AGT\&QC

Assignment 1

1. Prove that if the matrices A and B commute, then $\exp (A+B)=\exp (A) \exp (B)$. Give a counterexample to show that this fails if $A B \neq B A$.
2. If A is an $n \times n$ matrix, prove there is a real scalar γ such that, for all $k \geq 0$.

$$
\left|\left(A^{k}\right)_{i, j}\right| \leq \gamma^{k}
$$

3. If $\|\cdot\|$ is the induced norm on the algebra of operators on the normed vector space V, prove that $\|A B\| \leq\|A\|\|B\|$.
4. If A is a square matrix, prove that $\operatorname{det}(\exp (A))=\exp (\operatorname{tr}(A)$). (You may assume that A is complex, but the result holds over any field of characteristic zero.)
5. Let x_{1}, \ldots, x_{n} be a set of unit vectors in \mathbb{R}^{d} such for some scalar α with $0 \leq \alpha<1$, we have $\left|\left\langle x_{i}, x_{j}\right\rangle\right|=\alpha$ whenever $i \neq j$. Let $P_{i}=x_{i} x_{i}^{T}$. Prove that the Gram matrix of the matrices P_{i} (using the usual trace inner product) is invertible. Deduce that $n \leq\binom{ d+1}{2}$. [For a bonus, derive the analogous bound in the complex case.]
6. Prove that complex square matrix is nilpotent if and only if all its eigenvalues are zero.
7. Show that if A and B are symmetric matrices of rank one and neither matrix is a scalar multiple of the other, then $\operatorname{rk}(A+B)=2$.
8. Show that a matrix M is normal if and only if, for all z,

$$
\langle M z, M z\rangle=\left\langle M^{*} z, M^{*} z\right\rangle .
$$

9. If A is a square complex matrix show that there exists unique Hermitian matrices R and S such that $A=R+i S$. Show further that A is normal if and only R and S commute.
10. If S is a skew symmetric matrix (necessarily real), show that the eigenvalues of S are purely imaginary, and are symmetric about the real axis in the complex plane.
11. If S is a skew symmetric matrix, prove that $\exp (S)$ is a real orthogonal matrix. Is it true that every real orthogonal matrix can be expressed as the exponential of a skew symmetric matrix?
12. If $P, Q \succcurlyeq 0$ and $\langle P, Q\rangle=0$, show that $P Q=Q P=0$.
13. If A is adjacency matrix of a graph X and Δ is the diagonal matrix with $\Delta_{i, i}$ equal to the valency of the i-th vertex of X, then $L:=\Delta-A$ is the Laplacian matrix of X. Express the Laplacian of $X \square Y$ in terms of the Laplacians of X and Y.
14. The d-cube Q_{d} has the 01-vectors of length d as its vertices, with two vectors adjacent if and only if they differ in exactly one coordinate. Prove that Q_{d} is isomorphic to the Cartesian product of d copies of K_{2} (or of Q_{2}).
15. Let \mathcal{P} be a set of $n \times n$ permutation matrices. Show that the set of matrices A that commute with each element of \mathcal{P} is Schur-closed.
16. Let \mathcal{A} be a matrix-algebra that is Schur-closed and contains J. Prove that \mathcal{A} has a unique basis of 01-matrices.
17. If φ is a homomorphism from X to Y and $u, v \in V(X)$ show that $\operatorname{dist}_{Y}(\varphi(u), \varphi(v)) \leq \operatorname{dist}_{X}(u, v)$.
18. A subgraph Y of a graph X is geodetic if for each pair of vertices u, v in Y we have $\operatorname{dist}_{Y}(u, v)=\operatorname{dist}_{X}(u, v)$. Show that the core of a graph is a geodetic subgraph.
19. Define the projections π_{X} and π_{Y} on the direct product $X \times Y$ by

$$
\pi_{X}(x, y)=x, \quad \pi_{Y}(x, y)=y
$$

Show that these are homomorphisms. If f_{X}, f_{Y} are homomorphisms from the graph Z to X and Y respectively, show that there is a unique homomorphism φ from Z to $X \times Y$ such that

