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Continuous Walks

Given a graph X with adjacency matrix A, we define transition
operators U(t) by

U(t) = exp(itA).

If we have an initial state given by a density matrix D, the state of
the system at time t will be U(t)DU(−t).

Usually the initial state has the form eae
T
a = |a〉〈a| for some vertex

a, and we measure in the standard basis at time t.
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The Mixing Matrix

For a continuous quantum walk with transition matrix U(t), the
result of any measurement at time is determined by the entries of
the mixing matrix M(t), defined by

M(t) := U(t) ◦ U(t) = U(t) ◦ U(−t).
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An Example

If we take our graph to be K2, with adjacency matrix

A =
(

0 1
1 0

)
,

then
U(t) =

(
cos(t) i sin(t)
i sin(t) cos(t)

)
and

M(t) =
(

cos2(t) sin2(t)
sin2(t) cos2(t)

)
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Three Cases

U(π/4) = 1√
2

(
1 i
i 1

)
. [uniform mixing]

U(π/2) =
(

0 i
i 0

)
. [perfect state transfer]

U(π) =
(
−1 0
0 −1

)
. [periodicity]
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Products

Definition
The vertex set of the Cartesian product X � Y is V (X)× V (Y ),
where

(x1, y1) ∼ (x2, y2)

if
x1 = x2 and y1 ∼ y2, or
x1 ∼ x2 and y1 = y2.
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P4 � P4
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The transition matrix of a Cartesian product

If X and Y are graphs, then

UX�Y (t) = UX(t)⊗ UY (t)

The d-dimensional hypercube Qd is the Cartesian product of d
copies of K2, whence

UQd
(t) = UK2(t)⊗d.

A consequence of this that at, times π/4, π/2 and π, we have
respectively uniform mixing, perfect state transfer and periodicity
on Qd.
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Phase factors

Suppose we have perfect state transfer at time t from vertex a to
vertex b in X. Then there is a complex number γ of norm one,
such that

U(t)|a〉 = γ|b〉.

Question
Must the phase factor γ be a root of unity?

In all known cases, it is.
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PST on trees?

Theorem
For a fixed integer k, there are only finitely many connected graphs
with maximum valency k on which perfect state transfer occurs.

I would like to replace “maximum valency k” by something like
“average valency k”. The average valency of a tree is less than two.

Question
Is the a tree with more than three vertices on which perfect state
transfer occurs.
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Easier question on trees?

Question
Is there a positive integer d such that no tree of diameter greater
than d admits perfect state transfer?

Question
Is it true that, for a positive real c, there are only finitely many
connected graphs, with average valency at most c, on which
perfect state transfer takes place?
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Laplacians

Let ∆ be the diagonal matrix with ∆i,i equal to the valency of the
i-th vertex of X. The Laplacian of X is the matrix ∆−A. We
can use the Laplacian as the Hamiltonian for a continuous
quantum walk, i.e., take

U(t) = exp(it(∆−A)).

Generally using the Laplacian in place of the adjacency matrix has
very little qualitative effect.
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No Laplacian PST on trees

Theorem (Coutinho, Liu)
If T is a tree on at least three vertices, the continuous walk with
Hamiltonian ∆−A does not admit perfect state transfer.

See Coutinho, Liu: “No Laplacian perfect state transfer in trees”
https://arxiv.org/abs/1408.2935
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Symmetry and Periodicity

Asssume a, b ∈ V (X) and we have perfect state transfer from a to
b at time t. Then there is a complex scalar γ of norm one such
that U(t)|a〉 = γ|b〉. Taking complex conjugates and noting that
|a〉 and |b〉 are real, we get

U(−t)|a〉 = γ−1|b〉

and consequently
γ|a〉 = U(t)|b〉

We note that

γ−1U(t)|a〉 = |b〉, γ−1U(t)|b〉 = |a〉
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An example: cospectral vertices

u v

Figure: Schwenk’s Tree, 1973

φ(T \u, t) = φ(T \v, t)
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Cospectrality and Symmetry

Theorem
Vertices a and b in the graph X are cospectral if and only if there
is an orthogonal matrix Q such that

1 Q commutes with A.
2 Q|a〉 = |b〉.
3 Q2 = I.

Taking Q = γ−1U(t), we see that if we have perfect state transfer
from a to b, then a and b are cospectral.
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Strongly cospectral vertices

Definition
Vertices a and b in the graph X are cospectral if and only if there
is an orthogonal matrix Q such that

1 Q commutes with A.
2 Q|a〉 = |b〉.
3 Q2 = I.
4 Q is a polynomial in A.

Vertices related by perfect state transfer must be strongly
cospectral. If the eigenvalues of A are simple, cospectral vertices
are strongly cospectral. (For more on strongly cospectral vertices
see Godsil and Smith “Strongly cospectral vertices”.)
https://arxiv.org/abs/1709.07975v1.
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A possibility for perfect state transfer

X X

a b

The vertices a and b in this graph are strongly cospectral.

