Type-II Matrices

Chris Godsil

August 2, 2005
Outline

1. Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2. Link Invariants
 - Algebra
 - Braids

3. Association Schemes
 - DFT
 - Schemes
 - Questions

Chris Godsil
Type-II Matrices
Outline

1. Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2. Link Invariants
 - Algebra
 - Braids

3. Association Schemes
 - DFT
 - Schemes
 - Questions
Schur Product

Definition

If A and B are $m \times n$ matrices, their **Schur product** $A \circ B$ is the $m \times n$ matrix given by

$$(A \circ B)_{i,j} = A_{i,j}B_{i,j}.$$
The matrix \(J \) with all entries equal to 1 is the identity for Schur multiplication.
Inverses

- The matrix J with all entries equal to 1 is the identity for Schur multiplication.
- If no entry of A is zero, there is a unique matrix $A^{(-)}$ such that

$$A \circ A^{(-)} = J;$$

we call $A^{(-)}$ the **Schur inverse** of A.
Type II

Definition

A $v \times v$ complex matrix W is a type-II matrix if

$$WW^{(-)T} = vI.$$
A $v \times v$ complex matrix W is a type-II matrix if

$$WW^{(-)T} = vI.$$

So if W is a type-II matrix then

$$W^{-1} = \frac{1}{v}W^{(-)T}.$$
Outline

1. Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2. Link Invariants
 - Algebra
 - Braids

3. Association Schemes
 - DFT
 - Schemes
 - Questions

Chris Godsil
Type-II Matrices
The Cyclic Spin Model

Example

Choose θ so that θ^2 is a primitive complex v-th root of 1, and let W be the $v \times v$ matrix given by

$$W_{i,j} := \theta^{(i-j)^2}, \quad 0 \leq i, j < v.$$
Examples: Unitary

Check:

\[(WW^{(-)T})_{i,j} = \sum_r \theta^{(i-r)^2-(j-r)^2} = \theta^{i^2-j^2} \sum_r \theta^2(j-i)r = v\delta_{i,j}.\]
Flat Matrices

Definition

A complex matrix M is flat if its entries all have the same absolute value.
Theorem

If \(W \) is a \(v \times v \) matrix over \(\mathbb{C} \), then any two of the following statements imply the third:

(a) \(W \) is type II.
(b) \(W \) is flat.
(c) \(W \) is unitary.
Quantum Physics

Definition

Two orthogonal bases x_1, \ldots, x_v and y_1, \ldots, y_v of \mathbb{C}^v are **unbiased** if all inner products $\langle x_i, y_j \rangle$ have the same absolute value. Two unitary matrices X and Y are unbiased if X^*Y is flat.
If X and Y are unitary matrices, then X^*Y is unitary. So X and Y are unbiased if and only if X^*Y is a flat type-II matrix.
If X and Y are unitary matrices, then X^*Y is unitary. So X are Y are unbiased if and only if X^*Y is a flat type-II matrix.

Unitary matrices X and Y are unbiased if and only if the (unitary) matrices I and X^*Y are unbiased.
If X and Y are unitary matrices, then X^*Y is unitary. So X are Y are unbiased if and only if X^*Y is a flat type-II matrix.

- Unitary matrices X and Y are unbiased if and only if the (unitary) matrices I and X^*Y are unbiased.

- Hence each flat type-II matrix determines an unbiased pair of bases.
A Problem

A Question

What is the maximum size of a set of mutually unbiased bases in \mathbb{C}^v?
What We Know

(a) The maximum is at most $v + 1$.
What We Know

(a) The maximum is at most \(v + 1 \).

(b) This bound can be realized if \(v \) is a prime power.
What We Know

(a) The maximum is at most $v + 1$.

(b) This bound can be realized if v is a prime power.

(c) In general, the best we can do is three. :-(

Chris Godsil
Type-II Matrices
Outline

1. **Matrices**
 - Definitions
 - Examples: Unitary
 - **Examples: Combinatorial**
 - Examples: Geometric

2. **Link Invariants**
 - Algebra
 - Braids

3. **Association Schemes**
 - DFT
 - Schemes
 - Questions

Chris Godsil

Type-II Matrices
The Potts Model

Let J be the $v \times v$ matrix with all entries equal to 1 and set

$$W := (\gamma - 1)I + J.$$

Then $J^2 = vJ$ and so

$$WW^{(-)T} = (2 - \gamma - \gamma^{-1})I + (v - 2 + \gamma + \gamma^{-1})J.$$

Hence W is type II if and only if

$$\gamma^2 + (v - 2)\gamma + 1 = 0.$$

Chris Godsil
Type-II Matrices
Symmetric Designs

Definition

For today’s purposes, a **symmetric design** is given by a $v \times v$ 01-matrix N such that, for suitable integers k and λ,

$$NJ = N^T J = kJ, \quad NN^T = (k - \lambda)I + \lambda J.$$
The Fano Plane

Example

\[N = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{pmatrix} \]
If

$$W := (\gamma - 1)N + J$$

then

$$WW^{(-)T} = (2 - \gamma - \gamma^{-1})(k - \lambda)I + (k(\gamma + \gamma^{-1} - 2) + v)J$$

and therefore W is type II if and only if

$$(k - \lambda)(\gamma - 1)^2 + v(\gamma - 1) + v = 0.$$
Outline

1. Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2. Link Invariants
 - Algebra
 - Braids

