ≤ ker(ψ) (and
ψ(h) = 1 for all h in H) or ψ(H) = 0. To prove this, choose h in H and
note that

ψ(H) = ψ(hH) = ψ(h)ψ(H),
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whence either ψ(h) = 1 or ψ(H) = 0.
Suppose x in G has order m and ψ ∈ G∗. If x ∈ ker(ψ) then ψ([x]) = m.

If x ∈ ker(ψ), then [x] ⊆ ker(ψ), and if x /∈ ker(ψ) then

[x] ∩ ker(ψ) = ∅.

Since 〈x〉 is cyclic and [x] is the set of generators of 〈x〉, it follows that
〈x〉 \ [x] is a subgroup of 〈x〉. Therefore

ψ(〈x〉 \ [x]) ∈ Z

and it follows that ψ([x]) must be an integer.
Assume now that ψ(C) is an integer for all characters ψ; we must deduce

that C is ≈-closed. Assume that the exponent of G is m. Then

1 = ψ(0) = ψ(mx) = ψ(x)m

and so all character values are m-th roots of 1. Let Γ be the group of units
of Zm. Note that if F is the extension of Q generated by a primitive m-th
root of 1, then Γ is the Galois group of this extension. If a ∈ Γ then the
map x 7→ ax is an automorphism of G. If for a character ψ we define ψa by

ψa(x) := ψ(ax)

then Γ also acts as a group of automorphisms of G∗. (This means we have
three distinct actions of Γ: on G, on G∗ and as a Galois group. )

Since the eigenvalues of X are integers

ψa(C) = ψ(C)

for all a in Γ and therefore

ψ(aC) = ψ(C)

for all a. As this holds for all characters, it follows that aC = C and
consequently C is ≈-closed.

One consequence of this result is that a Cayley graph for an abelian
group whose exponent divides 4 or 6 will have integer eigenvalues.

Our relation ≈ is also an equivalence relation on G∗. If g 7→ ψg is an iso-
morphism from G to G∗, then g ≈ h if and only if ψg ≈ ψh. Therefore there
is a bijection between the ≈-classes of G and those of G∗, and this bijection
preserves the size of a class. Hence, using the notation from Section 14.6,
we may assume that ∆m = ∆v.
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14.9 Perfect State Transfer on
Distance-Regular Graphs

The paper Coutinho et al [22] provides a close to complete list of the
distance-regular graphs that admit perfect state transfer. We discuss some
the results from this paper. The standard reference is Brouwer, Cohen and
Neumaier [14]; there is also an introduction in [35].

A distance-regular graph is antipodal if its diameter is d and the relation
on vertices “is equal to or at distance d from” is an equivalence relation.
The equivalence classes are called fibres. If a distance-regular graph is
antipodal, the fibres all have same size. The d-cubes are antipodal distance-
regular graphs with fibres of size two; the line graph of the Petersen graph
is antipodal with fibres of size three. The cocktail party graph mK2 is
strongly regular with diameter two.

The partition of a distance-regular graph into antipodal fibres is neces-
sarily equitable, and the resulting quotient graph is distance regular but
not antipodal. The distance-regular graph is a cover of its quotient—the
vertices in distinct fibles are either not adjacent or are paired by a matching.
If the graph has diameter d, the quotient has diameter bd/2c.

If a distance-regular graph admits pst, then it must be antipodal. Al-
though this condition rules out many graphs, it still leaves considerable
scope.

A distance-regular graph of diameter one is a complete graph, and K2
is the only complete graph that admits pst.

14.9.1 Lemma. If perfect state transfer occurs on the distance-regular
graph X, then either X is K2 or mK2, or the diameter of X is at least three
and X is antipodal with all fibres of size two.

Proof. Let π be the distance partition of X relative to a vertex a, with
cells C0, . . . , Cd. Then the sequence of cell sizes |Cr| (for r = 0, . . . ,m) is
unimodal. By Lemma ??, if we have pst from a to b, then {b} must be a
cell of π, and therefore X is antipodal with fibres of size two, and b is the
unique vertex in X at distance d from a. We leave it as an exercise to show
that an antipodal strongly regular graph must be isomorphic to mK2.

Note that both K2 and the cocktail party graphs admit perfect state
transfer.
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An antipodal distance-regular graph of diameter three is a cover of a
complete graph, and the graphs of diameter three with antipodal classes of
size two are necessarily switching graphs, as discussed in Section 12.7. The
eigenvalues of a distance-regular 2-fold cover of Kn are

n− 1, −1, θ, τ

where θτ = 1 − n. We say that θ and τ are the non-trivial eigenvalues of
the cover. There are many classes of such covers that admit pst, and these
are discussed in [22]. Here we consider just one interesting family.

14.9.2 Lemma. If X is a distance-regular 2-fold cover of Kn with non-
trivial eigenvalues θ and τ . If θ + τ = −2, then X admits perfect state
transfer at time π/

√
n.

One feature of this class of examples is that the time to pst is so short.
The infinite families of distance-regular graphs that admit pst are:

(a) The d-cubes.

(b) The halved d-cubes.

(c) The Hadamard graphs or order n, where n is a perfect square.

The d-cubes we have met. The halved d-cube is the graph with a colour
class of Qd as its vertices, and with two such vertices adjacent if and only if
they are at distance two in the d-cube. (So it has 2d−1 vertices and valency(
d
2

)
). We will meet these graphs again when we study uniform mixing in

Chapter 17.) A Hadamard graph is construct from an n × n Hadamard
matrix as follows. Write H as

H = H0 −H1

where H0 and H1 are 01-matrices, and then define

B = H0 ⊗
(

1 0
0 1

)
+H1 ⊗

(
0 1
1 0

)
.

The Hadamard graph associated with H is the bipartite graph with adja-
cency matrix (

0 B
BT 0

)
.
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It is bipartite with diameter four, and antipodal with fibres of size two. (It
is a double cover of the complete bipartite graph Kn,n.)

Finally we note that in [22] there are many examples of distance-regular
graphs X such that the direct product K2×X admits perfect state transfer.
Here X may even be strongly regular.

14.10 Duality
We will make use of the results in this section in Chapter 17, when we study
mixing on translation graphs.

Let A be an association scheme. A subspace of its Bose-Mesner algebra
is the Bose-Mesner algebra of an association scheme if it closed under ma-
trix and Schur multiplication and contains I and J . (The key observation
is that a Schur-closed subspace must have a basis of 01-matrices.) An as-
sociation scheme obtained in this way is said to be a subscheme (or fusion
scheme.) Each primitive idempotent of a subscheme of A is sum of primi-
tive Schur idempotents of A. For example, the Hamming scheme H(d, 2) is
a subscheme of the translation scheme belonging to Zd2.

We say an association scheme A is formally self-dual if Q = P .
If r ∈ {0, 1, . . . , d}, we define rT to be the element of r ∈ {0, 1, . . . , d}

such that ArT = ATr . We recall that pr(k) = pr(kT ).

14.10.1 Theorem. Let A be a formally self-dual association scheme on
n vertices and let Θ be the linear mapping from C[A] to itself such that
Θ(Ar) = ∑

r pr(j)Ar. Then:

(a) Θ(Ar) = nEr.

(b) Θ(I) = J , Θ(J) = nI.

(c) Θ2(M) = nMT for allM in C[A].

(d) Θ(MN) = Θ(M) ◦Θ(N) for all M and N in C[A].

(e) Θ(M ◦N) = 1
n
Θ(M)Θ(N) for all M and N in C[A].

(f) If B is a subscheme of A, then Θ(B) is also a subscheme of A.
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Proof. Since pr(j) = qr(j), we have

Θ(Ar) =
d∑
j=0

qr(j)Ar = nEr.

In particular, Θ(I) = J .
Next

Θ(nEr)) =
∑
r

qr(j)Θ(Ar) =
∑
j,k

qr(j)pr(k)Ak =
∑
j,k

qr(j)pr(kT )ATk .

Since QP = nI, it follows that Θ(nEr) = nATr and hence

Θ2(M) = nMT (14.10.1)

for all M in C[A]. (Note that Θ(J) = nI.)
Since the entries of Θ(Ar) are the eigenvalues ofAr, we see that Θ(ArAr) =

Θ(Ar) ◦Θ(Ar) and hence

Θ(MN) = Θ(M) ◦Θ(N), (14.10.2)

for all M and N in C[A].
Finally

Θ(Ar ◦ Ar) = δi,jnEr = 1
v

Θ(Ar)Θ(Ar).

and thus
Θ(M ◦N) = 1

n
Θ(M)Θ(N). (14.10.3)

for all M and N in C[A].
If Θ is a map satisfying the conditions of this theorem, we call it a duality

map on A. The matrix representing Θ relative to the basis A0, . . . , Ad is P .
From (c) in the theorem we see that Θ commutes with transpose, that is

Θ(MT ) = Θ(M)T .

It seems reasonable to define an association scheme on v vertices to be
self-dual if there is an endomorphism Θ of Matn×n(C) such that Θ(Ar) =
vEr for i = 0, 1, . . . , d.

If A and B are schemes and the matrix of eigenvalues of B is the complex
conjugate of the matrix of dual eigenvalues of A, we say that A and B are
formally dual. In this case we can define a map Θ as above, and a slightly
modified version of 14.10.1 still holds. If Θ is induced by an endomorphism
of Matn×n(C), we say the pair of schemes is dual.
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14.11 Type-II Matrices
If M is a matrix over a field with no entry zero, we denote its Schur inverse
byM (−T ), thusM ◦M (−T ) = J . A complex n×n matrix is a type-II matrix
if it is Schur invertible and

MM (−T ) = nI.

Hadamard matrices provide us with many examples. For another family of
simple examples, consider the n× n matrix

M = (t− 1)I + J

for which M (−T ) = (t−1 − 1)I + J . Then

MM (−T ) = (2− t− t−1)I + (n− 2 + t+ t−1)J

and therefore M is a type-II matrix if t2 + (n− 2)t+ 1 = 0, that is, if

t = 1
2(2− n±

√
n2 − 4n).

These matrices are known as Potts models.
The Kronecker product of two type-II matrices is a type-II matrix.
The unitary type-II matrices form an important special class, whose

members are often referred to as complex Hadamard matrices.

14.11.1 Theorem. Let M be a square complex matrix. Then any two of
the following statements imply the third:

(a) M is a type-II matrix.

(b) M is flat.

(c) Some scalar multiple of M is unitary.

We define a monomial matrix be to a product of an invertible diagonal
matrix with a permutation matrix. The set of all n × n matrices forms a
group, themonomial group. We say that matricesM andN aremonomially
equivalent if there are monomial matrices R and S such that N = RMS.
It is easy to verify that if matrices M and N are monomially equivalent
and M is type-II, then N is type-II. If M is type-II then so is MT but, in
general, they need not be equivalent.

267



14. Association Schemes

14.12 Type-II Matrices in Schemes
The type-II matrices that interest us here will be flat, and will belong to the
Bose-Mesner algebra of an association scheme. The Bose-Mesner algebra of
a scheme will always contain a Potts model, so the question is what other
type-II matrices might be present.

14.12.1 Lemma. Suppose A is an association scheme. Then the type-II
matrices in the Bose-Mesner algebra of A form an algebraic variety defined
by polynomials with integer coefficients.

Proof. Suppose the basic Schur idempotents in A are A0, . . . , Ad and set

W =
∑
r

xrAr.

Assume that ATr = Ar′ . Then

WW (−)T =
∑
r,s

xrx
−1
s ArAs′

and therefore W is type-II if and only if, for k = 1, . . . , d,∑
r,s′

xrx
−1
s′ pr,s′(k) = 0.

Since the intersection number pr,s′(k) are integers, it follows that the set of
solutions of this system of polynomial equations forms an algebraic variety
and the coefficients of these polynomials are integers.

14.12.2 Corollary. If the number of type-II matrices with diagonal entries
1 in the Bose-Mesner algebra of an association scheme is finite, then the
entries of these matrices are algebraic integers.

14.12.3 Theorem. If Θ is a duality map on the formally self-dual associa-
tion scheme A and M is a type-II matrix in the Bose-Mesner algebra of the
scheme, then Θ(M) is type-II. If M is flat then Θ(M) is a scalar multiple
of a unitary matrix. If M is unitary, Θ(M) is flat.

Proof. Suppose M is type-II. Then MM (−T ) = nI, whence M (−T ) = nM−1

and so
J = M ◦M (−) = nM ◦ (M−1)T .
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Therefore

nI = Θ(J) = Θ(nM ◦ (M−1)T ) = nΘ(M)Θ((M−1)T ),

and from Theorem 14.10.1(d) we have that Θ(M−1) = Θ(M)(−), and we
conclude that Θ(M) is a type-II matrix.

Suppose M ∈ C[A] and

M =
∑
r

µrEr.

Then
M∗ =

∑
r

µrE
∗
r =

∑
r

µrEr

and we see thatM is unitary if and only if its eigenvalues have norm 1. The
second claim follows.

14.13 Type-II Matrices from Strongly
Regular Graphs

We work out the conditions for a matrix I + xA + yA in the Bose-Mesner
algebra of a strongly regular graph. This serves as a concrete example for
the theory in the previous section, and we will also use the result when we
study uniform mixing on conference graphs in Section 17.5.

14.13.1 Lemma. LetX be a strongly regular graph with parameters (n, k; a, c).
If

W = I + xA+ yA

then W is a type-II matrix if and only if x and y satisfy

n− 2k + 2a+ (k − a− 1)(xy−1 + x−1y) + x+ x−1 = 0 (14.13.1)
n− 2k + 2c− 2 + (k − c)(xy−1 + x−1y) + y + y−1 = 0. (14.13.2)

Proof. We have
A2 = kI + aA+ cA

and since X is strongly regular with parameters

n, n− 1− k, n− 2− 2k + c, n− 2k + a
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we also have

A
2 = (n− 1− k)I + (n− 2− 2k + c)A+ (n− 2k + a)A.

Further
AA = (k − 1− a)A+ (k − c)A.

If W = I + xA+ yA for non-zero complex numbers x and y, then

WW (−T ) = (I + xA+ yA)(I + x−1A+ y−1A)
= I + A2 + A

2 + (x+ x−1)A+ (y + y−1)A+ (xy−1 + x−1y)AA.