$$
f_{X} \circ \varphi=h=f_{Y} \circ \varphi
$$

[This shows that, in some sense, $X \times Y$ is the "smallest" graph that admits homomorphisms to X and Y. What is the largest?]
20. If X is a circulant graph on n vertices and θ is a complex n-th root of unity, show that the function that takes k in X to θ^{k} is an eigenvector of X. Show that if θ has order n, the eigenvectors arising from the distinct powers of θ are linearly independent.
21. Assume X is a cubelike graph with vertex set \mathbb{Z}_{2}^{d} and connection set \mathcal{C}. (View \mathbb{Z}_{2}^{d} as a vector space.) If $a \in \mathbb{Z}_{2}^{d}$, define a map $\tau_{a}: \mathbb{Z}_{2}^{d} \rightarrow\{1,-1\} \subseteq \mathbb{Z}$ by

$$
\tau(a)(u)=(-1)^{a^{T} u}
$$

Show that τ_{a} is an eigenvector and construct an orthogonal basis of eigenvectors. Prove that all eigenvalues of X are integers.
22. Show that connected cubelike graph on 2^{d} vertices contains a spanning subgraph isomorphic to the d-cube Q_{d}.
23. Show that a cubelike graph is connected if and only if its connection set is a spanning subset of the vector space \mathbb{Z}_{2}^{d}.
24. A permutation group G on a set S is generously transitive if, for each pair of elements of S, there is an element of G that swaps them. (The automorphism groups of cycles form one class of examples.) Prove that if the automorphism group of X is generously transitive, so is the automorphism group of its core.
25. Show that if G is abelian and $X(G, \mathcal{C})$ is a Cayley graph for G with valency at least three, then the girth of X is at most four.
26. Show that an automorphism of the d-cube that fixes a vertex and each of its neighbours is the identity.
27. Let r be fixed, and suppose that for each pair of distinct vertices u and v in X, there is an r-coloring of X where u and v get different colors. Show that X is a subgraph of a direct product of some number of copies of K_{r}.
28. Prove that a cubelike graph that contains a triangle contains a copy of K_{4}.
29. If X is a graph, let $\mathcal{N}(X)$ denote the multiset of neighborhoods of X. (Here a neighborhood is just a set of vertices.) If X and Y are graphs with the same vertex set, show that $X \times K_{2} \cong Y \times K_{2}$ if and only $\mathcal{N}(X) \cong$ $\mathcal{N}(Y)$.
30. Show that Q_{3} is a Cayley graph for both \mathbb{Z}_{2}^{3} and $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. (A drawing will suffice for a proof.) [For a bonus, generalize this.]
31. Let Ω denote the set of partitions of $\{1, \ldots, 9\}$ into three disjoint triples. The symmetric group $\operatorname{Sym}(9)$ acts on Ω.
(a) Show that $\operatorname{Sym}(9)$ acts transitively on Ω. (You may be brief.)
(b) Compute the size of a stabilizer of a partition, and so determine $|\Omega|$.
(c) Determine the number of orbitals of $\operatorname{Sym}(9)$, and determine which orbitals are graphs.
(d) [bonus] Show that the subgroup $\operatorname{Sym}(8)$ of $\operatorname{Sym}(9)$ acts transitively on Ω. (Your proof should not require extensive computation.)
32. Determine the eigenvalues and eigenspaces of the complete bipartite graph $K_{m, n}$.
33. Let X and Y be the Latin square graphs corresponding to the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and \mathbb{Z}_{4}. Prove that they are not isomorphic.
34. Let X be the complete graph $K_{n^{2}}$. A parallel class in X is defined to be a subgraph isomorphic to $n K_{n}$. Two parallel classes are skew if they do not have an edge in common.
(a) Show that an $n \times n$ Latin square determines a set of three pairwiseskew parallel classes in $K_{n^{2}}$.
(b) If S_{1} and S_{2} denote the adjacency matrices of two skew parallel classes, prove that

$$
\left(S_{i}+I\right)^{2}=n\left(S_{i}+I\right), \quad\left(S_{1}+I\right)\left(S_{2}+I\right)=J
$$

