
AGT&QC

Assignment 2

1. If A and B are non-zero complex matrices, prove that A ⊗ B is flat if and
only if A and B are flat.

2. Prove that if X and Y admit uniform mixing at time τ , then X□Y admits
uniform mixing at time τ .

3. Prove that the diameter of X □ Y is the sum of the diameters of X and
Y .

4. Prove that MX□Y = MX ⊗ MY .

5. Show that K3 and C4 admit uniform mixing. [Note that C4 is a Cartesian
product.]

6. Prove that if the permutation matrix P commutes with A, it commutes
with U(t) for all t. Hence show that if P commutes with A and Pea = ea

and there is perfect state transfer from a to b, then Peb = eb. [Hence any
automorphism of X that fixes a must also fix b.] Use this to show that
Kn does not admit perfect state transfer when n ≥ 3.

7. If E is a spectral idempotent of the bipartite graph X corresponding to
the eigenvalue θ, show that(

−I 0
0 I

)
E

(
−I 0
0 I

)

is the spectral idempotent corresponding to −θ.

8. Show that if an n × n Hadamard matrix exists, either n = 2 or 4|n.

9. Assume H is a complex Hadamard matrix with entries from {±1, ±i}.
There are unique matrices H0 and H1 with entries from {0, ±1} such that
H0 ◦ H1 = 0 and H = H0 + iH1. Show that the matrix(

H0 + H1 H0 − H1
−H0 + H1 H0 + H1

)

is a Hadamard matrix, and deduce that the order of H is even.
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10. Let H be an n × n complex Hadamard matrix, and let Si denote the sum
of the entries in the i-th row of H.

(a) Prove that ∑i |Si|2 = n2.
(b) Use the inequality

1
n

(
n∑

i=1
x2

i

)
≥
(

1
n

n∑
i=1

xi

)2

prove that ∑i |Si| ≤ n
√

n and that equality holds if and only if
|Si| =

√
n for all i.

(c) Prove that if |Si| is the same for all i, then n is the sum of two integer
squares.

11. Determine the mixing matrix for Km,n.

12. Let A be an n × n Hermitian matrix with spectral decomposition A =∑
r θrEr. If z ∈ Cn, show that the dimension of the space W spanned by

{Akz : k ≥ 0}

is equal to the size of the eigenvalue support of z, i.e., to the size of the
set

{θr : Erz ̸= 0}.

Show further that the eigenvalues of the ‘restriction’ of A to W are all
simple.

13. Let X and Y be graphs with disjoint vertex sets and assume a ∈ V (X)
and b ∈ V (Y ). Let Z be the graph we get by adding an edge joining a to
b. Prove that ϕ(Z, t) = ϕ(X, t)ϕ(Y, t) − ϕ(X \a, t)ϕ(Y \ b, t).

14. If H is an n×n Hermitian matrix, Cn has an orthogonal basis consisting of
eigenvectors of H. Using this, show that same is true when H is normal.

15. Assume we have perfect state transfer from vertex a in X to vertex b at a
time τ . Let A = A(X). Prove that

AU(τ)eaeT
a U(−τ)A = Aebe

T
b A

and, from this, deduce that a and b have the same valency.
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16. Assume S ⊆ {1, . . . , n} and let DS be the diagonal 01-matrix with (DS)u,u =
1 if and only if u ∈ S. Then |S|−1DS is a density matrix. (We call it a
subset state.) Show that if we have perfect state transfer between two
subset states, the corresponding subsets have the same size.

17. Assume that A = A(X) and B = B(X) have spectral decompositions

A =
∑

r

θrEr, B =
∑

s

τsFs

If X and Y are walk-regular, show that X × Y and X □ Y . are walk-
regular. [Hint: as a first step show that A ⊗ B can be expressed as a
linear combination of idempotents Er ⊗ Es.]

18. Show that the complement of a walk-regular graph is walk-regular.

19. Define the support σ(D) of the density matrix D to be the set of indices a
such that Da,a ̸= 0. If a ∈ V (X), use Da to denote the vertex state eaeT

a .
Prove that if DS is a subset state, the support of U(t)DSU(−t) contains
the support of U(t)DaU(−t) for each a in S.

20. Show that a connected regular bipartite graph with at most five distinct
eigenvalues is walk-regular.

21. Suppose a and b are strongly cospectral vertices in a strongly regular graph
and let Q be an orthogonal matrix such that:

(a) Q is a rational polynomial in A.
(b) Qea = eb.
(c) Q2 = I.

Show that Q is a linear combination of I, A(X) and A(X), and then
deduce that X or X is isomorphic to mK2 for some m.

22. If X is a graph, we have seen that

ϕ′(X, t) =
∑

u∈V (X)
ϕ(X \u, t)

Using this and the partial fraction expansion of p′(t)/p(t) (which you may
quote without proof), prove that the eigenvalue support of a vertex in a
vertex-transitive graph is the set of eigenvalues of X. [You may assume
the the eigenvalue support of a vertex a is the set {θr : Erea ̸= 0}.]
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23. Let Y be a connected component of the graph X. Prove that the eigen-
value support of a, viewed as a vertex of X, equals the eigenvalue support
of a, viewed as a vertex of X. [Bonus: does this hold for all pure states?]