We see that the coefficient of A in this expression is equal to the left side
of (14.13.1) and the coefficient of A is equal to the left side of (14.13.2).

Notes

Exercises
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Chapter 15

Average Mixing

As we noted when we defined the transition matrix UX(t), although it de-
termines a physical process what we can actually observe are the entries
of

MX(t) := UX(t) ◦ UX(t) = UX(t) ◦ UX(−t).

We callMX the mixing matrix belonging to X. Since UX(t) is unitary then
entries of MX(t) are non-negative reals that sum to 1 along each row and
along each column. Thus each row and each column is a probability density.
Since MX(t) is a principal submatrix of a unitary matrix, it is necessarily
a contraction.

15.1 Average Mixing
We define the average mixing matrix of X by

M̂X := 1
T

∫ T

0
MX(t) dt.

Since the mixing matrix MX(t) is doubly stochastic for all t, the average
mixing matrix is also doubly stochastic.

15.1.1 Theorem. Let A be the adjacency matrix of X. If A has spectral
decomposition A = ∑

θrEr then

M̂X =
∑
r

E◦2r .
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Proof. We have

MX(t) =
∑
r,s

ei(θr−θs)tEr ◦ Es

=
∑
r

E◦2r + 2
∑
r>s

cos((θr − θs)t)Er ◦ Es.

The theorem now follows from the observation that

lim
T→∞

1
T

∫ T

0
cos(ϕt) dt = 0.

We note two properties of the mixing matrix that will prove useful.

15.1.2 Lemma. We have I <MX(t) < 2M̂X − I.

Proof. From the above

MX(t) =
∑
r

E◦2r + 2
∑
r>s

cos((θr − θs)t)Er ◦ Es

and, since I = ∑
r Er and I ◦ I = I, we also have

I =
∑
r

E◦2r + 2
∑
r>s

Er ◦ Es.

Therefore
I −MX(t) = 2

∑
r>s

(1− cos((θr − θs)t))Er ◦ Es

where, by a theorem of Schur, the matrices Er ◦Es are positive semidefinite.
If follows that I −MX(t) < 0. Similarly

MX(t) + I = 2M̂X + 2
∑
r>s

(1 + cos((θr − θs)t))Er ◦ Es

where the sum is positive semidefinite, and so MX(t) < 2M̂X − I.
One consequence of this lemma is that all eigenvalues ofMX(t) lie in the

interval [−1, 1] (don’t forget that M(t) is symmetric). As an exercise you
may prove that if pst occurs at time t, then −1 is an eigenvalue of MX(t).
A second proof that the eigenvalues of M(t) lie in [−1, 1] comes from the
following.

15.1.3 Lemma. If M is a principal submatrix of a unitary matrix, then
‖Mz‖ ≤ ‖z‖ for any vector z.

Equivalently, we may say that a principal submatrix of a unitary matrix
is a contraction. Clearly all eigenvalues of a contraction lie in [−1, 1].
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15.2. Properties of the Average Mixing Matrix

15.2 Properties of the Average Mixing
Matrix

In this section we derive some basis properties of the average mixing ma-
trix. We know already that it is symmetric. By a famous theorem of Schur,
the Schur product M ◦ N of two positive semidefinite matrices is positive
semidefinite and, since the sum of positive semidefinite matrices is positive
semidefinite, we see that M̂X is positive semidefinite. If A and B are sym-
metric matrices of the same order, we write A < B to denote that A − B
is positive semidefinite.

Clearly M̂X is a nonnegative matrix. In fact:

15.2.1 Lemma. If X is connected, all entries of M̂X are positive.

Proof. Each Schur square E◦2r is nonnegative and if (M̂X)u,v = 0 then
(E◦2r )u,v = 0. However this implies that (Er)u,v = 0 for all r and hence
any linear combination of the idempotents Er has uv-entry zero. Since this
implies that (Ak)u,v = 0 for all k we conclude that X is not connected.

In the next secion we show that average mixing is never uniform, that
is, M̂X cannot be a scalar multiple of the all-ones matrix J .

15.2.2 Lemma. If M̂X is the average mixing matrix of the graph X then
all eigenvalues of M̂X lie in the interval [0, 1].

Proof. Since M̂X < 0, its eigenvalues are non-negative. For the upper
bound, we note that

I = I ◦ I =
(∑

r

Er

)◦2
= M̂X + 2

∑
r<s

Er ◦ Es.

Since the final sum here is positive semidefinite, it follows that I− M̂X < 0.
Therefore all eigenvalues of M̂X are in [0, 1].

Since M̂X is the average of doubly stochastic matrices, it is doubly
stochastic and its largest eigenvalue is 1. We can also see this without
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appealing to the averaging. Notice that

((Er ◦ Er)1)u = ((eTuEr) ◦ (eTuEr))1
= 〈eTuEr, eTuEr〉
= eTuE

2
reu

= eTuEreu

= (Er)u,u

and, since ∑r Er = I, it follows that M̂X1 = 1.

15.2.3 Lemma. The entries of the average mixing matrix of a graph are
rational.

Proof. Let φ(X, x) be the characteristic polynomial of X, and let F be a
splitting field for φ(X, x). We use the fact that an element of F which is fixed
by all field automorphisms of F must be rational. If σ is an automorphism
of F, then

A = Aσ =
∑
r

θσrE
σ
r .

Since θσr must be an eigenvalue of A and since the spectral decomposition
of A is unique, it follows that Eσ

r is one of the idempotents in the spectral
decomposition of A. Therefore the set of idempotents is closed under field
automorphisms, and so must the {E◦2r }r. Consequently

M̂σ
X = M̂X

for all σ and therefore M̂X is rational.
Note that this lemma holds whether we use the Laplacian or the adja-

cency matrix—all we need is that A be symmetric with integer entries.
We use L(X) to denote the Laplacian matrix X. If ∆ is the diagonal

matrix whose i-th diagonal entry is the valency of the i-vertex of X, then

L(X) = ∆− A.

The transition matrix of X relative to L(X) is

UL(t) := exp(it(∆− A)).

When X is regular, questions about UL reduce immediately to questions
about UX , but in general there is no simple relation between the two cases.
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15.3. Uniform Average Mixing?

15.2.4 Lemma. IfX is regular andX and its complementX are connected,
then X and X have the same average mixing matrix. For any graph X, the
average mixing matrix relative to the Laplacian of X is equal to the average
mixing matrix relative to the Laplacian of X.

Proof. If X is regular then the idempotents in the spectral decomposition
of its adjacency matrix are the idempotents in the spectral decomposition
of the adjacency matrix of X. For any graph X on n vertices

L(X) = L(Kn)− L(X);

since L(Kn) = nI − J and since L(X) commutes with J , the idempotents
in the spectral decomposition of its Laplacian are the idempotents in the
spectral decomposition of the Laplacian of X.

15.3 Uniform Average Mixing?
15.3.1 Lemma. If M̂X is the average mixing matrix of the graph X on n
vertices and mr is the dimension of the r-th eigenspace of X, then

tr(M̂X) ≥ 1
n

∑
r

m2
r.

Equality holds if and only if X is walk regular.

Proof. Let E1, . . . , Em be the spectral idempotents of X. The diagonal
entries of Er are non-negative and their sum is mr, the dimension of the
r-th eigenspace. Hence

tr(E◦2r ) ≥ m2
r

n
.

and therefore
tr(M̂X) ≥

∑
r

m2
r

n
.

If equality, holds then the diagonal entries of Er are equal to mr/n. Hence
each idempotent has constant diagonal. Therefore all powers of A have
constant diagonal, and X is walk regular.
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15.3.2 Lemma. For any graph X we have tr(M̂X) ≥ 1. If equality holds,
then |V (X)| ≤ 2.

Proof. Since all multiplicities are integers

∑
r

m2
r −mr

n
≥ 0

and since ∑rmr = n, it follows that tr(M̂X) ≥ 1. If equality holds, then
mr = 1 for all r and the diagonals of the spectral idempotents are constant,
whence X is walk regular. By Theorem 6.3.2 it follows that n ≤ 2.

15.3.3 Corollary. If X is a graph on n vertices and M̂X = 1
n
J , then

n ≤ 2.

15.4 An Ordering
The relation < is a useful partial ordering on matrices. We briefly investi-
gate some of its properties when applied to average mixing matrices.

15.4.1 Lemma. Let X and Y be graphs on the same vertex set. If each
spectral idempotent of Y is the sum of spectral idempotents of X, then
M̂Y < M̂X .

Proof. We have
(E + F )◦2 = E◦2 + F ◦2 + 2E ◦ F.

If E and F are positive semidefinite, so are the three terms in the sum
above, whence

(E + F )◦2 < E◦2 + F ◦2.

15.4.2 Lemma. For any graphs X and Y ,

M̂X�Y < M̂X ⊗ M̂Y .

Let E1, . . . , E` and F1, . . . , Fk be the respective spectral idempotents of
X and Y . Then each spectral idempotent of X�Y is a sum of idempotents
of the form Er ⊗ Fs. To complete the proof, note that

(Er ⊗ Fs)◦2 = E◦2r ⊗ F ◦2s .
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This lemma will also hold when we use the Laplacian in place of the
adjacency matrix. Of course we also have M̂X×Y < M̂X ⊗ M̂Y .

If P is a permutation matrix and A(Y ) = P TA(X)P , then

M̂Y = P TM̂XP.

This indicates that the partial ordering on average mixing matrices using
< cannot generally correspond to a useful ordering on graphs. Invariants
such as tr(M̂X) might be useful or interesting.

15.5 Strongly Cospectral Vertices
15.5.1 Theorem. Let M̂X be the average mixing matrix of the graph X.
Then vertices u and v are strongly cospectral if and only if M̂X(eu−ev) = 0.

Proof. Suppose N < 0 and N(e1 − e2) = 0. We may assume that the
leading 2× 2 submatrix of N is (

a b
b d

)
and therefore

0 = (e1 − e2)TN(e1 − e2) = a+ d− 2b.
Hence b = (a+ d)/2. Since N < 0 we have ad− b2 ≥ 0 and thus

0 ≤ 4ad− 4b2 = 4ad− (a+ d)2 = −(a− d)2,

whence a = d = b.
If M̂X(eu − ev) = 0 then

0 = (eu − ev)TM̂X(eu − ev) =
∑
r

(eu − ev)TE◦2r (eu − ev)

and as each summand E◦2r in M̂X is positive semidefinite, we have

E◦2r (eu − ev) = 0

for all r. Therefore, for all r,

((Er)u,u)2 = ((Er)u,v)2 = ((Er)v,v)2

Since
(Er)u,v = 〈Ereu, Erev〉

it follows by Cauchy-Schwarz that Ereu = ±Erev.
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15. Average Mixing

One consequence of these results is that, if the rows of the average mixing
matrix of X are distinct, there is no perfect state transfer on X.

15.6 Integrality
In investigating the relation between the structure of M̂X and the graph X,
it can be convenient to scale M̂X so that it entries are integers. For this we
need to know a common multiple of the denominators of its entries.

15.6.1 Lemma. If D is the discriminant of the minimal polynomial of A,
then D2M̂X is an integer matrix.

Proof. Let θ1, . . . , θm be the distinct eigenvalues of A. Define polynomials
`r(t) by

`r(t) :=
∏
s 6=r

(t− θs).

We note that `r(θr) = ψ′(θr) and

`r(θs)
ψ′(θr)

= δr,s.

Now
Er = 1

ψ′(θr)
`r(A).

The discriminant D of ψ is equal (up to sign) to
m∏
r=1

ψ′(θr);

since the entries of `r(A) are algebraic integers we conclude that the en-
tries of D2E◦2r are algebraic integers and therefore the entries of D2M̂X are
algebraic integers. Since M̂X is rational, the lemma follows.

We have no reason to believe this lemma is optimal. If the eigenvalues
of X are all simple, we can do better.

15.6.2 Theorem. Let X be a graph with all eigenvalues simple and let
D be the discriminant of its characteristic polynomial. Then DM̂X is an
integer matrix.
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15.6. Integrality

Proof. We have
(xI − A)−1 =

∑
r

1
x− θr

Er

and since (I − tA)−1 is the walk generating function of X, it follows from
the identity stated immediately following Theorem 4.4.3 (or from [35, Corol-
lary 4.1.3]) that

(Er)u,v = lim
x→θr

(x− θr)
(
φ(X \u, x)φ(X \v, x)− φ(X \uv, x)φ(X, x)

)1/2

φ(X, x)

and since
lim
x→θr

φ(X, x)
x− θr

= φ′(X, θr)

we conclude that if θr is simple
(
(Er)u,v

)2
= φ(X \u, θr)φ(X \v, θr)

φ′(X, θr)2 .

If B is the n × n matrix with ur-entry φ(X \ u, θr) and ∆ is the n × n
diagonal matrix with r-th diagonal entry φ′(X, θr), it follows that

M̂X = B∆−2BT .

Assume n = |V (X)| and let θ1, . . . , θn be the eigenvalues of X. Let V be
the n×n Vandermonde matrix with ij-entry θi−1

j . Let φ be the characteristic
polynomial ofX. The discriminant of φ is equal to the product of the entries
of ∆, we denote it by D.

Let C be the n × n matrix whose ur-entry is the coefficient of xr−1 in
φ(X \u, x). Then CV = B and

M̂X = CV∆−2V TCT .

Define polynomials `s(x) by

`s(x) =
∏
r 6=s

(x− θr)

and let L be the n× n matrix with sj-entry equal to the coefficient of xj−1

in `s(x). Note that
`s(θr) = δr,sφ

′(θs)
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and therefore
LV = ∆.

Since
∆ = ∆T = V TLT

it follows that
∆−2 = V −1L−1L−TV −T

and so
V∆−2V T = V V −1L−1L−TV −TV T = (LTL)−1.

(We’re almost done.) The entries of L are algebraic integers. As

det(V V T ) = det(V )2 = D

and as LD = ∆, we see that det(LTL) = D. Therefore the entries of

D(LTL)−1

are algebraic integers. So the entries of DV∆−2V T are algebraic integers
and, since the entries of C are integers, the entries of DM̂X are algebraic
integers. But the entries of DM̂X are rational and therefore they are all
integers.

It is at least plausible that if D is the discriminant of the minimal
polynomial of X, then DM̂X is an integer matrix.