Question
If there a connected graph X with more than one vertex, such that
there is perfect state transfer between vertices a and b in the graph
above?
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Orbits

If u ∈ V (X), define Du to be the density matrix |u〉〈u|. Note that

Γ = {U(t) : t ∈ R}

is a group and the set

{U(t)DaU(−t) : t ∈ R}

is the orbit of Da under the action of Γ. Hence we have perfect
state transfer from a to b if and only if Db lies in the Γ-orbit of Da.
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Pretty good state transfer

Definition
We have pretty good state transfer from a to b if Db lies in the
closure of the orbit of Da.

More prosaically, we have pretty good state transfer if, for each
ψ > 0 there is a time t such that ‖U(t)DaU(−t)−Db‖ < ε.
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PGST and Number Theory

Theorem (Godsil, Kirkland, Severini, Smith)
We have pretty good state transfer between the end-vertices of the
path Pn (on n vertices) if and only if one the following holds:

(a) n+ 1 is a power of 2.
(b) n+ 1 is a prime number.
(c) n+ 1 is twice a prime number.

(The only paths with perfect state transfer between their
end-vertices are P2 and P3.)
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Possibilities for pretty good state transfer

X X

a b

Question
For which connected graphs X do we have pretty good state
transfer between vertices a and b in the graph above?
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Examples

Theorem
If X is the star K1,m, then graph produced by the previous
construction admits pretty good state transfer between the central
vertices if and only if 4m+ 1 is a perfect square.

See Xiaoxia Fan, Chris Godsil. “Pretty good state transfer on
double stars” https://arxiv.org/abs/1206.0082v3
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How hard is it?

We can determine in polynomial time whether a graph admits
perfect state transfer. (Coutinho, Godsil “Perfect state transfer is
poly-time”, https://arxiv.org/abs/1606.02264v1). Coutinho
asks:
Question
Is it possible to determine in polynomial time whether a graph
admits pretty good state transfer?
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A new invariant

Recall the mixing matrix M(t) = U(t) ◦ U(−t).

Definition
The average mixing matrix M̂ is defined by

M̂ = lim
T→∞

1
T

∫ T

0
M(t) dt.

(For more, see Godsil “Average mixing matrices of continuous
quantum walks” https://arxiv.org/abs/1103.2578v3.)
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Expressions for M(t) and M̂

If the adjacency matrix A of X has the spectral decomposition
A =

∑
r θrEr then we also have U(t) =

∑
r e

itθrEr and so

M(t) = U(t) ◦ U(−t) =
∑
r,s

eit(θr−θs)Er ◦ Es.

Now some elementary calculus implies that

M̂ =
∑
r

E◦2r .
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The complete graphs

The idempotents in the spectral decomposition of Kn are

1
n
J, I − 1

n
J

and therefore
M̂Kn =

(
1− 2

n

)
I + 1

n2J,

with the surprising consequence that, for large n,

M̂Kn ≈ I.
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Properties of M̂

The average mixing matrix has a number of interesting properties:

(a) It is positive semidefinite.
(b) Its entries are rational.
(c) Two rows are equal if and only if the corresponding vertices

are strongly cospectral.
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Rank of M̂

We know that if rk(M̂) = 1, then X has at most two vertices.

Question
Are there infinitely many graphs X such that rk(M̂) = 2?
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Theorem
We have

I <M(t) < 2M̂ − I.

For the complete graph, this yields

I <M(t) <
(
1− 4

n

)
I + 2

n2J.

and thus the diagonal entries of M(t) are bounded below by

1− 4
n

+ 2
n2 .
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Sedentary walks

Definition
A family of graphs is sedentary if there is a constant c such that
the probability a continuous quantum walk is on its initial vertex is
at least 1− c

n , at any time.

Thus complete graphs are sedentary.

Question
Is there a sedentary family of connected cubic graphs?
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Uniform mixing, local uniform mixing

Definition
We have uniform mixing on a walk on X if there is a time t such
that

M(t) = 1
|V (X)|J ;

if all entries of the a-row of M(t) are equal (necessarily to
1/|V (X)|), we have local uniform mixing at a.
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What we know about uniform mixing

K2 admits uniform mixing at time π/4, and so
The hypercube also admits uniform mixing at time π/4.
There are many cases where we have perfect state transfer at
time t and uniform mixing at time t/2.
The complete bipartite graph K1,3 (and its Cartesian powers)
admit uniform mixing. [H. Zhan]
The only even cycle that admits uniform mixing is C4, the
only cycle of prime length that admits uniform mixing is K3.
[N. Mullin]
The stars K1,n admit local uniform mixing at their central
vertex.
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What we don’t know

Questions
Which odd cycles admit uniform mixing?
Is there a graph other than K1,3 that is not regular and
admits uniform mixing?
Which trees admit local uniform mixing?
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More of what we don’t know

Two conjectures due to N. Mullin.

Conjectures
If a graph admits uniform mixing at time t, then eit is a root
of unity.
If n ≥ 5, no connected Cayley graph for Zdn admits uniform
mixing.

There are families of Cayley graphs for Zd2 and Zd3 that do admit
uniform mixing. [A. Chan, N. Mullin, H. Zhan]
More information in Godsil, Mullin, Roy “Uniform mixing and
association schemes” https://www.combinatorics.org/ojs/
index.php/eljc/article/view/v24i3p22.
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The End(s)
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