24. If a ∈ V (X), prove that the eigenvalue support of a is equal to the set of
poles of the rational function ϕ(X \a, t)/ϕ(X, t).

25. Assume a ∈ V (X) and γ(t) is the greatest common divisor of ϕ(X, t) and
ϕ(X \ a, t). Show that the eigenvalue support of a is the set of zeros of
the polynomial ϕ(X, t)/γ(t). Show further that the eigenvalues of this
quotient are simple.

26. Prove that a vertex a in X is controllable if and only if ϕ(X \ a, t) and
ϕ(X, t) are coprime.

27. Show that a vertex of valency one in a path is controllable. The eigenvalues
of Pn are

2 cos
(

πk

n + 1

)
, k = 1, . . . , n.

From this deduce that there is no perfect state transfer between vertices
of valency one on the path Pn when n ≥ 5.

28. Prove that if X is connected and has a controllable vertex, all eigenvalues
of X are simple.

29. Let ∆ be the diagonal matrix of valencies of the vertices of X. Assume
n = |V (X). The Laplacian L of X of the matrix ∆ − A. Using the fact
that L(X) is a sum of Laplacians of edges of X, show that

xT Lx =
∑

ij∈E(X)
(xi − xj)2,

whence L ≽ 0. Deduce that if the vector x is constant on a connected
component of X, then Lx = 0. Hence show that 0 is an eigenvalue of L
with multiplicity equal to the number of connected components of X. [In
fact, the characteristic vectors of the components of X are an orthogonal
basis forker(L).]

30. Let X be a graph with spectral idempotents E1, . . . , Em. Two vertices a
and b of X are parallel if the projections Erea and Ereb are parallel. Show
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that if a and b are parallel, any automorphism of X that fixes a must also
fix b. [Remark: strongly cospectral vertices are parallel (but this is not a
hint).]

31. Prove that two vertices in X are strongly cospectral if and only if they
are both cospectral and parallel.

32. Consider a quantum walk on X with U(t) = exp(itL). Assume X is
connected and that 0 is a simple eigenvalue of L, with 1 as an eigenvector.
Prove that the eigenvalue support of any vertex contains 0, and then
show that the eigenvalue support of a periodic vertex consists entirely of
integers.

33. Let T be a tree with invertible adjacency matrix A.

(a) Use the 1-sum formula to show that det(A) = ±1.
(b) Using information about the eigenvalues in the eigenvalue support

of a periodic vertex in a bipartite graph, prove that the eigenvalue
support of a periodic vertex in T is a subset of {−1, 1}.

(c) Show that if T has a periodic vertex, then T ∼= P2.

34. Let X be a graph on n vertices. Show that if X has only simple eigenvalues
and is periodic, then |V (X)| ≤ 11.

35. Assume X is regular and both X and X are connected. Show that if
vertices a and b are strongly cospectral in X, they are strongly cospectral
in X.

36. Prove that UP5(t)1,5 = 1 if and only if t = 0. (Compute the characteristic
polynomial of P5 using the 1-sum formula.)

37. Prove that if D1 and D2 are pure states and D̂1 = D̂2, then D1 and D2
are strongly cospectral.

38. Prove that a reflection on a real vector space is an orthogonal mapping.

39. Prove that if Er is a spectral idempotent of X and rk(Er) = 1, then
rk(Ee ◦Er) = 1. Deduce from this that, if X is bipartite on n vertices and
has only simple eigenvalues, then rk(M̂) ≤ n/2.
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40. If X is a strongly regular graph, prove that M̂ is a linear combination of
A, I and J .

41. If P and Q are n × n projections, prove that rk(PQP ) = rk(QPQ).

42. Let X be a graph on n vertices, with vertex degrees vd, . . . , v1n. Let
LD(X) denote the line digraph of X and define the matrix

Â(LD(X))ab,cd =


1

deg(b) , if b = c;
0, otherwise.

If C is the matrix 
2
d1

J − I
2
d2

J − I
. . .

2
dn

J − I


and R is the usual arc-reversal operator, show that

RC = Â(LD(X)) − R.

43. If u, v ∈ Rd and ∥u∥ = ∥v∥, show that there is a reflection that fixes
a hyperplane and swaps u and v. Using this, deduce that any d × d
orthogonal matrix of a product of d reflections.

44. let X be a directed graph. Prove that DT
h Dt = A(LD(X)) and DtD

T
h =

A(X).

45. If M̂ is the average mixing matrix for a discrete walk based on the unitary
operator U , prove that

M̂ = lim
K→∞

1
K

K−1∑
m=0

Um ◦ U
m

.

46. Show that the average mixing matrix of a discrete walk on the arcs of a
graph is the Gram matrix of the average arc-states. [If α is an arc, the
corresponding arc-state is eαeT

α .]
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47. Asssume α, β are arcs in X with corresponding states Dα, Dβ. Let U =∑
r eiθrFr be the spectral decomposition of U . Prove that if D̂α = D̂β, then

Freβ = ±Frebe for all r. [In other words, α and β are strongly cospectral.]

48. Let U be the transition matrix of an arc-reversal walk. Show that if U is
rational, then M̂ is rational.
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