(c) Assume S_{1}, \ldots, S_{r} are the adjacency matrices of r pairwise skew parallel classes. Determine the eigenvalues of the graph with adjacency matrix $A=S_{1}+\cdots+S_{r}$.
(d) Show that the graph in (c) is strongly regular.
35. Suppose we have two series

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad B(x)=\sum_{n \geq 0} b_{n} x^{n}
$$

where $B(x)^{2}=A(x)$. The problem is to compute the coefficients of $B(x)$ in terms of the a_{r} 's.
(a) Show that $2 A(x) B(x)^{\prime}=A(x)^{\prime} B(x)$ (where the prime denotes derivative).
(b) Derive a recurrence for b_{n} where the coefficients depend on the a_{r}.
(c) [bonus] Check your recurrence by computing the coefficients of $\sqrt{1-4 x}$ using the binomial theorem.
36. Let L denote the set of strings formed the elements of the alphabet $\{a, b\}$ that do not contain $a a$ as a substring. Let M denote the set of strings over $\{a, b\}$ that contain exactly one copy of $a a$, as the last two symbols. Let ϵ denote the empty string of length zero. Verify the equations

$$
\epsilon \cup L\{a, b\}=L \cup M, \quad L a a=M \cup M a .
$$

Assume that weight is length. If $L(t)$ and $M(t)$ respectively denote the generating functions for L and M, we have equations

$$
1+2 t L(t)=L(t)+M(t), \quad t^{2} L=M(t)(1+t)
$$

Solve these and express the generating functions for L and M as rational functions.
37. Suppose $p(t)$ is a polynomial with zeros $\theta_{1}, \ldots, \theta_{d}$ and respective multiplicities m_{1}, \ldots, m_{d}. Derive the partial fraction decomposition

$$
\frac{p^{\prime}(t)}{p(t)}=\sum_{r=1}^{d} \frac{m_{r}}{t-\theta_{r}} .
$$

38. Let A be an $m \times n$ matrix and B and $n \times m$ matrices. From the equations

$$
\left(\begin{array}{cc}
I & 0 \\
-B & I
\end{array}\right)\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right)=\left(\begin{array}{cc}
I & A \\
0 & I-B A
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-B & I
\end{array}\right)=\left(\begin{array}{cc}
I-A B & A \\
0 & I
\end{array}\right)
$$

deduce that $\operatorname{det}(I-A B)=\operatorname{det}(I-B A)$. Using this, prove that $A B$ and $B A$ have the same non-zero eigenvalues with the same multiplicities.
39. Show that the direct product of connected graphs X and Y is disconnected if and only if X and Y are both bipartite.
40. If X and Y are connected and bipartite, show that the two components of $X \times Y$ have the same nonzero eigenvalues with the same multiplicities.
41. The adjacency matrix of the complement \bar{X} of X is $J-I-A$. Hence
$\phi(\bar{X}, t)=\operatorname{det}(t I-J+I+A)=\operatorname{det}((t+1) I+A) \operatorname{det}\left(I-((t+1) I+A)^{-1} J\right)$.
Assume that $n=|V(X)|$ and that $\theta_{1}, \ldots, \theta_{d}$ are the distinct eigenvalues of X. Show that
$\operatorname{det}\left(I-((t+1) I+A)^{-1} J\right)=1-\mathbf{1}^{T}((t+1) I+A)^{-1} \mathbf{1}=1-\sum_{r} \frac{\mathbf{1}^{T} E_{r} \mathbf{1}}{t+1+\theta_{r}}$
and hence deduce that

$$
(-1)^{n} \frac{\phi(\bar{X}, t)}{\phi(X,-t-1)}=1-\cdot \sum_{r} \frac{\mathbf{1}^{T} E_{r} \mathbf{1}}{t+1+\theta_{r}}
$$