15.7 Near Enough Implies Strongly
Cospectral

We have seen in Sections ?? and 7.2 that if the orbits of ea under U(t)
comes close enough to γeb (for some γ) then interesting things happen. We
offer one more result of the same type.

15.7.1 Lemma. Let a and b be distinct vertices in the graph X. There is
a constant ε such that if, for some γ with |γ| = 1, we have

‖U(t)ea − γeb‖ < ε,

then a and b are strongly cospectral.

280



15.8. Average Mixing on Paths

Proof. The idea is to show that if ‖U(t)ea − γeb‖ is small enough, the a-
and b-rows of M̂X are equal.

If
U(t)ea ≈ γeb

then
eitθrErea ≈ γEreb

and consequently for any vertex u of X,

(Er)u,b ≈ γ−1eitθr(Er)a,b.

Since the entries of Er are real, this implies that

(Er)2
u,b ≈ (Er)2

u,a

and in turn we have
(E◦r2)eb ≈ (E◦2r )ea.

Let D be the discriminant of the minimal polynomial of A. Since the
entries of D2M̂X is an integer matrix we conclude that (if ε is small enough),
then M̂Xea = M̂Xeb, and therefore a and b are strongly cospectral.

We leave the task of deriving an explicit expression for ε as an exercise.
The real problem is to identify examples where we can apply this lemma.

15.8 Average Mixing on Paths
The average mixing matrix for a path has a simpler form then we might
expect.

15.8.1 Lemma. If E1, . . . , En are the idempotents for Pn, then the average
mixing matrix of Pn is

∑
r

Er ◦ Er = 1
2n+ 2(2J + I + T ).

Proof. We use 10.2.5:

(Er ◦ Er)j,k = 4
(n+ 1)2 sin2

(
jrπ

n+ 1

)
sin2

(
krπ

n+ 1

)
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which implies that

(n+ 1)2

4 (Er ◦ Er)j,k = 1
4

(
1− cos

( 2jrπ
n+ 1

))(
1− cos

( 2krπ
n+ 1

))
.

Now
(

1− cos
( 2jrπ
n+ 1

))(
1− cos

( 2krπ
n+ 1

))
=

1− cos
( 2jrπ
n+ 1

)
− cos

( 2krπ
n+ 1

)
+ 1

2 cos
(2(j + k)rπ

n+ 1

)
+ 1

2 cos
(2(j − k)rπ

n+ 1

)
We need to sum each of the five terms on the right from 1 to n. From 10.2.4
it follows that

n∑
r=1

cos
( 2`rπ
n+ 1

)
= 1

2

−1 +
sin
(

(2n+1)`π
n+1

)
sin
(

`π
n+1

)


= 1
2

−1 +
sin
(

2`π − `π
n+1

)
sin
(

`π
n+1

)


= −1.

Consequently

n∑
r=1

(n+ 1)2(Er ◦ Er)j,k =


3(n+ 1)/2, j = k;
3(n+ 1)/2, j + k = n+ 1
n+ 1, otherwise

and this completes the proof.

15.9 Path Laplacians
The average mixing matrix for paths also takes a simple form when we use
the Laplacian of a path, rather than its usual adjacency matrix. We employ
the notation of 10.5.
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15.9.1 Theorem. The average mixing matrix for the continuous quantum
walk using the Laplacian matrix of the path Pn is

1
n2

(
(n− 1)J + n

2 (I + T )
)
.

Proof. Set
Fr = (2− θr)−1DErD

T .

Then

(F ◦2r )j,k = 4
n2 cos2

(
(2j − 1)rπ

2n

)
cos2

(
(2k − 1)rπ

2n

)

= 1
n2

(
1 + cos

(
(2j − 1)rπ

n

))(
1 + cos

(
(2k − 1)rπ

n

))

and(
1 + cos

((2j − 1)rπ
n

))(
1 + cos

((2k − 1)rπ
n

))

= 1 + cos
((2j − 1)rπ

n

)
+ cos

((2k − 1)rπ
n

)

+ 1
2 cos

((2j + 2k − 2)rπ
n

)
+ 1

2 cos
((2j − 2k)rπ

n

)
.

From 10.2.4 we have

2
n−1∑
r=1

cos
(
r`π

n

)
= −1 +

sin
(
(n− 1

2) `π
n

)
sin
(
`π
2n

)
= −1 +

sin
(
`π − `π

2n

)
sin
(
`π
2n

)

= −1 +
− cos(`π) sin

(
`π
2n

)
sin
(
`π
2n

)
= −((−1)` + 1).

It is now easy to derive the stated formula for the average mixing matrix.

283



15. Average Mixing

We note that 2I − L(Pn) can be viewed as the adjacency matrix of a
path on n vertices with a loop of weight one on each end-vertex. Examples
show that if we add loops with weight other than 0 or 1, the average mixing
matrix is not a linear combination of I, J and T . Thus if we add loops of
weight 2 to the end-vertices of P6, the average mixing matrix is:

1
2 ∗ 9 ∗ 107



599 218 146 146 218 599
218 455 290 290 455 218
146 290 527 527 290 146
146 290 527 527 290 146
218 455 290 290 455 218
599 218 146 146 218 599


.

(Here the discriminant of the characteristic polynomial is 2635107.)

15.10 Cycles
We determine the average mixing matrices for cycles.

Let P be the permutation matrix corresponding to a cycle of length n
and let ζ be a primitive n-th root of unity. Define matrices F0, . . . , Fn−1 by

(Fr)i,j = 1
n
ζr(i−j).

(Thus the rows and columns of these matrices are indexed by {0, . . . , n−1.)
Then P is a normal matrix and has the spectral decomposition

P =
n−1∑
r=0

ζrFr.

We also note that
Fr ◦ Fs = 1

n
Fr+s

where the subscripts are viewed as elements of Zn. The adjacency matrix
of the cycle on n vertices is P +P T . Define E0 to be F0 and, if 0 < r < n/2,
we set

Er = Fr + Fn−r.

Further E0 := F0 and, if n is even then En/2 := Fn/2. Then if n is odd,

E0, . . . , E(n−1)/2
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are the idempotents in the spectral decomposition of A(Cn) and the corre-
sponding eigenvalues are

θr = ζr + ζ−r, r = 0, . . . , n− 1
2 ;

if n is even we have the additional idempotent En/2 with eigenvalue ζn/2 =
−1.

15.10.1 Lemma. If n is odd then the average mixing matrix of the cycle
Cn is

n− 1
n2 J + 1

n
I,

if n is even it is
n− 2
n2 J + 1

n
(I + P n/2).

Proof. Assume first that n = 2m+ 1. Then the average mixing matrix is
m∑
r=0

E◦2r = F ◦20 +
m∑
r=1

(Fr + F−r)◦2

= 1
n
F0 + 1

n

m∑
r=1

(F2r + F−2r + 2F0)

= F0 + 1
n

n−1∑
r=1

Fr

= 1
n
I + n− 1

n
F0.

Now suppose n = 2m. Then the average mixing matrix is

E◦2m +
m−1∑
r=0

E◦2r = F ◦20 + F ◦2m +
m−1∑
r=1

(Fr + F−r)◦2

= 1
n
F0 + 1

n
F0 + 1

n

m−1∑
r=1

(F2r + F−2r + 2F0)

= F0 + 1
n

m−1∑
r=1

(F2r + F−2r)

= n− 2
n

F0 + 2
n

m−1∑
r=0

F2r.
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Since
PmFs = (ζm)sFs = (−1)sFs

we see that Pm has spectral decomposition

Pm =
n−1∑
s=0

(−1)sFs

and consequently
1
2(I + Pm) =

m−1∑
r=0

F2r.

Our stated formula for the average mixing matrix follows.
In general the average mixing matrix for a circulant can be more com-

plex in structure than the average mixing matrix of a cycle. We will see
in the next section that graphs in pseudocyclic schemes provide the right
generalization of cycles or, at least, of odd cycles.

It is easy for different circulants of order n to have the same spectral
idempotents, any two such circulants necessarily have the same average
mixing matrix.

15.11 Average Mixing on Pseudocyclic
Graphs

An association scheme is pseudocyclic if the multiplicities m1, . . . ,md are
equal (in which case their common value is (v − 1)/d). If a scheme is
pseudocyclic then v1, . . . , vd are necessarily all equal to (v − 1)/d. For
details see Brouwer, Cohen and Neumaier[14, §2.2B].

We note one class of examples, the cyclotomic schemes. Assume q is a
prime power and d divides q−1. Let F be the finite field of order q and let S
be the subgroup of the multiplicative group of F generated by the non-zero
d-th powers. Thus |S| = (q − 1)/d. Let S1, . . . , Sd denote the cosets of S
in F∗, with S1 = S. Now we define the matrices of an association scheme
with d classes and with vertex set F by setting A0 = I and

(Ai)x,y = 1, (i = 1, . . . , d)

if and only if y − x is in Si. These matrices form the cyclotomic scheme
with d classes on F. It is symmetric if and only if −1 ∈ S. The directed
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graphs X1, . . . , Xd such that Ai = A(Xi) are all isomorphic. The most well
known case is when d = 2 and q ∼= 1 modulo four, in which case the two
graphs we have constructed are the Paley graphs.

We note that there are pseudocyclic schemes which are not cyclotomic,
and that there are pseudocyclic schemes with two classes where the two
graphs are asymmetric, that is, their only automorphism is the identity.

15.11.1 Theorem. Suppose X is a graph in a d-class pseudocyclic scheme
on n vertices consisting of graphs of valency m = (n − 1)/d. Then the
average mixing matrix of X is

n−m+ 1
n2 J + m− 1

n
I.

Proof. Koppinen [46] proved that for an association scheme with d classes
we have

d∑
i=0

1
nvi

Ai ⊗ ATi =
d∑
j=0

1
mj

Ej ⊗ Ej.

If the scheme is symmetric then Ai◦Ai = Ai and, sinceM ◦N is a submatrix
of M ⊗N , Koppinen’s identity yields that

d∑
i=0

1
nvi

Ai =
d∑
j=0

1
mj

Ej ◦ Ej.

For any scheme, we have m0 = v0 = 1 and for a pseudocyclic scheme

mi = vi = n− 1
d

, i = 1, . . . , d.

As ∑iAi = J and ∑j Ej = I, if m = (n− 1)/d we find that

1
n

(
I + 1

m
(J − I)

)
= 1
n2J + 1

m

d∑
j=1

E◦2j

)

and hence

1
m

d∑
j=1

E◦2j =
( 1
nm
− 1
n2

)
J + m− 1

nm
I = n2 − nm

n3m
J + m− 1

nm
I.

A graph in a pseudocyclic scheme with two classes is known as a confer-
ence graph, and there are examples whose automorphism group is trivial.
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15.12 Average Mixing on Oriented Graphs
If the average mixing matrix of the continuous quantum walk relative to
the adjacency matrix of a graph X is 1

n
J , then |V (X)| ≤ 2. For oriented

adjacency matrices the situation is more interesting.

15.12.1 Theorem. If all vertices in the oriented graph X are strongly
cospectral, the average mixing matrix for the quantum walk on X is 1

n
J .

Proof. If U(t) = ∑
r e

tθrEr then

U(t) =
∑
r

e−tθrEr

and hence the mixing matrix for the quantum walk based on A is

U(t) ◦ U(t) =
∑
r

Er ◦ Er +
∑
r 6=s

et(θr−θs)Er ◦ Es.

It follows that the average mixing matrix M̂X is given by

M̂X =
∑
r

Er ◦ Er =
∑
r

Er ◦ ET
r .

If the eigenvalue θr is simple and z is an eigenvector for it with norm 1,
then Er = zzT and consequently

Er ◦ Er = zz∗ ◦ zzT = (z ◦ z)(z ◦ z)T .

If z is flat then z ◦ z = 1
n
1 and Er ◦ Er = 1

n2 1.

15.12.2 Lemma. Vertices a and b in an oriented graph are strongly cospec-
tral if and only if M̂Xea = M̂Xeb.

Proof. If E is positive semidefinite then so is E; hence E ⊗ E is posi-
tive semidefinite and therefore its principal submatrix E ◦ E is positive
semidefinite. Hence M̂X < 0 and therefore M̂X(ea − eb) = 0 if and only if
(ea − eb)TM̂X(ea − eb) = 0. Since the matrices Er ◦Er are positive semidef-
inite, we see that M̂X(ea − eb) = 0 if and only if (Er ◦ Er)(ea − eb) = 0.
Now

eTu (Er ◦ Er)(ea − eb) = |(Er)u,a|2 − |(Er)u,b|2
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and so if (Er ◦ Er)(ea − eb) = 0, then

|(Er)a,a|2 = |(Er)a,b|2 = |(Er)b,b|2

for all r. Therefore by Cauchy-Schwarz, the vectors Erea and Ereb are
parallel. Since |(Er)a,a|2 = |(Er)b,b|2 for all r, the vertices a and b are
cospectral.

If the triangle bound is tight, then there is a complex number γ of norm
1 such that

γ = eitθr
(Er)a,b
|(Er)a,b|

for all r such that (Er)a,b 6= 0. Since I have nothing useful to say about
the ratios that appear here, I have not been able to deduce any useful
consequences.

15.13 Average States
Suppose D is density matrix with rows and columns indexed by V (X). We
define

D(t) = U(t)DU(−t)
and

Ψ(D) = lim
T→∞

1
T

∫ T

0
D(t) dt.

We say that Ψ(D) is the average of the state D. As

D(t) =
∑
r,s

eit(θr−θs)ErDEs,

it follows that
Ψ(D) =

∑
r

ErDEr.

You should note that Ψ(D) < 0 and you should verify that tr(Ψ(D)) =
tr(D), whence an average state is a density matrix. Before developing the
theory of average states, we note the connection with average mixing. Recall
that if a ∈ V (X), then

Da = eae
T
a .

15.13.1 Theorem. The average mixing matrix of X is the Gram matrix
of the vertex states Da for a in V (X).
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The commutant of a set of matrices S is the set of matrices that commute
with each element of S. We denote it by comm(S), and note that it is a
matrix algebra.

15.13.2 Theorem. If D is the density matrix of a state on V (X), then
Ψ(D) is the orthogonal projection of D onto comm(A).

