AGT\&QC

Assignment 2

1. If A and B are non-zero complex matrices, prove that $A \otimes B$ is flat if and only if A and B are flat.
2. Prove that if X and Y admit uniform mixing at time τ, then $X \square Y$ admits uniform mixing at time τ.
3. Prove that the diameter of $X \square Y$ is the sum of the diameters of X and Y.
4. Prove that $M_{X \square Y}=M_{X} \otimes M_{Y}$.
5. Show that K_{3} and C_{4} admit uniform mixing. [Note that C_{4} is a Cartesian product.]
6. Prove that if the permutation matrix P commutes with A, it commutes with $U(t)$ for all t. Hence show that if P commutes with A and $P e_{a}=e_{a}$ and there is perfect state transfer from a to b, then $P e_{b}=e_{b}$. [Hence any automorphism of X that fixes a must also fix b.] Use this to show that K_{n} does not admit perfect state transfer when $n \geq 3$.
7. If E is a spectral idempotent of the bipartite graph X corresponding to the eigenvalue θ, show that

$$
\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right) E\left(\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right)
$$

is the spectral idempotent corresponding to $-\theta$.
8. Show that if an $n \times n$ Hadamard matrix exists, either $n=2$ or $4 \mid n$.
9. Assume H is a complex Hadamard matrix with entries from $\{ \pm 1, \pm i\}$. There are unique matrices H_{0} and H_{1} with entries from $\{0, \pm 1\}$ such that $H_{0} \circ H_{1}=0$ and $H=H_{0}+i H_{1}$. Show that the matrix

$$
\left(\begin{array}{cc}
H_{0}+H_{1} & H_{0}-H_{1} \\
-H_{0}+H_{1} & H_{0}+H_{1}
\end{array}\right)
$$

is a Hadamard matrix, and deduce that the order of H is even.
10. Let H be an $n \times n$ complex Hadamard matrix, and let S_{i} denote the sum of the entries in the i-th row of H.
(a) Prove that $\sum_{i}\left|S_{i}\right|^{2}=n^{2}$.
(b) Use the inequality

$$
\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}\right) \geq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}
$$

prove that $\sum_{i}\left|S_{i}\right| \leq n \sqrt{n}$ and that equality holds if and only if $\left|S_{i}\right|=\sqrt{n}$ for all i.
(c) Prove that if $\left|S_{i}\right|$ is the same for all i, then n is the sum of two integer squares.
11. Determine the mixing matrix for $K_{m, n}$.
12. Let A be an $n \times n$ Hermitian matrix with spectral decomposition $A=$ $\sum_{r} \theta_{r} E_{r}$. If $z \in \mathbb{C}^{n}$, show that the dimension of the space W spanned by

$$
\left\{A^{k} z: k \geq 0\right\}
$$

is equal to the size of the eigenvalue support of z, i.e., to the size of the set

$$
\left\{\theta_{r}: E_{r} z \neq 0\right\} .
$$

Show further that the eigenvalues of the 'restriction' of A to W are all simple.
13. Let X and Y be graphs with disjoint vertex sets and assume $a \in V(X)$ and $b \in V(Y)$. Let Z be the graph we get by adding an edge joining a to b. Prove that $\phi(Z, t)=\phi(X, t) \phi(Y, t)-\phi(X \backslash a, t) \phi(Y \backslash b, t)$.
14. If H is an $n \times n$ Hermitian matrix, \mathbb{C}^{n} has an orthogonal basis consisting of eigenvectors of H. Using this, show that same is true when H is normal.
15. Assume we have perfect state transfer from vertex a in X to vertex b at a time τ. Let $A=A(X)$. Prove that

$$
A U(\tau) e_{a} e_{a}^{T} U(-\tau) A=A e_{b} e_{b}^{T} A
$$

and, from this, deduce that a and b have the same valency.
16. Assume $S \subseteq\{1, \ldots, n\}$ and let D_{S} be the diagonal 01-matrix with $\left(D_{S}\right)_{u, u}=$ 1 if and only if $u \in S$. Then $|S|^{-1} D_{S}$ is a density matrix. (We call it a subset state.) Show that if we have perfect state transfer between two subset states, the corresponding subsets have the same size.
17. Assume that $A=A(X)$ and $B=B(X)$ have spectral decompositions