3. Association Schemes
 - DFT
 - Schemes
 - Questions

Chris Godsil
Type-II Matrices
Equiangular Lines

Definition

Let \(x_1, \ldots, x_n \) be a set of unit vectors in \(\mathbb{C}^d \). The lines spanned by these vectors are **equiangular** if there is a scalar \(a \) such that if \(i \neq j \), then

\[
|\langle x_i, x_j \rangle|^2 = a.
\]
A Bound

Lemma

Suppose the lines spanned by x_1, \ldots, x_n are equiangular and the matrices X_i are defined by $X_i = x_i x_i^*$. Then the matrices X_i are linearly independent elements of the space of Hermitian matrices.
A Bound

Lemma

Suppose the lines spanned by x_1, \ldots, x_n are equiangular and the matrices X_i are defined by $X_i = x_ix_i^*$. Then the matrices X_i are linearly independent elements of the space of Hermitian matrices.

Corollary

$n \leq d^2$.

Chris Godsil

Type-II Matrices
The Construction

Theorem

Suppose \(n = d^2 \) and \(x_1, \ldots, x_n \) spans a set of equiangular lines in \(\mathbb{C}^d \). Let \(G \) be the Gram matrix of this set of vectors. Then \(G^2 = dG \) and if

\[
\gamma^2 + (d + 2)\gamma + a^2 = 0,
\]

then \((\gamma - 1)I + G\) is a type-II matrix.
Outline

1 Matrices
 ■ Definitions
 ■ Examples: Unitary
 ■ Examples: Combinatorial
 ■ Examples: Geometric

2 Link Invariants
 ■ Algebra
 ■ Braids

3 Association Schemes
 ■ DFT
 ■ Schemes
 ■ Questions

Chris Godsil
Type-II Matrices
The Nomura Algebra

Let W be a complex $v \times v$ Schur invertible matrix. Then $W_{i/j}$ is the vector in \mathbb{C}^v given by:

$$(W_{i/j})_r := \frac{W_{r,i}}{W_{r,j}}.$$
The Nomura Algebra

Let W be a complex $v \times v$ Schur invertible matrix. Then $W_{i/j}$ is the vector in \mathbb{C}^v given by:

$$(W_{i/j})_r := \frac{W_{r,i}}{W_{r,j}}.$$

Definition

The **Nomura Algebra** N_W of a Schur-invertible matrix is the set of complex matrices M such that each vector $W_{i/j}$ is an eigenvector for M.

Chris Godsil

Type-II Matrices
An Example

Consider the cyclic spin model:

\[W_{i,j} = \theta^{(i-j)^2} \]

(\text{where } \theta^2 \text{ is a primitive complex } n\text{-th root of 1}). Then

\[(W_{i/j})_r = \theta^{i^2-j^2} \theta^{2(i-j)r} \]

and so the vectors \(W_{i/j} \) are (essentially) the columns of a Vandermonde matrix.
Equivalence

If W is type II and P_1, P_2 are permutation matrices and D_1, D_2 are invertible diagonal matrices, then

$$P_1 D_1 W D_2 P_2$$

is type II. We say that it is equivalent to W.
Equivalence

If W is type II and P_1, P_2 are permutation matrices and D_1, D_2 are invertible diagonal matrices, then

$$P_1 D_1 W D_2 P_2$$

is type II. We say that it is equivalent to W.

Theorem

If W and W' are equivalent type-II matrices, there is a permutation matrix P such that

$$\mathcal{N}_{W'} = P^T \mathcal{N}_W P.$$
Nontriviality

- \(I \in \mathcal{N}_W \)
Nontriviality

- $I \in \mathcal{N}_W$
- $J \in \mathcal{N}_W$ if and only if W is a type-II matrix.
Spin Models

Definition

A type-II matrix is a spin model if $W \in \mathcal{N}_W$.
Spin Models

Definition

A type-II matrix is a **spin model** if $W \in \mathcal{N}_W$.

Each spin model determines a link invariant.
Examples

- The cyclic spin model.