Proof. Any matrix of the form ErMEr commutes with A, and therefore
Ψ(M) lies in comm(A). It is also immediate that Ψ2(M) = Ψ(M). If
N ∈ comm(A), then N commutes with each spectral idempotent Er and
therefore Ψ(N) = N . Thus we have shown that Ψ is an idempotent linear
map with image comm(A). To prove that it is an orthogonal projection we
must show that it is self-adjoint:

〈M,Ψ(N)〉 =
∑
r

tr(MErNEr) =
∑
r

tr(ErMErN) = 〈Ψ(M), N〉.

15.13.3 Lemma. Suppose E1, . . . , Em are the spectral idempotents of A.
If D = zz∗ is a pure state, then the eigenvalues of Ψ(D) are z∗Erz for
r = 1, . . . ,m.

Proof. Suppose D = zz∗ is a pure state. Then

(ErDEr)2 = Erzz
∗Erzz

∗Er = (z∗Erz)Erzz∗Er

which shows that
(z∗Erz)−1Erzz

∗Er

is an idempotent. Therefore we have the spectral decomposition

Ψ(D) =
∑
r

z∗Erz
(
(z∗Erz)−1Erzz

∗Er
)
,

and this leads to the stated expressions for the eigenvalues of Ψ(D).
It follows that the eigenvalues of Ψ(Da) are the spectral density of the

vertex a, The entropy of the spectral density of a is the von Neumann
entropy of Ψ(Da).

We have another characterization of strongly cospectral vertices.

15.13.4 Lemma. Two vertices a and b are strongly cospectral if and only
if Ψ(Da) = Ψ(Db).
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Notes
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Chapter 16

Translation Graphs

If there is perfect state transfer between two vertices in a graph, they must
be similar in some fairly strong sense. Vertex-transitive graphs provide a
class of graphs where any two vertices are equivalent under the automor-
phism group, and so it is natural to look for perfect state transfer in this
class. In this chapter we restrict ourselves further by focussing on Cayley
graphs for abelian groups. The advantage of this class of graphs is that we
can readily determine their eigenvalues and eigenvectors using the character
theory of the underlying group.

In dealing with vertex-transitive graphs, we view each edge ab as a pair
of arcs (a, b) and (b, a). The Cayley graph X(G, C) has the group G as its
vertex set, and the pair of vertices (x, y) is an arc if yx−1 ∈ C. A translation
graph is a Cayley graph for an abelian group. If 1 ∈ C than we get a loop
on each vertex; we will usually assume 1 /∈ C and thereby avoid this. To
ensure we get a graph (rather than a directed graph) if and only C = C−1,
that is, if x ∈ C then x−1 ∈ C. In this case we say C is inverse-closed.

16.1 Strongly Cospectral Vertices in
Vertex-Transitive Graphs

Some of the results we need are proved just as easily for vertex-transitive
graphs as for translation graphs, so in this section we work in the more
general setting.

strong-cosp is aut-invariant equivalence relation strong-cosp -> order-
two symmetry (cite) strong-cosp + vx transitive -> central order two autom
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strong-cosp + Cayley for G -> autom is in G

16.2 Strongly Cospectral Vertices in
Translation Graphs

Let G be an abelian group of order n. As ψ runs over the characters of G,
the n× n matrices Eψ defined by

(Eψ)g,h = 1
n
ψ(hg−1).

are the primitive spectral idempotents of the group scheme of G. If X =
X(G, C), then it follows that

A =
∑
ψ

ψ(C)Eψ;

this is a refinement of the spectral decomposition of A.

16.2.1 Lemma. The vertices 0 and c are strongly cospectral vertices in
X(G, C) if and only if 2c = 0 and for any two characters ϕ and ψ, if
ϕ(C) = ψ(C) then ϕ(c) = ψ(c).

Proof. For each eigenvalue θ of X, let P (θ) denote the set of characters ψ
such that ψ(C) = θ. If E represents projection onto the θ-eigenspace, then

E =
∑

ψ∈P (θ)
Eψ

and therefore
E0,c =

∑
ψ∈P (θ)

(Eψ)0,c = 1
n

∑
ψ∈P (θ)

ψ(c).

Since E0,0 = |P (θ)|/n, we conclude that |E0,c| = E0,0 if and only all charac-
ters in P (θ) take the same value, γ say, on c. But since the eigenvalues of
X are real, E is symmetric, and therefore |E0,−c| = E0,0. This implies that
ψ(−c) = γ for all characters in P (θ). As ψ(c)ψ(−c) = ψ(0) = 1, we find
that γ = ±1.

If 0 and c are strongly cospectral, then ψ(c) = ±1 for every character
of G and therefore 2c = 0.
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16.3 State Transfer on Translation Graphs
Using Theorem ??, we obtain the following.

16.3.1 Lemma. Let δ be the greatest common divisor of the eigenvalue
differences of the translation graph X = X(G, C). If perfect state transfer
occurs on X, it occurs at time π/δ.

We now characterize when perfect state transfer takes place on a trans-
lation graph.

16.3.2 Lemma. Let G be an abelian group, let X = X(G, C) be a Cayley
graph for G with integer eigenvalues, and let δ be the gcd of the difference
of the eigenvalues of X. We have perfect state transfer from 0 to c on X at
time π/δ if and only if, for each character ψ of G,

ψ(c) = (−1)(|C|−ψ(C))/δ.

Proof. We have

U(t)0,c =
∑
ψ

eitψ(C)(Eψ)0,c = 1
n

∑
ψ

eitψ(C)ψ(0)ψ(c) = 1
n

∑
ψ

eitψ(C)ψ(c).

Since all summands have absolute value 1, we see that |U(t)0,c| = 1 if and
only if all summands have the same phase, that is, if and only if they are
all equal. This means that

eit|C| = eitψ(C)ψ(c)

for all characters ψ.

16.4 Sums and Complements
SupposeX = X(G, C) where C is the disjoint union of inverse-closed subsets
C1 and C2. Then

A(X) = A(X(G, C1)) + A(X(G, C2)),

equivalently the edge set of X is the disjoint union of the edge sets of two
smaller Cayley graphs, each spanning subgraphs of X. It will be difficult
to make use of this decomposition unless the adjacency matrices of these
subgraphs commute. If G is abelian, this is not an issue.
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16.4.1 Lemma. Let C be an inverse-closed subset of the abelian group
G with a partition into inverse-closed subsets C1 and C2. If X(C1) admits
perfect state transfer at time τ and X(C2) is periodic with period τ , then
X(C) admits perfect state transfer at time τ .

Any graph X together with its complement, determines a partition of
E(Kn) and

A(Kn) = A(X) + nA(X).
Here A(X) and A(X) commute if and only if X is regular. The complete
graph Kn is periodic, with period 2π/n. If X is regular then

UX(t) = UKn(t)UX(−t)

and so we can relate properties of the continuous walk on X to those of the
walk on X.

By way of example, consider the cocktail party graph mK2. The eigen-
values of mK2 are

2m− 2, 0, −2,
so the gcd of its eigenvalue differences is two and this graph is periodic with
period π. Hence if perfect state transfer occurs, it occurs at time π/2. Now

UKn(π/2) = e−πi/2(e 1
2nπiE0 + E1)

and
UmK2(π/2) = iA(mK2);

given this it is an easy exercise now to show that we have perfect state
transfer on mK2 if and only if m is even.

16.5 Integral Translation Graphs
There is a convenient characterization of the translation graphs with only
integer eigenvalues. Define elements g and h in the abelian group G to be
equivalent if 〈g〉 = 〈h〉, i.e., g and h generate the same cyclic subgroup of G.
We denote this equivalence relation by g ≈ h. Bridges and Mena [] proved
the following result.

16.5.1 Lemma. Let G be an abelian group. The eigenvalues of the Cayley
graph X(G, C) are all integers if and only if C is C is the union of ≈-classes.
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We note two special cases. If p is a prime, it follows that the only Cayley
graphs for Zp will all eigenvalues integer are Kp and the empty graphs Kn.
On the other hand, if G = Zd2, all Cayley graphs for G have only integer
eigenvalues. This holds for Zd3, Zd4 and Zd6, and for all linear graphs as well.
(As you may prove.)

Suppose G is abelian of order n and C is a connection set for a Cayley
graph for G. If h is an element of C with order two, then X(G, {h}) is a
spanning subgraph of X isomorphic to a perfect matching with n/2 edges.
If the order |h| of h is k and k > 2, then X(G, {h, h−1) is a spanning
subgraph of X isomorphic to the disjoint union of n/k cycles Ck. Thus X
has a natural expression as the edge-disjoint union perfect matchings and
subgraphs (n/k)Ck.

Our concern is with integral translation graphs, where the connection
set C is partitioned into equivalence classes for ≈, and so we consider the
structure of these graphs. Thus we want to describe the graphs of the form
X(G, [g]), where g ∈ G. If |g| = m, then X(G, [g]) consists of n/m vertex-
disjoint copies of the circulant X(Zm, [g]). Here g is a generator of Zm, and
therefore X(Zm, [g]) ∼= X(Zm, [1]).

The next two results depend on properties of the group of units in the
ring Zn. The details are summarized in Section ??.

16.5.2 Lemma. If q is the largest power of the prime p that divides m,
then

X(Zm, [1]) ∼= X(Zq, [1])×X(Zm/q, [1]).

16.5.3 Lemma. If q is a power of the prime p, then

X(Zq, [1]) ∼= pKq/p.

Combining these two lemmas, we get the following.

16.5.4 Lemma. Suppose G is abelian with cyclic Sylow 2-subgroup and
X = X(G, C) is integral. Let H be the subgroup of G generated by the
elements of odd order and let Ck denote the subset of C consisting of the
elements in C with order 2k times an odd number. Then X is the edge-
disjoint union of the graphs X(G, Ck) and, if k ≥ 1 there is a Cayley graph
Yk of H such that

X(G, Ck) ∼= K2k−1,2k−1 × Yk.
The Cayley graphs Yk may have loops.
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16.6 State Transfer on Translation Graphs
with 4k + 2 Vertices

We begin with an application of the theory of association schemes.

16.6.1 Lemma. If G is an abelian group of odd order, then any non-empty
integral Cayley graph for G has an odd eigenvalue.

Proof. Let P be the matrix of eigenvalues of the integral group scheme
of G. Assume n = |G| and that this scheme has d classes. Now recall
Equation (14.6.1):

P∆mP
∗ = n∆v.

Since the eigenvalues are integers and since ∆v = ∆m (by our remarks at
the end of Section 14.8), we thus have

det(P )2 = nd+1

and therefore det(P ) is odd. If x is 01-vector of length d, then the entries
of Px are the eigenvalues of the matrix∑

i∈supp(x)
Ai.

If the entries of Px are even, then Px ∼= 0 modulo 2, but P is invertible
modulo 2 and therefore x is zero modulo 2.

Translation graphs of odd order cannot admit perfect state transfer. The
perfect matching mK2 admits perfect state transfer at time π/2; here we
show that if X is a translation graph on n vertices n ≡ 2 modulo 4, then
X admits perfect state transfer if and only if it is isomorphic to mK2.

16.6.2 Theorem. Suppose G is an abelian group of order 2m, where m is
odd and let X be a Cayley graph for G. If X admits perfect state transfer,
then X ∼= mK2 and perfect state transfer occurs at time π/2.

Proof. Let H be the unique subgroup of index two in G, and note that |H|
is odd. Assume X = X(G, C). Set C0 = C ∩ H and C1 = C \H. (This is
consistent with the usage in Lemma 16.5.4.) There are Cayley graphs Y0
and Y1 for H, with respective adjacency matrices A0 and A1, such that

A(X) =
(
A0 A1
A1 A0

)
.
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Thus in the notation from Section 12.7, we have that X ∼= Y0 � Y1. If X
admits perfect state transfer, then it admits perfect state transfer from 0
to the unique element, σ say, with order two in G. Clearly σ /∈ H, and so
either case (a) or case (c) of Theorem 12.7.1 applies—that is, either A+B
and A−B are periodic at time t with respective phase factors λ and −λ, or
these matrices admit perfect state transfer at time t with respective phase
factors λ and −λ. Since m is odd though, we cannot have perfect state
transfer and so (c) is irrelevant.

In case (a), if

UA0+A1(t) = λI, UA0−A1(t) = −λI,

then

U2A1(t) = UA0+A1(t)UA1−A0(t) = UA0+A1(t)UA0−A1(t) = −I.

If β1, . . . , βd denote the eigenvalues of A1, then for r = 1, . . . , d we have

e2itβr = −1

and therefore there are integers mr such that

2tβr = (2mr + 1)π.

Hence the ratios βr/βs must all be odd.
The valency of a Cayley graph for a group of odd order is even. If

the group is also abelian and the Cayley graph is connected, then by the
previous lemma it also has an odd eigenvalue. If we allow a loop on each
vertex, then we still have eigenvalues of different parity. We conclude that
Y1 must be the empty graph and A1 = I. If Y0 is not empty then X is the
Cartesian product Y0 � K2. To complete the proof, we show that if Y is
not empty, perfect state transfer does not occur on Y0 �K2.

Assume by way of contradiction that we have perfect state transfer at
time t, so

UY �K2(t) = γR

where R is a permutation matrix with zero diagonal of order two. The
LHS here is equal to UY0(t) ⊗ UK2(t) and so both UY0(t) and UK2(t) must
be scalar multiples of permutation matrices. Since |V (Y0)| is odd, perfect
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state transfer does not occur on Y and therefore UY0(t) must be a multiple
of I. If S = A(nK2) then

UK2(t) = cos(t)I + i sin(t)S
and therefore t = (2m + 1)π/2 for some integer m. If θ1, . . . , θn are the
eigenvalues of Y0, the eigenvalues of UY0(t) are

eiπ(2m+1)θr/2, r = 1, . . . , n.
If θr is odd, the corresponding eigenvalue of UY0(t) is ±i, if it is even then
the eigenvalue is ±1. Since Y0 has both positive and negative eigenvalues,
we conclude that UY (t) is not a scalar multiple of I.

Finally if Y0 is empty, then X = nK2, which has perfect state transfer
at π/2.

16.7 Cyclic Sylow 2-Subgroups
In a series of three papers [8, 9, 7], Bašić and others characterized the
circulants that admit perfect state transfer. Here we will consider the more
general problem of characterizing the graphs with perfect state transfer that
are Cayley graphs for abelian groups with cyclic Sylow 2-subgroup. One
consequence of their results is that if a circulant graph admits perfect state
transfer, it admits perfect state transfer at time π/2. We present a proof of
this for a somewhat larger class of graphs.