$$
A=\sum_{r} \theta_{r} E_{r}, \quad B=\sum_{s} \tau_{s} F_{s}
$$

If X and Y are walk-regular, show that $X \times Y$ and $X \square Y$. are walkregular. [Hint: as a first step show that $A \otimes B$ can be expressed as a linear combination of idempotents $E_{r} \otimes E_{s}$.]
18. Show that the complement of a walk-regular graph is walk-regular.
19. Define the support $\sigma(D)$ of the density matrix D to be the set of indices a such that $D_{a, a} \neq 0$. If $a \in V(X)$, use D_{a} to denote the vertex state $e_{a} e_{a}^{T}$. Prove that if D_{S} is a subset state, the support of $U(t) D_{S} U(-t)$ contains the support of $U(t) D_{a} U(-t)$ for each a in S.
20. Show that a connected regular bipartite graph with at most five distinct eigenvalues is walk-regular.
21. Suppose a and b are strongly cospectral vertices in a strongly regular graph and let Q be an orthogonal matrix such that:
(a) Q is a rational polynomial in A.
(b) $Q e_{a}=e_{b}$.
(c) $Q^{2}=I$.

Show that Q is a linear combination of $I, A(X)$ and $A(\bar{X})$, and then deduce that X or \bar{X} is isomorphic to $m K_{2}$ for some m.
22. If X is a graph, we have seen that

$$
\phi^{\prime}(X, t)=\sum_{u \in V(X)} \phi(X \backslash u, t)
$$

Using this and the partial fraction expansion of $p^{\prime}(t) / p(t)$ (which you may quote without proof), prove that the eigenvalue support of a vertex in a vertex-transitive graph is the set of eigenvalues of X. [You may assume the the eigenvalue support of a vertex a is the set $\left\{\theta_{r}: E_{r} e_{a} \neq 0\right\}$.]
23. Let Y be a connected component of the graph X. Prove that the eigenvalue support of a, viewed as a vertex of X, equals the eigenvalue support of a, viewed as a vertex of X. [Bonus: does this hold for all pure states?]
24. If $a \in V(X)$, prove that the eigenvalue support of a is equal to the set of poles of the rational function $\phi(X \backslash a, t) / \phi(X, t)$.
25. Assume $a \in V(X)$ and $\gamma(t)$ is the greatest common divisor of $\phi(X, t)$ and $\phi(X \backslash a, t)$. Show that the eigenvalue support of a is the set of zeros of the polynomial $\phi(X, t) / \gamma(t)$. Show further that the eigenvalues of this quotient are simple.
26. Prove that a vertex a in X is controllable if and only if $\phi(X \backslash a, t)$ and $\phi(X, t)$ are coprime.
27. Show that a vertex of valency one in a path is controllable. The eigenvalues of P_{n} are

$$
2 \cos \left(\frac{\pi k}{n+1}\right), \quad k=1, \ldots, n
$$

From this deduce that there is no perfect state transfer between vertices of valency one on the path P_{n} when $n \geq 5$.
28. Prove that if X is connected and has a controllable vertex, all eigenvalues of X are simple.
29. Let Δ be the diagonal matrix of valencies of the vertices of X. Assume $n=\mid V(X)$. The Laplacian L of X of the matrix $\Delta-A$. Using the fact that $L(X)$ is a sum of Laplacians of edges of X, show that

