AGT&QC

Assignment 3

- 1. Prove or disprove: if π is an equitable partition of X, it is an equitable partition for \overline{X} .
- 2. Show that if X is a controllable graph, the only equitable partition of X is the discrete partition (with all cells of size one).
- 3. Let π be an equitable partition of the graph X with m cells. Let M be the characteristic matrix of π and set $B = A/\pi$. Show that there is a basis for $\mathbb{R}^{V(X)}$ with respect A has the form

$$A = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$$

Deduce that the characteristic polynomial of B divides that of A.

- 4. Let π be an equitable partition of a graph X with characteristic matrix M. Let A be the adjacency matrix of X and let B be the quotient A/π , i.e., AM = MB. Show that each eigenvector of A in col(M) determines an eigenvalue of B with the same eigenvalue.
- 5. If π is a partition of V(X) and let $F(\pi)$ denote the space of functions on V(X) that are constant on the cells of π . Show that if π and ρ are equitable partitions of X, the subspaces

$$F(\pi) \cap F(\rho), \qquad F(\pi) + F(\rho).$$

Show that these subspaces may be expressed as $F(\sigma)$ and $F(\tau)$ (for suitable equitable partitions σ and τ , and express these partition in terms of π and ρ . [Look up 'meet' and 'join'.]

- 6. If $\mathcal{P} = \{P_1, \ldots, P_m\}$ and $\mathcal{Q} = \{Q_1, \ldots, Q_n\}$ are projective measurements on X and Y respectively, prove that $\mathcal{P} \otimes \mathcal{Q}$ is projective measurement on $X \times Y$.
- 7. Prove that $\mathcal{M}(X,d) \times \mathcal{M}(Y,e)$ is isomorphic to a subgraph of $\mathcal{M}(X \times Y,de)$.

- 8. Show that the distance partition with respect to a vertex of a strongly regular graph is equitable.
- 9. Prove that the direct sum $\mathcal{P} \oplus \mathcal{Q}$ of quantum homomorphisms \mathcal{P} and \mathcal{Q} is a quantum homomorphism.
- 10. Prove that the coproduct $\mathcal{P} \star \mathcal{Q}$ of quantum homomorphisms \mathcal{P} and \mathcal{Q} is a quantum homomorphism. Show further that it is classical if \mathcal{P} and \mathcal{Q} are.
- 11. Prove that the coproduct of quantum homomorphisms is associative.
- 12. Assume R is doubly stochastic, and determines a directed graph X. Is it true that R and RR^T give rise to the same partition of V(X) into strong components?
- 13. Show that if $X \xrightarrow{q} K_2$, then X is bipartite.
- 14. Show that a 3×3 unitary derangement is a monomial matrix, i.e., has exactly one non-zero entry in each row and in each column. Deduce that $\chi_q^{(1)}(X) = 3$, then $\chi(X) = 3$.
- 15. Let W be a flat unitary matrix of order $c \times c$. Let P_1, \ldots, P_c be projections summing to I_d and define unitary matrices U_1, \ldots, U_c by

$$U_i := \sqrt{c} \sum_{j=1}^c W_{i,j} P_j.$$

Prove that $\sum_{i=1}^{c} P_i \otimes P_i = \frac{1}{c} \sum_{i=1}^{c} U_i \otimes U_i^{-1}$.

- 16. Let $\Omega(d)$ be the orthogonality graph on the unit vectors in \mathbb{C}^d and let $\Phi(d)$ be the orthogonality graphs on the 1-dimensional subspaces of \mathbb{C}^d . Prove these two graphs are homomorphically equivalent.
- 17. Prove that $\chi_{sv}(K_n) \leq n$.
- 18. Prove that $\omega(X) \leq \chi_v(X)$.
- 19. If X is the graph of an $n \times n$ Latin square and $n \ge 3$, prove that $\omega(X) = n$.
- 20. [withdrawn]

- 21. [withdrawn]
- 22. [withdrawn]
- 23. Suppose $\mathcal{P}: X \to Y$ and $\mathcal{Q}: Y \to Z$ are quantum homomorphisms of indices d and e respectively, and that C and D are density matrices of orders $d \times d$ and $e \times e$ respectively. Prove that

$$\langle \mathcal{P} \star \mathcal{Q}, C \otimes D \rangle = \langle \mathcal{P}, C \rangle \langle \mathcal{Q}, D \rangle.$$

- 24. Assume W is a flat unitary matrix and D_1 and D_2 are diagonal matrices, all of order $m \times m$. Prove that $\langle D_1, W^* D_2 W \rangle = \frac{1}{m} \operatorname{tr}(D_1^*) \operatorname{tr}(D_2)$.
- 25. [withdrawn]
- 26. [withdrawn]
- 27. Assume that the eigenvalues of X are $\theta_1, \ldots, \theta_m$ and that Y is regular with eigenvalues $\sigma_1, \ldots, \sigma_n$. (So m = |V(X)| and n = |V(Y)|.) Determine the eigenvalues of the homomorphic product $X \ltimes Y$.
- 28. Prove that a commutative coherent algebra is homogeneous.
- 29. Assume W is invertible and Schur-invertible. Prove that W is a type-II matrix if and only if $J \in \mathcal{N}_W$.
- 30. Let V be the $n \times n$ Vandermonde matrix (with *ij*-entry $\theta^{(i-1)(j-1)}$). Prove that \mathcal{N}_V is the algebra of all polynomials in the permutation matrix of an *n*-cycle.
- 31. If W_1 and W_2 are type-II matrices, prove that

$$\mathcal{N}_{W_1\otimes W_2}=\mathcal{N}_{W_1}\otimes \mathcal{N}_{W_2}.$$