We consider perfect state transfer on Cayley graphs for abelian groups
with a cyclic Sylow 2-subgroup, equivalently abelian groups with a unique
element of order two. Assume |G| = 2dm, where m is odd, and suppose
X = X(G, C). As in Lemma 16.5.4, letH be the subgroup ofG generated by
its elements of odd order and let Ck denote the subset of C formed by those
elements with order 2k times an odd number. As before, we have Cayley
graphs Y0, . . . , Yd for H. Denote their adjacency matrices by A0, . . . , Ad.

IfB0, . . . , Bk arem×mmatrices define 2km×2kmmatricesM(A0, . . . , Ak)
recursively by

M(B0, B1) =
(
B0 B1
B1 B)

)
when r = 1 and, if r ≥ 2,

M(B0, . . . , Br) = I2 ⊗M(B0, . . . , Br−1) +
(

0 1
1 0

)
⊗ (J2r−1 ⊗Br).

300



16.7. Cyclic Sylow 2-Subgroups

Thus the adjacency matrix for X(G, C) isM(A0, . . . , Ak).
A signed Cayley graph is a Cayley graph together with a function from

its connection set C to {±1}. If C0 is the subset of elements of C with postive
sign and C1 is the subset with negative sign, then the signed adjacency
matrix of X(G, C) is A0 − A1, where Ai = A(X(G, Ci)). The results of the
previous section apply without change to signed Cayley graphs.

16.7.1 Theorem. Let G be an abelian group with cyclic Sylow 2-subgroup.
If perfect state transfer occurs on G, it occurs at time π/2.

Proof. We employ the notation given above. Assume |G| is divisible by four.
If we have perfect state transfer on G, then we have perfect state transfer
on G from 0 to the unique element of order two in G, which lies in the
subgroup of G generated by C0 ∪ C1. Hence Theorem 12.7.1(b) applies: if
r ≥ 2 and we have perfect state transfer on the graph with adjacency matrix
M(A0, . . . , Ar) at time t with phase γ, we have perfect state transfer at time
t on

M(A0 − Ar, A1 − Ar, . . . , Ar−1 − Ar).

Accordingly we have perfect state transfer at time t onM(A0−A2, A1−A2)
at time t. This matrix is the signed adjacency matrix of a Cayley graph
for an abelian group of order 2m and so, by Theorem 16.6.2, if it admits
perfect state transfer then it admits perfect state transfer at time π/2.

Suppose G is abelian of order 2km, where m is odd, and let H be the
subgroup of G of order m. If X = X(G, C), define Cr to be the subset of
elements of C with order 2r times an odd number. By Lemma 16.5.4 we
have that X is the edge-disjoint union of the Cayley graphs X(G, Ck) for
r = 0, . . . , k, where X(G, Ck) ∼= K2k−1,2k−1 × Yk and Yk is a Cayley graph
for H.

Suppose we have perfect state transfer on X at time π/2. Since the
eigenvalues of K2k−1,2k−1 are 0 and ±2k−1, the graphs K2k−1,2k−1 × Yk for
k ≥ 3 are all periodic at time π/2.

16.7.2 Corollary. Suppose G is abelian of order 2km where m is odd, let
G2 denote the subgroup of G with order m and assume that the Sylow
2-subgroup of G is cyclic. Then the Cayley graph X(G, C) admits perfect
state transfer if and only if X(G2, C ∩G2) admits perfect state transfer.
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16.8 Linear Graphs
The results in this section could well be called folklore.

The additive group of a vector space V over F is an abelian group, and
if the characteristic of F is p, then it is an elementary abelian p-group.
Suppose G is the additive group of V and X is the Cayley graph X(G,C).
We say thatX is linear over F if C is closed under multiplication by non-zero
elements of F; if dim(V ) = d we will say that X has dimension d.

Our goal here is to derive an explicit form for the eigenvalues of a linear
graph. One consequence of this that the eigenvalues are integers.

For linear Cayley graphs of dimension d we can represent the connection
set by a d×m matrixM such that no column is a scalar multiple of another.
Two elements of Fd will be adjacent if their difference is non-zero scalar
multiple of a column of M . Hence the valency of X is (|F| − 1)m. We
will view M as the generator matrix of a code, and then our condition on
the columns of M can be restated as the requirement that the minimum
distance of the dual code is at least three. We do not insist that the rows of
M be linearly independent, although that will be the most interesting case.
The weight wt(x) of a vector is the number of non-zero entries in it.

Assume F has characteristic p and let ζ be a primitive p-th root of 1. If
a ∈ V = V (n,F), the map ψa given by

ψa(x) := ζtr(aT x)

is a character on V . Now∑
β∈F\0

ψa(βx) =
∑
β∈F\0

ζtr(βaT x)

This leads us to two cases. If aTx = 0 then the sum is equal to |F| − 1. If
aTx 6= 0 then, as β runs over F\0, the product βaTx runs over all elements
of F\0. Since the trace map is not zero it is onto, and consequently when
β runs over F then the quantity tr(βaTx) assumes each possible value in
GF (p) the same number of times. Now

∑
α∈F

ζtr(α) = |F|
p

p−1∑
r=0

ζr = 0

and it follows that if aTx 6= 0, our sum is equal to −1.
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16.8.1 Theorem. Let F be a finite field of order q and let ζ be a primitive
p-th root of 1 in C. Let M be a d×m matrix over F such that no column is
a scalar multiple of another, and let X(M) be the associated linear Cayley
graph of dimension d. If a ∈ F and ψa(x) := ζtr(aT x), then the eigenvalue
belonging to ψa is (q − 1)m− qwt(aTM).

Proof. When we sum ψa over the connection set, each column of M con-
tributes q − 1 it it lies in ker(aT ) and −1 if it does not. As (aTM)r = 0 if
and only if the r-th column of M lies in ker(aT ), the eigenvalue of ψa is

(q − 1)(m− wt(aTM)) + (−1) wt(aTM) = (q − 1)m− qwt(aTM).

The row space of M is a linear code over F. The number of columns of
M is the length of the code. The code is projective if no two columns are
linearly dependent or, equivalently, if the minimum distance of the dual is
at least three. If ar denotes the number of code words of weight r in our
code, the sequence

(a0, . . . , an)
is the weight distribution of the code. If C is a projective code of length n
over a field of order q then, by 16.8.1, the integer

(q − 1)n− qr

is an eigenvalue of X(C) with multiplicity ar. Thus the eigenvalues of
X(M), and their multiplicities, are determined by the weight enumerator
of the code.

16.9 Linear Graphs are Hamming
Quotients

There is a second useful description of linear graphs. We have constructed
them as Cayley graphs X(M), where M is a generator matrix of a code. If
M is a generator matrix for a code C, then the kernel ofM is the dual code
C⊥ of C. It is a code of the same length as C and, if C has length m, then
dim(C⊥) = m−dim(C). Of course (C⊥)⊥ = C. A code C is self-orthogonal
if C ≤ C⊥ and it is self dual if C = C⊥.

Suppose F has order q and D is subspace of Fm. The coset graph of D is
the multigraph with the cosets of D as its vertices, and the number of edges
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joining two cosets equal to the number of elements in the second coset at
Hamming distance one from an element of the second coset. Equivalently,
the coset graph of D is the quotient of the Hamming graph H(m, q) relative
to the partition formed by the cosets of D.

If C is the dual code of D and M is a generator matrix for C, then
H(n, q)/D is isomorphic to the Cayley graph X(M). (Exercise.)

Every linear Cayley graph is a coset graph relative to a code with mini-
mum distance three. So we can take the vertices to be cosets of a subspace,
and two cosets are adjacent if a word in one coset is at Hamming distance
one from a word in the second. We can construct the eigenvectors from
the characters of the additive group Fm: if ψ is such a character, then the
associated eigenvector of the quotient is the function ψ̂ that maps a coset
to the sum of the values of ψ on the coset.

16.10 Cubelike Graphs
The d-cube is an example of a Cayley graph for Zd2. A Cayley graph X(C)
for Zd2 has the binary vectors of length d as its vertices, with two vertices
adjacent if and only if their difference lies in some specified subset C of
Zd2 \ {0}. (The set C is the connection set of the Cayley graph.) If we
choose C to consist of the d vectors from the standard basis of Zd2, then
the cubelike graph X(C) is the d-cube. In [26] Facer, Twamley and Cresser
showed that perfect state transfer occurs in a special class of Cayley graphs
for Zd2 that includes the d-cube, and this was extended to an even larger
class of graphs in [10] by Bernasconi, Godsil and Severini.

If we let σ denote the sum of the elements of C, then the main result of
[10] is that, if σ 6= 0, then at time π/2 we have perfect state transfer from u
to u+ σ, for each vertex u. Our goal is to study the situation when σ = 0;
we find a surprising connection to binary codes.

If u ∈ Zd2, then the map
x 7→ x+ u

is a permutation of the elements of Zd2, and thus it can be represented by a
2d × 2d permutation matrix Pu. We note that P0 = I,

PuPv = Pu+v
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16.10. Cubelike Graphs

and so P 2
u = I. We also see that tr(Pu) = 0 if u 6= 0 and∑

u∈Zd2

Pu = J.

16.10.1 Lemma. If C ⊆ Zd2\0 and X is the cubelike graph with connection
set C, then A(X) = ∑

u∈C Pu.

If σ is the sum of the elements of C, then

Pσ =
∏
u∈C

Pu.

16.10.2 Lemma. If U(t) is the transition operator of the cubelike graph
X(C), then U(t) = ∏

u∈C exp(itPu).

Proof. If matrices M and N commute then

exp(M +N) = exp(M) exp(N)

Since A = ∑
u∈C Pu and since the matrices Pu commute, the lemma fol-

lows.
Suppose P is a matrix such that P 2 = I. Then

exp(itP ) = I + itP − t2

2!I − i
t3

3!P + t4

4!I + · · ·

and hence
exp(itP ) = cos(t)I + i sin(t)P.

If P is a permutation matrix we see that

exp(πiP ) = −I, exp
(1

2πiP
)

= iP.

This implies that we have perfect state transfer on K2 at time π/2, and
that K2 is periodic with period π.

If H is the transition operator for a Cayley graph of an abelian group
then the argument used above shows that H can be factorized as a product
of transition operators for a collection of perfect matchings and 2-regular
subgraphs. Unfortunately this does not seem to allow us to derive useful
information about state transfer.
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Now we present a new and very simple proof of Theorem 1 from Bernasconi
et al [10].

16.10.3 Theorem. Let C be a subset of Zd2 and let σ be the sum of the
elements of C. If σ 6= 0, then perfect state transfer occurs in X(C) from u
to u+ σ at time π/2. If σ = 0, then X is periodic with period π/2.

Proof. Let U(t) be the transition operator associated with A. Then by
16.10.2

U(t) =
∏
u∈C

exp(itPu).

From our remarks above

exp(itPu) = cos(t)I + i sin(t)Pu

and therefore
U(π/2) =

∏
u∈C

iPu = i|C|Pσ.

This proves both claims.
We show how to use these ideas to arrange for perfect state transfer

from 0 to a specified vertex u in a cubelike graph. Assume we have cubelike
graph with connection set C and let σ be the sum of the elements of C. If
σ = u then we already have transfer to u. First assume σ = 0. If u ∈ C
let C ′ denote C \u; if u /∈ C let C ′ be C ∪ u. In both cases the sum of the
elements of C ′ is u and we’re done. If σ 6= 0, replace C by (C \σ), now we
are back in the first case. We can summarize this as follows. Let S ⊕ T
denote the symmetric difference of the sets S and T .

16.10.4 Lemma. If u is a vertex in the cubelike graph X(C), then there
is a connection set C ′ such that |C ⊕ C ′| ≤ 2 and we have perfect state
transfer from 0 to u in X(C ′) at time π/2.

16.11 The Minimum Period
In this section we determine the minimum period of a cubelike graph.

We consider the spectral decomposition of the adjacency matrix of a
cubelike graphs. If a ∈ Zd2, then the function

x 7→ (−1)aT x
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16.11. The Minimum Period

is both a character of Zd2 and an eigenvector of X(C) with eigenvalue∑
c∈C

(−1)aT c.

Let M be the matrix with the elements of C as its columns. Its row space
is a binary code, and if wt(x) denotes the Hamming weight of x, the above
eigenvalue is equal to

|C| − 2 wt(aTM).

Thus the weight distribution of the code determines the eigenvalues ofX(C),
and also their multiplicities. As a pertinent example we offer

M =


0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1


which has weight enumerator

x11 + 10x7y4 + 16x5y6 + 5x3y8,

from which we learn that the weights of its code words are 0, 4, 6 and 8.
The eigenvalues of the associated cubelike graph are

11, 3, −1, −5

with respective multiplicities

1, 10, 16, 5.

If we define the 2d × 2d matrix Ea by

(Ea)u,v := 2−d(−1)aT (u+v)

then E2
a = Ea and, if a 6= b, then EaEb = 0. The columns of Ea are

eigenvectors for X(C) with eigenvalue |C| − 2 wt(aTM), and if m = |C| we
have

A =
∑
a

(m− 2 wt(aTM))Ea.
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More significantly

exp(iAt) =
∑
a

exp(i(m− 2 wt(aTM))t)Ea

= exp(imt)
∑
a

exp(−2itwt(aTM))Ea

With the eigenvalues in hand, our next result follows immediately from
Theorem ??.

16.11.1 Lemma. Let X be a cubelike graph and let D be the greatest
common divisor of the weights of the words in its code. Then the minimum
period of X is π/D.

16.12 Characterizing State Transfer on
Cubelike Graphs

We show how the existence of perfect state transfer on a cubelike graph can
be read off from the associated binary code.

16.12.1 Theorem. Let X be a cubelike graph with matrixM and suppose
c is a vertex in X distinct from 0. Then the following are equivalent:

(a) There is perfect state transfer from 0 to c.

(b) All words in C have weight divisible by D and D−1 wt(aTM) and aT c
have the same parity for all vectors a.

(c) D divides | supp(u) ∩ supp(v)| for any two code words u and v.

Further, if perfect state transfer occurs, it occurs at time π/2D.

Proof. We start by proving that (a) and (b) are equivalent. Perfect state
transfer occurs at time π/2D if and only if there is a complex scalar β of
norm 1 and a permutation matrix T of order two and with trace zero such
that

U(π/2D) = βT.