$$
x^{T} L x=\sum_{i j \in E(X)}\left(x_{i}-x_{j}\right)^{2},
$$

whence $L \succcurlyeq 0$. Deduce that if the vector x is constant on a connected component of X, then $L_{x}=0$. Hence show that 0 is an eigenvalue of L with multiplicity equal to the number of connected components of X. [In fact, the characteristic vectors of the components of X are an orthogonal basis forker (L).]
30. Let X be a graph with spectral idempotents E_{1}, \ldots, E_{m}. Two vertices a and b of X are parallel if the projections $E_{r} e_{a}$ and $E_{r} e_{b}$ are parallel. Show
that if a and b are parallel, any automorphism of X that fixes a must also fix b. [Remark: strongly cospectral vertices are parallel (but this is not a hint).]
31. Prove that two vertices in X are strongly cospectral if and only if they are both cospectral and parallel.
32. Consider a quantum walk on X with $U(t)=\exp (i t L)$. Assume X is connected and that 0 is a simple eigenvalue of L, with $\mathbf{1}$ as an eigenvector. Prove that the eigenvalue support of any vertex contains 0 , and then show that the eigenvalue support of a periodic vertex consists entirely of integers.
33. Let T be a tree with invertible adjacency matrix A.
(a) Use the 1 -sum formula to show that $\operatorname{det}(A)= \pm 1$.
(b) Using information about the eigenvalues in the eigenvalue support of a periodic vertex in a bipartite graph, prove that the eigenvalue support of a periodic vertex in T is a subset of $\{-1,1\}$.
(c) Show that if T has a periodic vertex, then $T \cong P_{2}$.
34. Let X be a graph on n vertices. Show that if X has only simple eigenvalues and is periodic, then $|V(X)| \leq 11$.
35. Assume X is regular and both X and \bar{X} are connected. Show that if vertices a and b are strongly cospectral in X, they are strongly cospectral in \bar{X}.
36. Prove that $U_{P_{5}}(t)_{1,5}=1$ if and only if $t=0$. (Compute the characteristic polynomial of P_{5} using the 1-sum formula.)
37. Prove that if D_{1} and D_{2} are pure states and $\widehat{D}_{1}=\widehat{D}_{2}$, then D_{1} and D_{2} are strongly cospectral.
38. Prove that a reflection on a real vector space is an orthogonal mapping.
39. Prove that if E_{r} is a spectral idempotent of X and $\operatorname{rk}\left(E_{r}\right)=1$, then $\operatorname{rk}\left(E_{e} \circ E_{r}\right)=1$. Deduce from this that, if X is bipartite on n vertices and has only simple eigenvalues, then $\operatorname{rk}(\widehat{M}) \leq n / 2$.
40. If X is a strongly regular graph, prove that \widehat{M} is a linear combination of A, I and J.
41. If P and Q are $n \times n$ projections, prove that $\operatorname{rk}(P Q P)=\operatorname{rk}(Q P Q)$.
42. Let X be a graph on n vertices, with vertex degrees $v_{d}, \ldots, v_{1} n$. Let $L D(X)$ denote the line digraph of X and define the matrix

$$
\hat{A}(L D(X))_{a b, c d}= \begin{cases}\frac{1}{\operatorname{deg}(b)}, & \text { if } b=c \\ 0, & \text { otherwise }\end{cases}
$$

If C is the matrix

$$
\left(\begin{array}{cccc}
\frac{2}{d_{1}} J-I & & & \\
& \frac{2}{d_{2}} J-I & & \\
& & \ddots & \\
& & & \frac{2}{d_{n}} J-I
\end{array}\right)
$$

and R is the usual arc-reversal operator, show that

$$
R C=\hat{A}(L D(X))-R
$$

43. If $u, v \in \mathbb{R}^{d}$ and $\|u\|=\|v\|$, show that there is a reflection that fixes a hyperplane and swaps u and v. Using this, deduce that any $d \times d$ orthogonal matrix of a product of d reflections.
44. let X be a directed graph. Prove that $D_{h}^{T} D_{t}=A(L D(X))$ and $D_{t} D_{h}^{T}=$ $A(X)$.
45. If \widehat{M} is the average mixing matrix for a discrete walk based on the unitary operator U, prove that

$$
\widehat{M}=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{m=0}^{K-1} U^{m} \circ \bar{U}^{m}
$$

46. Show that the average mixing matrix of a discrete walk on the arcs of a graph is the Gram matrix of the average arc-states. [If α is an arc, the corresponding arc-state is $e_{\alpha} e_{\alpha}^{T}$.]
47. Asssume α, β are arcs in X with corresponding states D_{α}, D_{β}. Let $U=$ $\sum_{r} e^{i \theta_{r}} F_{r}$ be the spectral decomposition of U. Prove that if $\widehat{D_{\alpha}}=\widehat{D_{\beta}}$, then $F_{r} e_{\beta}= \pm F_{r} e_{b} e$ for all r. [In other words, α and β are strongly cospectral.]
48. Let U be the transition matrix of an arc-reversal walk. Show that if U is rational, then \widehat{M} is rational.