[Bonus] Simplify the right side when X is k-regular and connected.
42. Assume z is an eigenvector X with eigenvalue λ. If $u \in V(X)$ and $z(u)=0$, show that the restriction of z to $V(X) \backslash u$ is an eigenvector $X \backslash u$ with eigenvalue λ.
43. Assume that $|V(X)|=n$ and b is a 01-vector of length n. If $A=A(X)$, define

$$
A^{b}=\left(\begin{array}{ll}
0 & b^{T} \\
b & A
\end{array}\right)
$$

and let X^{b} be the graph with adjacency matrix A^{b}. Starting with the equation

$$
\left(\begin{array}{cc}
I & 0 \\
0 & (t I-A)^{-1}
\end{array}\right)\left(\begin{array}{cc}
t & -b^{T} \\
-b & t I-A
\end{array}\right)=\left(\begin{array}{cc}
t & -b^{T} \\
(t I-A)^{-1} b & I
\end{array}\right),
$$

prove that

$$
\frac{\operatorname{det}\left(t I-A^{b}\right)}{\operatorname{det}(t I-A)}=1-b^{T}(t I-A)^{-1} b
$$

if the distinct eigenvalues of A are $\theta_{1}, \ldots, \theta_{d}$ and the corresponding spectral idempotents are E_{1}, \ldots, E_{d}, show that

$$
\frac{\phi\left(X^{b}, t\right)}{\phi(X, t)}=t-\sum_{r=1}^{d} \frac{b^{T} E_{r} b}{t-\theta_{r}} .
$$

[Bonus] If X is regular and connected, show that the rational function

$$
\frac{\phi\left(X^{b}, t\right)}{\phi(X, t)}-\frac{\phi\left(X^{1-b}, t\right)}{\phi(X, t)}
$$

has only one pole.
44. Assume the graph Z is formed by taking graphs X and Y with disjoint vertex sets and adding an edge joining vertex a in X to vertex b in Y. Prove that

$$
\phi(Z, t)=\phi(X, t) \phi(Y, t)-\phi(X \backslash a, t) \phi(Y \backslash b, t) .
$$

45. Let a and b be distinct vertices in X and let Z be formed from two copies of X by merging the vertex b in the first copy with the vertex a in second. Prove that if a and b are cospectral in X, then a and b are cospectral in Z. [Remark: the second b is not the merged vertex.]
46. Assume X is a cubelike graph on 2^{d} vertices with valency m. We can view the connection set as the columns of a $d \times m$ matrix M over \mathbb{Z}_{2}. So two binary vectors are adjacent in X if and only if their difference is a column of M. Prove that if Q is an invertible $d \times d$ matrix over \mathbb{Z}_{2}, the cubelike graph determined by $Q M$ is isomorphic to X.
47. Assume $X=X(G, \mathcal{C})$ and let ψ be a function from G to the non-zero complex numbers $\mathbb{C} \backslash 0$. Prove that if ψ is a homomorphism, then it is an eigenvector. Determine the eigenvalue.
48. [Work over the reals for this question, though it holds over \mathbb{C} as well.] Let P in $\operatorname{End}(V \otimes V)$ be defined by the condition $P(u \otimes v)=v \otimes u$. (So $P^{2}=I$ and P is a permutation operator.) If $A \in \operatorname{End}(V)$, prove that $P\left(A \otimes A^{T}\right)=\left(A^{T} \otimes A\right) P$ and deduce that $P\left(A \otimes A^{T}\right)$ is symmetric.
49. A Hadamard matrix is an $n \times n$ matrix with entries ± 1 such that $H H^{T}=$ $n I$. (It follows that either $n=2$ or four divides n.) With the matrix P as in the previous exercise, prove that $P\left(H \otimes H^{T}\right)$ is a symmetric Hadamard matrix with constant diagonal.