Now

(U(π/2D))0,c = exp(imπ/2D)
∑
a

exp(−iπwt(aTM)/D)(Ea)0,c
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and
(Ea)0,c = 2−d(−1)aT c,

consequently

β exp(−imπ/D) = 2−d
∑
a

exp(−iπwt(aTM)/D)(−1)aT c

= 2−d
∑
a

(−1)wt(aTM)/D(−1)aT c.

Here the left side of this equation has absolute value 1 and the right side
is the average of 2d numbers of absolute value 1, so the left side is ±1 and
the summands on the right all have the same sign. So this equation holds
if and only if, for all a we have

wt(aTM)
D

= aT c, (modulo 2).

Now this holds if and only if, modulo 2,

wt((a+ b)TM)
D

= wt(aTM)
D

+ wt(bTM)
D

for all a and b. This holds in turn if and only if, for any two code words u
and v, we have that

wt(u+ v) = wt(u) + wt(v) (mod 2D)

and this holds if and only if

| supp(u) ∩ supp(v)| = 0 (mod D). .

Suppose C is a binary code with generator matrix M . Let M ′ denote
M viewed as a 01-matrix over Z and let ∆ be the gcd of the entries in M ′1.
Then the entries of ∆−1M ′1 are integers, not all even, and we define the
image of this vector in Z2 to be the center of C. Note that ∆ is the gcd of
the weights of the code words formed by the rows of M and, if ∆ is odd,
then the centre of C is equal to M1.

16.12.2 Corollary. Suppose X is a cubelike graph and c is a vertex in X
distinct from 0. If we have perfect state transfer from 0 to c, then c is the
centre of the code.
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16. Translation Graphs

Suppose x and y are binary vectors and ∆ divides the weight of x, y
and x+ y. If

wt(x) = a+ b, wt(y) = a+ c; wt(x+ y) = b+ c

then, modulo ∆,

a+ b = 0
a + c = 0

b+ c = 0.

This implies that, modulo ∆,

2a = 2b = 2c = 0.

It follows that the odd integer d divides the weight of each word in a binary
code if and only if, for any two words x and y, the size of supp(x)∩ supp(y)
is divisible by d.

16.13 Examples
A code is even if D is even and doubly even if D is divisible by four. If C
is even and the size of the intersection of any two code words is even, then
C is self-orthogonal. Note that since our graphs are simple, their generator
matrices cannot have repeated columns. (Using the standard terminology
our codes are projective or, equivalently, the minimum distance of the dual
is at least three.) So cubelike graphs with perfect state transfer at time π/4
correspond to self-orthogonal projective binary codes that are even but not
doubly even.

Unpublished computations by Gordon Royle have provided a complete
list of the cubelike graphs on 32 vertices. Analysis of the graphs in this
list that show there are exactly six cubelike graphs on 32 vertices for which
the codes are self-orthogonal and even but not doubly-even. The example
in 16.11 is the one of these with least valency. These six graphs split into
three pairs, each the complement of the other. In general, if perfect state
transfer occurs on a graph it need not occur on its complement. In our case
it must, as the following indicates. We use X to denote the complement of
X.
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16.13.1 Lemma. If X is a cubelike graph with at least eight vertices then
perfect state transfer occurs on X if and only if it occurs on X.

Proof. Since A(X) = J − I − A(X) we have.

UX(t) = exp(it(J − I − A)).

If X is regular then J and A commute and

UX(t) = exp(it(J − I))UX(−t)

and hence

UX(π/k) = exp(−iπ/k) exp((πi/k)J)UX(π/k)−1

If |V (X)| = n then the eigenvalues of J are 0 and n and exp((π/k)J) = I
provided n/k is even.

There are a further six cubelike graphs on 32 vertices whose codes are
doubly even. A doubly even code is necessarily self-orthogonal. If perfect
state transfer occurs at time τ , then Lemma 5.2 in [19] yields that tr(U(π/4))
must be zero, and using this we can show that perfect state transfer does not
occur on these graphs. Thus we do not have examples of cubelike graphs
with D > 2 where perfect state transfer occurs.

If M and N are binary matrices, their direct sum is the matrix(
M 0
0 N

)

and the code of this matrix is the direct sum of the codes of M and N . If
the code of M is self-orthogonal and even but not doubly even, then the
direct sum of two copies of this code is all these things too. If X and Y
are the cubelike graphs belonging to M and N , then the cubelike graph
belonging to the direct sum of M and N is the Cartesian product of X and
Y . The transition matrix of the Cartesian product of X and Y is UX ⊗UY .
One consequence is that we do have infinitely many examples of cubelike
graphs admitting perfect state transfer at time π/4.

16.14 Cayley Graphs for Zd4
We turn to Cayley graphs for Zd4.
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16.14.1 Lemma. If P 4 = I, then

exp(itP ) = 1
2(I − P 2 + (P + P−1)(cos(2t)P + sin(2t)I))

and consequently
exp

(1
2πiP

)
= −P 2.

16.14.2 Lemma. Suppose X is a Cayley graph for Zd4 with connection set
C. Let C1 be the set of involutions in C, and let C2 be the elements of
order four. Let P1, . . . , P` be the permutation matrices corresponding to
the elements of C1. Let Q1, . . . , Qm be the distinct permutation matrices
corresponding to the squares of the elements in C2 (so 2m = |C2|). Then

UX(π/2) = i`
∏̀
r=1

Pr (−1)m
m∏
s=1

Qs.

16.14.3 Corollary. Let X = X(Zd4, C) and suppose all elements in C have
order four. Let D be the set of squares of elements of C. Then we have
perfect state transfer on X at time π/2 if and only if we have perfect state
transfer at time π/2 on the cubelike graph X(Zd2,D).

Notes

Exercises
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Chapter 17

Uniform Mixing

We say that instantaneous uniform mixing occurs on X if there is a time τ
such that

MX(τ) = 1
|V (X)|J.

(Equivalently, U(τ) is flat.) We will abbreviate instantaneous uniform mix-
ing to uniform mixing, as often as possible. As we have seen, for K2 we
have

UK2(π/4) = 1√
2

(
1 i
i 1

)

and therefore we have uniform mixing at time π/4. As we also saw in
Section ??, uniform mixing does not occur on Kn if n > 4. It is not hard to
calculate that we have uniform mixing on K3 at time 2π/9, and on K4 at
time π/4. It follows that we have uniform mixing on the Hamming graphs
H(n, 3) and H(n, 4) at the same times (respectively), since these graphs are
Cartesian powers (of K3 and K4 respectively).

Since we have uniform mixing at π/4 for both K2 and K4, it follows that
we also have uniform mixing on the Cartesian product H(m, 2) � H(n, 4)
at π/4.

A flat unitary matrix is more often referred to as a complex Hadamard
matrix. We say that a complex Hadamard matrix has Butson index m if its
entries are m-th roots of unity. So a complex Hadamard matrix of Butson
index two is just a Hadamard matrix. In design theory the term “complex
Hadamard matrix” may sometimes be taken to mean “complex Hadamard
matrix with Butson index four”, i.e., with entries in {±1,±i}.
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17. Uniform Mixing

If we do not have uniform mixing as just defined, it is possible that there
is a vertex a such that the vector eTaU(t) is flat. In this case we say that we
have local uniform mixing at a.

17.1 Uniform Mixing on Cones
We first present examples of graphs which admit uniform mixing starting
from a vertex. Carlson et al. [17] showed that there is uniform mixing on
the star K1,n, starting from the vertex of degree n− 1. We prove a related
result.

17.1.1 Lemma. If Y is a regular with valency at most two and Z is the
cone over Y , then Z admits local uniform mixing starting from the conical
vertex.

Proof. Assume n = |V (Y )| and that Y is `-regular. Denote the cone over
Y by Z and let a denote the conical vertex. We set

∆ =
√
`2 + 4n

and recall from Section 12.1 that the eigenvalues in the eigenvalue support
of a are

1
2(`±∆).

We denote these by µ1 and µ2, assuming that µ1 > µ2.
If y ∈ V (Y ) then Lemma 12.3.1 yields that

UZ(t)a,y = 1
∆
(
eitµ1 − eitµ2

)
= eitµ2

∆
(
eit∆ − 1

)
.

We note that this is independent of the choice of y in Y , and conclude that
we have uniform mixing from a if and only if there is a time t such that

1
∆ |e

it∆ − 1| = 1√
n+ 1

;

equivalently we need

|eit∆ − 1| =
√
`2 + 4n√
n+ 1

.

As `2 +4n = `2−4+4n+4, the ratio on the right lies in the interval [0, 2] if
and only if ` ≤ 2. Hence in these cases we can find a time t which satisfies
this equation, and then we have uniform mixing starting from a.
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By taking Cartesian powers, we get further examples with uniform mix-
ing starting from one vertex of the graph, as

exp(it(Z�Z))e(a,a) = exp(itZ)ea ⊗ exp(itZ)ea.

It seems plausible that, in most cones, we do not get uniform mixing
starting from a the vertex in the base graph, but we do not have a proof
in general. We leave it as an exercise to show that we do not get uniform
mixing in K1,n starting from a vertex of degree one. You might also show
that if X has at least two vertices and Y at least three, then in the join
X + Y we cannot have uniform mixing starting from a vertex in X.

Hanmeng Zhan has observed that we do have uniform mixing on K1,3 at
time 2π/3

√
3, and hence on its Cartesian powers at the same time. These

are our only examples of graphs that admit uniform mixing and are not
regular.

17.2 Transcendental Numbers
We have already met some basic number theory when we introduced alge-
braic numbers and explored some of their properties in Chapter 7. It turns
out however that most numbers are not roots of polynomials with integer
coefficients, and these are called transcendental numbers. Proving that a
number is transcendental is typically no trivial task. From the late 19th
century to the early 20th, a sequence of now famous results established the
foundations of what is known as transcendental number theory. They culmi-
nated in theorem proved independently by A. Gel’fond and Th. Schneider
in 1934, which solved Hilbert’s seventh problem.

17.2.1 Theorem (Gelfond-Schneider). If α and β are algebraic numbers,
with α 6= 0, 1 and β /∈ Q, then αβ is transcendental.

An equivalent form, which will be more useful to us, states that if α 6= 0
and β /∈ Q are complex numbers, then at least one of the numbers eα, β
and eαβ is transcendental. This will be used to show that some restrictions
on the eigenvalues of matrices where uniform mixing occurs.

For this next result, recall from Chapter 7 that the set of algebraic
numbers form an algebraically closed field.
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17.2.2 Theorem. Let X be a graph, A = A(X). Assume that for a given
t 6= 0, there is a matrix M , with all of its entries algebraic numbers, so that
U(t) = λM , with λ ∈ C. Then the ratio of any two non-zero eigenvalues of
X is a rational number.

Proof. Assume A = ∑d
r=0 θrEr is the spectral decomposition of A. First,

det exp(itA) =
d∏
r=0

eitθr = eit tr(A) = 1.

Thus λn detM = 1, and therefore, as the entries ofM are algebraic, we have
that λ must be algebraic. Thus all entries of U(t) are algebraic numbers,
whence the roots of its characteristic polynomial are also algebraic numbers,
that is, {eitθ0 , ..., eitθd} are algebraic numbers.

Take any two distinct θr and θs, with θs 6= 0, and assume θr/θs is not
rational. From the Gelfond-Schneider Theorem, one of the numbers

itθr
itθs

, eitθs , eitθs(θr/θs)

is transcendental. The first cannot be because θr and θs are algebraic, and
the second and third cannot be from our previous discussion. Thus θr/θs
must be rational.

When we are guaranteed that the ratio of any two non-zero eigenvalues
is a rational number, it is enough to find one non-zero integral eigenvalue to
conclude that all other eigenvalues must also be integers. Regular graphs
provide a large class of examples of graphs with at least one integral eigen-
value.

17.2.3 Corollary. If X is a regular graph, and if, for a given t 6= 0, there
is a matrix M , with all of its entries algebraic numbers, so that U(t) = λM
for some λ ∈ C, then all eigenvalues of X are integers.

In view of the result above, it seems natural to pursue a classification
of uniform mixing in regular graphs, and, naturally, dealing with few eigen-
values is preferable. As we have already discussed, the complete graphs
K2, K3 and K4 admit uniform mixing, but no other complete graph does.
In the next sections, we intend to classify the strongly regular graphs that
admit uniform mixing.
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17.3 Regular Hadamard Matrices
We introduce a largish class of graphs that admit uniform mixing. To begin
with, we vary our setup, and use symmetric Hadamard matrices (rather
than adjacency matrices) as Hamiltonians. Suppose H is a symmetric n×n
Hadamard matrix. Then H2 = nI and if Ĥ := n−1/2H, we find that

exp(itĤ) = I + itĤ − t2

2 − it
3

6 Ĥ + · · ·

= cos(t)I + i sin(t)Ĥ.

So exp(1
2πiĤ) = iĤ and we have uniform mixing at time π/2; if we use H

in place of Ĥ we have uniform mixing at time π/(2
√
n).

The matrix
A = 1

2(H + J)

is a 01-matrix and we can analyse the continuous quantum walk on it if H
and J commute, that is, if H is a regular symmetric Hadamard matrix. If
H is regular and symmetric with row sum k, we have

n1 = H21 = H(k1) = k21

and therefore the order n must be a perfect square. Now

exp(itA) = exp
( it

2 (H + J)
)

= exp
( it

2 J
)

exp
( it

2H
)
.

We have

exp(i(t/2)J) = ei(t/2)n

n
J + I − 1

n
J = I − 1

n
(1− ei(t/2)n)J

which is equal to I when (t/2)n is an even multiple of π. Thus, if t =
π/(2
√
n), we have that exp(itA) is flat when

n

4
√
n

= 2m

for some integer m, and hence we conclude that uniform mixing takes place
on A if n = 64m2, that is, if n is a perfect square and 64 divides n.

If A has 0 diagonal, then it is the adjacency matrix of a regular graph.
Further, A2 = (1/4)(nI + 2kJ + nJ), and therefore A is the adjacency
matrix of a strongly regular graph with parameters

(n, (n+ k)/2; (n+ 2k)/4, (n+ 2k)/4).
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17.4 Conference Graphs
A conference graph on q vertices is a strongly regular graph with parameters

q,
q − 1

2 ; q − 5
4 ,

q − 1
4 .

