AGT\&QC

Assignment 3

1. Prove or disprove: if π is an equitable partition of X, it is an equitable partition for \bar{X}.
2. Show that if X is a controllable graph, the only equitable partition of X is the discrete partition (with all cells of size one).
3. Let π be an equitable partition of the graph X with m cells. Let M be the characteristic matrix of π and set $B=A / \pi$. Show that there is a basis for $\mathbb{R}^{V(X)}$ with respect A has the form

$$
A=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right) .
$$

Deduce that the characteristic polynomial of B divides that of A.
4. Let π be an equitable partition of a graph X with characteristic matrix M. Let A be the adjacency matrix of X and let B be the quotient A / π, i.e., $A M=M B$. Show that each eigenvector of A in $\operatorname{col}(M)$ determines an eigenvalue of B with the same eigenvalue.
5. If π is a partition of $V(X)$ and let $F(\pi)$ denote the space of functions on $V(X)$ that are constant on the cells of π. Show that if π and ρ are equitable partitions of X, the subspaces

$$
F(\pi) \cap F(\rho), \quad F(\pi)+F(\rho) .
$$

Show that these subspaces may be expressed as $F(\sigma)$ and $F(\tau)$ (for suitable equitable partitions σ and τ, and express these partition in terms of π and ρ. [Look up 'meet' and 'join'.]
6. If $\mathcal{P}=\left\{P_{1}, \ldots, P_{m}\right\}$ and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{n}\right\}$ are projective measurements on X and Y respectively, prove that $\mathcal{P} \otimes \mathcal{Q}$ is projective measurement on $X \times Y$.
7. Prove that $\mathcal{M}(X, d) \times \mathcal{M}(Y, e)$ is isomorphic to a subgraph of $\mathcal{M}(X \times$ $Y, d e)$.
8. Show that the distance partition with respect to a vertex of a strongly regular graph is equitable.
9. Prove that the direct sum $\mathcal{P} \oplus \mathcal{Q}$ of quantum homomorphisms \mathcal{P} and \mathcal{Q} is a quantum homomorphism.
10. Prove that the coproduct $\mathcal{P} \star \mathcal{Q}$ of quantum homomorphisms \mathcal{P} and \mathcal{Q} is a quantum homomorphism. Show further that it is classical if \mathcal{P} and \mathcal{Q} are.
11. Prove that the coproduct of quantum homomorphisms is associative.
12. Assume R is doubly stochastic, and determines a directed graph X. Is it true that R and $R R^{T}$ give rise to the same partition of $V(X)$ into strong components?
13. Show that if $X \xrightarrow{q} K_{2}$, then X is bipartite.
14. Show that a 3×3 unitary derangement is a monomial matrix, i.e., has exactly one non-zero entry in each row and in each column. Deduce that $\chi_{q}^{(1)}(X)=3$, then $\chi(X)=3$.
15. Let W be a flat unitary matrix of order $c \times c$. Let P_{1}, \ldots, P_{c} be projections summing to I_{d} and define unitary matrices U_{1}, \ldots, U_{c} by

$$
U_{i}:=\sqrt{c} \sum_{j=1}^{c} W_{i, j} P_{j} .
$$

Prove that $\sum_{i=1}^{c} P_{i} \otimes P_{i}=\frac{1}{c} \sum_{i=1}^{c} U_{i} \otimes U_{i}^{-1}$.
16. Let $\Omega(d)$ be the orthogonality graph on the unit vectors in \mathbb{C}^{d} and let $\Phi(d)$ be the orthogonality graphs on the 1-dimensional subspaces of \mathbb{C}^{d}. Prove these two graphs are homomorphically equivalent.
17. Prove that $\chi_{s v}\left(K_{n}\right) \leq n$.
18. Prove that $\omega(X) \leq \chi_{v}(X)$.
19. If X is the graph of an $n \times n$ Latin square and $n \geq 3$, prove that $\omega(X)=n$.
20. [withdrawn]
21. [withdrawn]
22. [withdrawn]
23. Suppose $\mathcal{P}: X \rightarrow Y$ and $\mathcal{Q}: Y \rightarrow Z$ are quantum homomorphisms of indices d and e respectively, and that C and D are density matrices of orders $d \times d$ and $e \times e$ respectively. Prove that

$$
\langle\mathcal{P} \star \mathcal{Q}, C \otimes D\rangle=\langle\mathcal{P}, C\rangle\langle\mathcal{Q}, D\rangle .
$$

24. Assume W is a flat unitary matrix and D_{1} and D_{2} are diagonal matrices, all of order $m \times m$. Prove that $\left\langle D_{1}, W^{*} D_{2} W\right\rangle=\frac{1}{m} \operatorname{tr}\left(D_{1}^{*}\right) \operatorname{tr}\left(D_{2}\right)$.
25. [withdrawn]
26. [withdrawn]
27. Assume that the eigenvalues of X are $\theta_{1}, \ldots, \theta_{m}$ and that Y is regular with eigenvalues $\sigma_{1}, \ldots, \sigma_{n}$. (So $m=\mid V(X)$ and $n=|V(Y)|$.) Determine the eigenvalues of the homomorphic product $X \ltimes Y$.
28. Prove that a commutative coherent algebra is homogeneous.
29. Assume W is invertible and Schur-invertible. Prove that W is a type-II matrix if and only if $J \in \mathcal{N}_{W}$.
30. Let V be the $n \times n$ Vandermonde matrix (with $i j$-entry $\theta^{(i-1)(j-1)}$). Prove that \mathcal{N}_{V} is the algebra of all polynomials in the permutation matrix of an n-cycle.
31. If W_{1} and W_{2} are type-II matrices, prove that

$$
\mathcal{N}_{W_{1} \otimes W_{2}}=\mathcal{N}_{W_{1}} \otimes \mathcal{N}_{W_{2}}
$$