For an immediate example we have C5. The complement of a conference
graph is again a conference graph (and so conference graphs are cospectral
to their complements). The eigenvalues of a conference graph on q vertices
are its valency (q − 1)/2 (with multiplicity one) and

1
2(−1±√q),

both with multiplicity (q−1)/2 (thus immediately implying that q must be
odd). Conference graphs can be characterized by the fact that the multi-
plicities of their non-trivial eigenvalues are equal. One can further restrict
the possible number of vertices in a conference graph with the following
result, which we state without a proof.

17.4.1 Lemma. If X is a conference graph of order n, then n is congruent
to 1 modulo 4, and n is the sum of two squares.

The matrix of eigenvalues P for the association scheme of a conference
graph on q vertices is 

1 q−1
2

q−1
2

1 −1+√q
2

−1−√q
2

1 −1−√q
2

−1+√q
2

 ,
from which we can confirm that this scheme is formally self-dual.

The best known examples of conference graphs are the Paley graphs,
constructed as follows. Let F be a finite field of order q, where q ≡ 1
modulo 4. The elements of F are the vertices of the Paley graph, and
two vertices are adjacent if their difference is a non-zero square in F. The
Paley graphs are self-complementary. The eigenvalues of a Paley graph
are integers if and only if q is a square. The Paley graph on 9 vertices is
isomorphic to K3 �K3 and therefore admits uniform mixing at time 2π/9.
However Mullin [?] proved that this is the only conference graph where
uniform mixing occurs.
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Recall that ifX is strongly regular, then its adjacency algebra is spanned
by I, A and A = A(X). Any matrix which is a polynomial in A is a linear
combination of the three matrices above, thus, if uniform mixing occurs,
there is a flat unitary W so that W = αI + βA+ γA. Following Mullin, we
determine the flat unitary matrices in the adjacency algebra of a conference
graph. Recall, from Theorem 14.11.1, that a flat unitary is a scalar multiple
of a type-II matrix.

17.4.2 Lemma. Let X be a conference graph on q vertices with adjacency
matrix A. If W is a flat type-II matrix in the adjacency algebra of X with
diagonal entries equal to 1, then

W = I + xA+ x−1A

where |x| = 1 and
x+ x−1 =

−2± 2√q
q − 1 .

Proof. Let c = (q−1)/4. Thus, the parameters ofX are (4c+1, 2c; c−1, c).
If

W = I + xA+ yA

then

WW (−T ) = (I + xA+ yA)(I + x−1A+ y−1A)
= I + A2 + A

2 + (x+ x−1)A+ (y + y−1)A+ (xy−1 + x−1y)AA

If we expand A2, A2 and AA in terms of I, A and A, knowing that A2 =
(2c)I + (c− 1)A+ cA, we find that

WW (−T ) = nI + w1A+ w2A

where

w1 = 2c− 1 + c(xy−1 + x−1y) + x+ x−1,

w2 = 2c− 1 + c(xy−1 + x−1y) + y + y−1.

If W is to be a type-II matrix, then w1 = w2 = 0. If w1 = w2, then

x+ x−1 = y + y−1
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and since |x| = |y| = 1 because W is flat, it follows that x = y or x = y−1.
If x = y, the first equation of the pair of equations becomes

0 = 4c− 1 + x+ x−1,

and since |x+ x−1| ≤ 2, this has no solution when n ≥ 5.
Hence x = y−1 and our two equations reduce to the single equation

0 = 2c− 1 + c(x2 + x−2) + x+ x−1.

If we set σ = x+ x−1, we can rewrite this as a quadratic

0 = cσ2 + σ − 1,

from which it follows that

σ = −2± 2
√
n

n− 1 .

Our goal in the next section is to show the all but one conference graph
admits uniform mixing. With that mind, we first derive an important con-
sequence of duality. Since the association scheme of a conference graph is
formally self-dual, Theorems 14.11.1 and 9.7.2 give the following immedi-
ately.

17.4.3 Lemma. Let X be a conference graph and let E0, E1, E2 be its
spectral projections. Then I + xA+ yA is a flat type-II matrix if and only
if E0 + xE1 + yE2 is flat and unitary.

17.5 Uniform Mixing on Strongly Regular
Graphs

In this section we prove that the Paley graph on nine vertices is the only
conference graph that admits uniform mixing. This result appears in [?],
but we are following the treatment in Mullin [?].

17.5.1 Theorem. The only conference graph that admits uniform mixing
is the Paley graph on nine vertices.
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Proof. Let X be a conference graph on n vertices, with adjacency matrix
A and spectral projections E0, E1 and E2. Assume uniform mixing occurs
in X at time t.

If n is not a square, the non-trivial eigenvalues of X are irrational. On
the other hand, U(t) is flat and unitary, thus a multiple of a type-II matrix
by Theorem 14.11.1. Lemma 17.4.2 says that this type-II matrix is algebraic,
therefore, as a consequence Corollary 17.2.3, the eigenvalues of X would
have to be integers.

So n = m2 for some m, and n is odd. If m = 3, it is well known that
X must be the Payley graph of order 9. We see below that this is the only
case indeed.

Having U(t) = ∑2
r=0 eitθrEr flat and unitary, Lemma 17.4.3 implies that

M = I + eit(θ1−θ0)E1 + eit(θ2−θ0)E2

is a flat type-II matrix. From Lemma 17.4.2, two consequences unfold:
eit(θ1−θ0) = e−it(θ2−θ0), and thus e−nit = 1; and

2 cos(t(θ1 − θ0)) = eit(θ1−θ0) + e−it(θ1−θ0) = −2± 2
√
n

n− 1 .

17.6 Cycles
We show that uniform mixing does not take place on even cycles, or on
cycles of prime length.

17.6.1 Lemma. If we have uniform mixing on a bipartite graph X, then
the ratios of the eigenvalues of X are rational. If X is also regular, its
eigenvalues are integers.

Proof. Assume n = |V (X)|. As we saw in Section 1.8, if the transition
matrix U(t) of a bipartite graph is flat, then the entries of

√
n are ±1 or

±i; hence they are algebraic. Now apply Lemma ??.
If X is regular then its valency is an integer eigenvalue, and therefore

all eigenvalues are integers.

17.6.2 Theorem. The only cycle of even length that admits uniform mix-
ing is C4.
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Proof. [*** to go here ***]
For cycles of odd length we work harder to say less:

17.6.3 Theorem. If p is prime and p > 3, then uniform mixing does not
occur on Cp.

Proof. Haagerup has proved that there are only finitely many type-II ma-
trices in the Bose-Mesner algebra of a cycle of prime order. By Corol-
lary 14.12.2 it follows that the entries of any such type-II matrix are al-
gebraic. By Theorem ?? we see that if uniform mixing occurs then the
eigenvalues of the cycle must be integers. Therefore we cannot have uni-
form mixing on Cp, for any prime greater than three.

17.7 A Flat Unitary Circulant
We say that ε-uniform mixing occurs on the graphs X if, for each positive
real ε there is a time t such that

‖U(t) ◦ U(t)∗ − n−1J‖ < ε.

You may show that if X admits uniform mixing, so do its Cartesian powers.
We aim to show that each cycle of prime length admits ε-uniform mixing,

but for this some non-trivial preparation is required. The material in this
section is a lightly edited version of material from [?, Section 9].

We rely on the viewpoint of cyclic association schemes. Let p denote an
odd prime and consider the cycle Cp. Let d = bp2c. For 0 ≤ r ≤ d we define
the following adjacency matrices.

[Ar]j,k =

1, if j − k ∈ {r,−r} (mod p);
0, otherwise.

Note that A0 is the p×p identity matrix, and A1 is the adjacency matrix of
the cycle Cp. Let A = {A0, . . . , Ad}. The set of matrices A = {A0, . . . , Ad}
form the cyclic association scheme of order p.

It is also convenient to consider the underlying permutation matrix C
that is the adjacency matrix of a directed cycle. We index the rows and
columns of C with elements of Zp such that

Cj,k =

1, if j − k ≡ 1 (mod p)
0, otherwise.
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Let A = {A0, . . . , Ad} denote the cyclic association scheme on p vertices.
Since p is an odd prime, we see that A has d = (p−1)/2 classes. We further
let {E0, . . . , Ed} denote the spectral idempotents of A. We assume that
these idempotents have been ordered such that E0 = 1

p
J and

Er =
n−1∑
j=0

(
ωjr + ω−jr

)
Cj.

for 1 ≤ r < bn/2c.
We define

F =
d∑
r=0

ωr
2
Er, (17.7.1)

where ω = ei2π/p.

17.7.1 Lemma. The matrix F is a flat unitary matrix.

Proof. First we verify that F is unitary. We do this by a direct computation.
It is convenient to recall that

E2
r = Er and ErEj = 0 if r 6= j.

Using these observations we see that

FF ∗ =
(

d∑
r=0

ωr
2
Er

)(
d∑
r=0

ω−r
2
Er

)
=

d∑
r=0

Er = I.

Next we use the discrete Fourier transform Θ to show that F is flat. Note
that for an arbitrary matrix M in C[A] there exists a unique polynomial
p(x) of degree at most p−1 in C[x] such that M = p(C). Further note that
Θ is defined such that

Θ(M) =
n−1∑
j=0

p(ωj)Cj.
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Since Θ is linear, we have

Θ(F )Θ(F ∗) =
(

d∑
r=0

ωr
2Θ(Er)

)(
d∑
r=0

ω−r
2Θ(Er)

)

=
(

d∑
r=0

ωr
2
Ar

)(
d∑
r=0

ω−r
2
Ar

)

=
p−1∑
j=0

ωj
2
Cj

p−1∑
j=0

ω−j
2
Cj


=

p−1∑
k=0

p−1∑
j=0

wj
2−(k−j)2

Ck

=
p−1∑
k=0

ω−k
2

p−1∑
j=0

wjk

Ck

= pC0

= pI.

By a well-known property of the discrete Fourier transform, we know
that Θ(F )Θ(F ∗) = pI implies that

F ◦ F ∗ = 1
p
J.

Therefore F is flat.

17.8 ε-Uniform Mixing on Cp

Our goal now is to show that U(t) gets arbitrarily close to a complex scalar
multiple of F as t ranges over all real numbers. Since F is a flat matrix,
achieving this goal implies that Cp admits ε-uniform mixing. The proof
of this result relies heavily on Kronecker’s Theorem. Again it is a lightly
edited version of the argument presented in [?, Section 9].

17.8.1 Theorem. For each odd prime p, the cycle Cp admits ε-uniform
mixing.

Proof. Let U ′(t) denote the scaled transition matrix given by

U ′(t) = e−2itU(t) = E0 + e(θ1−2)itE1 + · · ·+ e(θd−2)itEd. (17.8.1)
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17.8. ε-Uniform Mixing on Cp

Note that U ′(t) is a unitary matrix, and U ′(t) is flat if and only if U(t)
is flat. Let ε denote a positive real number. We proceed by showing that
there exists some time t such that

‖U ′(t)− F‖ < ε

2 .

We consider U ′(t) at times that are an integer multiple of 2π/p. For any s
in Z, we see that Equation 17.8.1 becomes

U ′(2sπ/p) =
d∑
r=0

e2s(θr−2)πi/pEr.

In terms of e, we express Equation 17.7.1 as

F =
d∑
r=0

e2r2πi/pEr.

Our goal is to find a time t such that the coordinates of F and U ′(t) are
close to the same value. In terms of the exponents of these coefficients, this
is equivalent to finding some integer s such that 1

p
r2 ≈ 1

p
(θr − 2)s in (R/Z)

for 0 ≤ r ≤ d. For two elements x and y in R/Z, we define the distance
|x− y|R/Z to be

|x− y|R/Z = inf
k∈Z
{|x− y − k|},

where the norm on the right hand side of the definition is the absolute value
of x− y − k considered as a real number.

From Theorem ??, we know that

{1, θ1, . . . , θd−1}

is linearly independent over Q, and consequently{
1, 1
p

(θ1 − 2), . . . , 1
p

(θd−1 − 2)
}

is linearly independent over the rationals.
By Kronecker’s Theorem (Theorem ??), we see that

D =
{(

1
p

(θ1 − 2)s, . . . , 1
p

(θd−1 − 2)s
)

: s ∈ Z
}
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is dense in (R/Z)d−1.
Therefore for any δ > 0, we can find some s in Z such that∣∣∣∣∣1p(θr − 2)s− r2

p

∣∣∣∣∣
R/Z

< δ (17.8.2)

in (R/Z) for all 1 ≤ r ≤ d − 1. It remains to consider the coordinates of
U ′(t) and F with respect to Ed. Recall that for a cyclic association scheme
we have

θd = −1− θ1 − θ2 · · · − θd−1.

We can use this to derive an expression for the d-th coordinate of U ′(t) in
terms of the first d− 1 coordinates.

1
p

(θd − 2)s = 1
p

(
−3−

d−1∑
r=1

θr

)
s

= −1
p

(2(d− 1) + 3)s−
d−1∑
r=1

1
p

(θr − 2)s

= −s−
d−1∑
r=1

1
p

(θr − 2)s.

Now working in R/Z, we see that the exponent of the d-th coordinate of
U ′(t)− F is

1
p

(θd − 2)s− 1
p
d2 = −s−

d−1∑
r=1

1
p

(θr − 2)s− 1
p
d2 (17.8.3)

=
d−1∑
r=1

(
1
p

(θr − 2)s− 1
p
r2
)

+ 1
p

d∑
r=0

r2. (17.8.4)

Note that
1
p

d∑
r=1

r2 = d(d+ 1)(2d+ 1)
6p = (p− 1)(p+ 1)

24

Since p is an odd prime, we know that both p− 1 and p+ 1 are even, and
exactly one of those values is divisible by 4. Therefore (p − 1)(p + 1) is
divisible by 8. Since we are assuming that p 6= 3, we also know that p − 1
or p+ 1 is divisible by 3. It follows that

(p− 1)(p+ 1)
24 ∈ Z.
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must be an integer. We simplify Equation 17.8.3 in R/Z to

1
p

(θd − 2)s− 1
p
d2 =

d−1∑
r=1

(
1
p

(θr − 2)s− 1
p
r2
)
.

Now we use this expression and Inequality 17.8.2 to bound the coefficient
d-th coordinate of U ′(t)− F in terms of δ as follows:∣∣∣∣∣1p(θd − 2)s− 1

p
d2
∣∣∣∣∣
R/Z
≤

d−1∑
r=1

∣∣∣∣∣1p(θr − 2)s− 1
p
r2
∣∣∣∣∣
R/Z

< (d− 1)δ.

This implies that for any ε > 0, we can find a sufficiently small δ such that

‖U ′(2sπ/p)− F‖ < ε

2 .

It can be shown that if A and B are symmetric n × n complex matrices,
such that

‖A−B‖ ≤ γ,

for some positive real number γ. Then

‖A ◦ A∗ −B ◦B∗‖ ≤ 2γ.

Therefore it follows that

‖U ′(2sπ/p) ◦ U ′(2sπ/p)∗ − 1
n
J‖ < ε.

Finally, we note that

U ′(2sπ/p) ◦ U ′(2sπ/p)∗ = U(2sπ/p) ◦ U(2sπ/p)∗,

which proves that ε-uniform mixing occurs on Cp.

17.9 Cubelike Graphs
The graphs K2 and K4 are the first two members of a series of graphs:
folded cubes. The folded (d+ 1)-cube is the graph we get from the d-cube
by joining each vertex to the unique vertex at distance d from itself. It
can also be viewed as the quotient of the (d + 1)-cube over the equitable
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partition formed by the pairs of vertices at distance d + 1, which is the
origin of the term ‘folding’. The first interesting example is the folded 5-
cube, often known as the Clebsch graph. In [11] Best et al. prove (in our
terms) that when d is odd, the folded d-cube has uniform mixing. The
Hamming graph H(n, q) has instantaneous uniform mixing if and only if
q ≤ 4. (Exercise: show that if a Cartesian power of X has uniform mixing,
then so does X.)

We view cubelike graphs as quotients of the d-cube. The latter admits
uniform mixing at π/4; we want to determine the quotients that admit
uniform mixing at the same time. Let A the adjacency matrix for Qd.
There is an equitable partition σ with normalized characteristic matrix S,
such that AS = SB where B is the adjacency matrix of the quotient. Since
the cells of σ are cosets of a subgroup Γ, they all have the same size; since
we assume our subgroup has minimum distance at least three, the quotient
Qd/σ is a simple graph. So

UA(t)S = SUB(t)

and therefore
UB(t) = STUA(t)S.

If |Γ| = 2e, it follows that each entry of UB(t) is the row sum of a block in
the block partition of UA(t) determined by σ.

Let wt(x) denote the Hamming weight of x. For the d-cube

(U(π/4))a,b = iwt(a−b)

Hence we are dealing with sums

Rc :=
∑
x∈Γ

iwt(c−x)

for c ∈ Zd2, and so our problem “reduces” to questions about the weight
distribution of cosets of Γ.

An example. Suppose Γ is the subgroup of order two generated by
1 =

(
1, 1, . . . , 1

)
. If wt(c) = w, then wt(c− 1) = d− w and

Rc = iw + id−w = ir(1 + id−2w) = ir(1 + (−1)wid).

If d is odd, Rc = id(1 ± i). Hence |Rc| is independent of c and we have
proved that we have uniform mixing on the folded d-cube when d is odd.
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(We note that K4 is the first example, since it is the folded 3-cube.) This
example was first found by Tamon et. al [?].

If d is even, say d = 2e, then Rc = iw(1 + (−1)w+e). In this case |Rc|
is 0 or 2ir, depending on the parity of w = wt(c). This we get uniform
distribution on words whose weight has the same parity as e.

A second example. Suppose d = 2e and x and y are words of weight e
such that x+y = 1. Take Γ to be {0, x, y,1}. If wt(c) = w and wt(x◦c) = v
then wt(y ◦ c) = w − v. Hence

wt(c− x) = e+ w − 2v, wt(c− y) = e− (w − 2v)
and accordingly

Rc = iw + ie+w−2v + ie−w+2v + i2e−w

= iw + (−1)v(ie+w + ie−w) + (−1)e+wiw

= iw(1 + (−1)e+w) + (−1)vie+w(1 + (−1)w)
If e is odd, then either 1 + (−1)e+w = 0 or 1 + (−1)w = 0, but not both.
So if e is odd then |Rc| = 2 and we have uniform mixing. But this graph is
just the Cartesian square of the folded e-cube.

If we apply the first construction with d = 5, our quotient is the folded
5-cube, which is 5-regular on 16 vertices. Applying the second with d = 6
yields a 6-regular graph on 16 vertices.

On four vertices, the cubelike graphs with uniform mixing are C4 and
K4, and on eight vertices we have the 3-cube Q3 and K2 �K4. On 16 we
see Q4, C4�K4 and K4�K4 (with valencies respectively 4, 5 and 6). Since
C4 �K4 has girth three and the folded 5-cube girth five, these graphs are
not isomorphic.

The following result is [?, ].

17.9.1 Lemma. If Γ = 〈a, b〉 is a subgroup of Zd2, then the quotient
H(d, 2)/Γ admits uniform mixing at time π/4 if either

(a) wt(a) ≡ wt(b) (mod 4) and wt(a+ b) ≡ 2 (mod 4), or

(b) wt(a) ≡ wt(b) + 2 (mod 4) and wt(a+ b) ≡ 0 (mod 4).

We are not restricted to time π/4, as the following result of Chan shows.

17.9.2 Lemma. The distance-r graph of H(2d− 8, 2) admits uniform mix-
ing at time π/2d−2.

(Here the connection set consists of all words of weight r.)

329



17. Uniform Mixing

17.10 Other Groups
We know less about groups other than Zd2. Natalie Mullin proved that if
d ≡ 0, 2 (mod 3) then the “folding” H(d, 3)/〈1〉 admits uniform mixing at
time 2π/9. Harmony Zhan proved the following.

17.10.1 Lemma. If Γ = 〈a, b〉 is a sugroup of Zd3, then the quotient graph
H(d, 2)/Γ admits uniform mixing at time 2π/9 if either

(a) aT b ≡ 0 (mod 3), wt(a) 6≡ 0 and wt(b) ≡ 0 (mod 3), or

(b) aT b 6≡ 0 (mod 3), and wt(a) 6≡ wt(b) unless wt(a) ≡ wt(b) ≡ 0 (mod
3).

Zhan also proved that the distance-r graph of H(2 · 3k − 9, 3) admits
uniform mixing at time 2π/3k if

r ∈ {3k − 1, 3k − 4, 3k − 7}.

For Zd4, Mullin show that when d is even, the folding H(d, 4)/〈1〉 admits
uniform mixing at time π/4. Zhan showed that the distance-2d−1 graph
of H(2d−1, 4) admits uniform mixing at time π/2d+1, as do the distance-
(2d−1 − 1− 1) and distance 2d−1 of H(2d − 2, 4).

Aside from the following, due to Zhan, we have very little information
about when uniform mixing can occur. (Here φ is the Euler totient func-
tion.)

17.10.2 Theorem. If X(Zd2, C) admits uniform mixing at time π/n, then
|C| ≥ φ(n) + 1. If X(Zd3, C) admits uniform mixing at time π/n, then
|C| ≥ φ(n) + 2.

Mullin has conjectured that uniform mixing does not occur on Zdp if
p ≥ 5.

Notes

Exercises
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Chapter 18

Problems with Quantum Walks

We list some open problems.

18.1 State Transfer
18.1.1 Question. Are there graphs on which perfect state transfer occurs
between vertices a and b, and the sum of the eigenvalues in the eigenvalue
support of a is not zero?

18.1.2 Question. Is there a tree with more than three vertices on which
perfect state transfer occurs?

This question may be too difficult, so we pose a related question.

18.1.3 Question. Is there a positive integerD such that no tree of diameter
greater than D admits perfect state transfer?

18.1.4 Question. Is it true that, for a positive real c, there are only finitely
many connected graphs with average valency at most c on which perfect
state transfer takes place?

Of course a tree has average valency less than two.
Our next question has very little to do with state transfer, but we find

it interesting.

18.1.5 Question. If there a tree with three pairwise strongly cospectral
vertices?
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18.1.6 Question. Let D(X, a) be the graph we get by taking two (vertex-
disjoint) copies of the graph X rooted at v, and adding an edge joining the
two copies of a. If X is a tree, can we have perfect state transfer between
the two copies of a in D(X, a).

We know that the copies of a in D(X, a) are strongly cospectral. The
question is also of interest when X is not a tree.

18.1.7 Question. Let Y be the graph obtained from the graphX by adding
two new vertices, each adjacent to the same vertex a of X. Find examples
of graphs Y , with at least four vertices, such that we have perfect state
transfer between the two new vertices.

The two new vertices are strongly cospectral if the multiplicity of 0 as
an eigenvalue of X\a is not greater than its multiplicity on X. (If X = K1,
this condition holds and Y is K1,2, which does admit perfect state transfer
between its end-vertices.)

We consider a sequence of rooted graphs (X, a). The continuous quan-
tum walks on the graphs are sedentary at the vertex a if there is a constant
c such that

|UX(t)a,a| ≥ 1− c

|V (X)| .

for all but finitely many graphs in the sequence. A sequence of graphs is
sedentary if the above bound holds for all X and for all vertices a of X.
Amazingly, the complete graphs are sedentary! Many families of strongly
regular graphs are also sedentary.

18.1.8 Question. Is there a sedentary family of connected cubic graphs?

18.2 Pretty Good State Transfer
18.2.1 Question. For which graphs X do the graphs D(X, a) admit pretty
good state transfer between the root vertices?

Examples where X is a star are known. The question is interesting
even for trees and, although we ask for a characterization, even just a good
number of examples would be significant.
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18.2.2 Question. Let Y be the graph obtained from the graphX by adding
two new vertices, each adjacent to the same vertex a of X. Are there graphs
Y , with at least four vertices, such that we have pretty good state transfer
between the two new vertices?

One difficulty with pretty good state transfer is that to get high fidelity,
it is necessary to wait a long time. However Chen, Mereau and Feder [?]
have shown that by weighting edges, this difficulty can be avoided. Their
example is obtained from the path Pn (where n ≥ 6) by joining new vertices
to 3 and n − 2 by an edge of weight w. Pretty good state transfer takes
place between vertices 1 and n.

18.2.3 Question. Find more examples where we can get rapid, high fidelity,
pretty good state transfer by weighting one or two edges.

18.3 Real State Transfer
Suppose S ⊆ V (X) and let D be the diagonal 01-matrix with Di,i = 1 if
and only if i ∈ S. Then we say S is periodic if there is a non-zero time t
such that

U(t)DU(−t) = D.

Replacing S by its complement S and D by I−D, we see that S is periodic
if and only if S is. Since D is a projection, S is periodic if and only if col(D)
is a U(t)-invariant subspace of CV (X).

18.3.1 Question. Find examples of periodic subsets S such that |S| ≥ 3
and the subgraph induced by S is a clique or coclique.

Practically all work on continuous quantum walks concerns the situation
where the initial state is of the eaeTa , and if work is concerned with state
transfer, then the final state is also of this form. If a and b are vertices of
X, we define

Da,b = (ea − eb)(ea − eb)2.

We describe states of this form as pair states and if a ∼ b, as edge states.
If a ∼ b then Da,b is the Laplacian of the edge {a, b}, and the Laplacian
of X is a sum of such edge-Laplacians. Chen has investigated perfect state
transfer between edge states in her M.Math. thesis [?]. She has shown that
we have perfect edge state transfer on the path Pn if and only if n = 2, 3.
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18.3.2 Question. Is there perfect edge-state transfer on some tree with
more than three vertices?

Note that it is possible to have perfect state transfer from an edge state
to a non-edge state but, other than the fact that it is possible, we know
very little.

18.4 Walks on Oriented Graphs
An oriented graph X is a directed graph where any two distinct vertices are
joined by at most one arc. It is convenient to represent an oriented graph
by a skew-symmetric matrix S where Si,j is 1 if ij is an arc in X, −1 if ji
is an arc, and is zero otherwise. If S is skew-symmetric, then exp(S) is an
orthognal matrix. Hence

U(t) := exp(tS)
determines a quantum walk. (If S is skew symmetric, U(t) = exp(−it(iS))
and iS is Hermitian, thus our Hamiltonian is hermitian as usual.) Bipar-
tite graphs provide an interesting class of examples: if X is bipartite with
adjacency matrix

A =
(

0 B
BT 0

)
then (

iI 0
0 I

)(
0 B
BT 0

)(
−iI 0

0 I

)
=
(

0 iB
−iBT 0

)
.

Hence the matrices (
0 B
BT 0

)
, i

(
0 B
−BT 0

)
are unitarily similar, and so information about quantum walks on oriented
graphs can provide information about quantum walks on bipartite graphs.

We say that multiple state transfer takes place on an oriented graph X if
there is perfect state-transfer between each pair of vertices in S. Cameron
et al noted that if X is K3, then multiple state transfer takes place on
S = V (X). Lato [?] provides an example of a graph on 8 vertices where
multiple state transfer occurs on a subset of four vertices.

18.4.1 Question. Find more examples of multiple state transfer.

Preferably an infinite family.
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18.5 Uniform Mixing
The only even cycle that admits uniform mixing is C4. Mullin has shown
that no cycle of prime length admits uniform mixing.

18.5.1 Question. Which odd cycles admit uniform mixing?

The first open case for this question is C9. The only graphs we know
that are not regular and admit uniform mixing are the Cartesian powers of
K1,3.

18.5.2 Question. Find graphs that are not regular, are not Cartesian pow-
ers of K1,3, and which admit uniform mixing.

18.5.3 Question. Which trees admit local uniform mixing relative to some
vertex?

The following two conjectures are due to Mullin.

18.5.4 Conjecture. If a graph admits uniform mixing at time t, then eit
is a root of unity.

18.5.5 Conjecture. If n ≥ 5, no connected Cayley graph for Zdn admits
uniform mixing.

18.6 Average Mixing
It has been shown that if the average mixing matrix of a graph on n vertices
is 1

n
J , then n ≤ 2. It is not hard to show that a doubly stochastic matrix

with rank one is equal to 1
n
J . So there are only two connected graphs with

average mixing matrix of rank one.

18.6.1 Question. Are there infinitely many graphs with average mixing
matrix of rank two?
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