Chris Godsil
Type-II Matrices
Examples

- The cyclic spin model.
- The Potts model.
Outline

1 Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2 Link Invariants
 - Algebra
 - Braids

3 Association Schemes
 - DFT
 - Schemes
 - Questions
One Braid

\[\sigma_1^2 \sigma_2 \sigma_3^{-1} \]
Two Braids

\[\sigma_1 \sigma_2 \sigma_1 \quad \sigma_2 \sigma_1 \sigma_2 \]
Generators and Relations

Definition

The **braid group** B_n on n strands is generated by elements $\sigma_1, \ldots, \sigma_{n-1}$ and their inverses, subject to the relations:

- If $|i - j| > 1$, then $\sigma_i \sigma_j = \sigma_j \sigma_i$.
- $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.
Links

\[\beta \]
Suppose α and β are braids on n strands. Then the following operations do not change the isotopy class of the closure of β:
Markov Moves

Suppose α and β are braids on n strands. Then the following operations do not change the isotopy class of the closure of β:

Markov I: $\beta \rightarrow \alpha^{-1} \beta \alpha$,
Suppose α and β are braids on n strands. Then the following operations do not change the isotopy class of the closure of β:

Markov I: $\beta \rightarrow \alpha^{-1} \beta \alpha$,

Markov II: $\beta \rightarrow \beta \sigma_n$,
Markov II

Chris Godsil
Type-II Matrices
Two braids give the same link if and only if they are Markov equivalent.
Link Invariants

- Two braids give same link if and only if they are Markov equivalent.
- Given the first Markov move, we see that for a braid invariant to give us a link invariant, it must be constant on conjugacy classes in the braid group.
Let V be a complex vector space of finite dimension and choose invertible elements X and Y in $\text{End}(V)$ such that $XYX = YXY$. Then we have a homomorphism, ρ say, from B_3 into $\text{End}(V)$ such that
\[
\rho(\sigma_1) = X, \quad \rho(\sigma_2) = Y.
\]
A Markov Trace

If $\beta \in B_3$, then $\text{tr}(\rho(\beta))$ only depends on the conjugacy class of β. If we are lucky, this will be a link invariant.
Spin Models

Suppose W is a spin model of order $v \times v$. Let $V = \text{Mat}_{d \times d}(\mathbb{C})$ and if $M \in V$, define

$$X(M) = \frac{1}{\sqrt{v}} WM, \quad Y(M) = W(-) \circ M.$$

Then $XYX = YXY$, and we are lucky.
Outline

1 Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2 Link Invariants
 - Algebra
 - Braids

3 Association Schemes
 - DFT
 - Schemes
 - Questions
A Transform

Suppose W is a $v \times v$ type-II matrix. If $M \in \mathcal{N}_W$, let $\Theta(M)$ be the $v \times v$ matrix such that $\Theta(M)_{i,j}$ is the eigenvalue of M on $W_{i,j}$. If $M, N \in \mathcal{N}_W$ then:
A Transform

Suppose W is a $v \times v$ type-II matrix. If $M \in \mathcal{N}_W$, let $\Theta(M)$ be the $v \times v$ matrix such that $\Theta(M)_{i,j}$ is the eigenvalue of M on $W_{i/j}$. If $M, N \in \mathcal{N}_W$ then:

- $\Theta(MN) = \Theta(M) \circ \Theta(N)$.
A Transform

Suppose W is a $v \times v$ type-II matrix. If $M \in \mathcal{N}_W$, let $\Theta(M)$ be the $v \times v$ matrix such that $\Theta(M)_{i,j}$ is the eigenvalue of M on $W_{i,j}$. If $M, N \in \mathcal{N}_W$ then:

- $\Theta(MN) = \Theta(M) \circ \Theta(N)$.
- $\Theta(M) \in \mathcal{N}_{WT}$.
A Transform

Suppose W is a $v \times v$ type-II matrix. If $M \in \mathcal{N}_W$, let $\Theta(M)$ be the $v \times v$ matrix such that $\Theta(M)_{i,j}$ is the eigenvalue of M on $W_{i/j}$. If $M, N \in \mathcal{N}_W$ then:

- $\Theta(MN) = \Theta(M) \circ \Theta(N)$.
- $\Theta(M) \in \mathcal{N}_{W^T}$.
- $\Theta^2(M) = vM^T$.
Schur Closure

Theorem (Jaeger, Nomura)

If W is a type-II matrix then \mathcal{N}_W is Schur-closed.
Outline

1. Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2. Link Invariants
 - Algebra
 - Braids

3. Association Schemes
 - DFT
 - Schemes
 - Questions
Hence \mathcal{N}_W has a basis of 01-matrices $\mathcal{A} = \{A_0, \ldots, A_d\}$ such that:
Hence \mathcal{N}_W has a basis of 01-matrices $\mathcal{A} = \{A_0, \ldots, A_d\}$ such that:

- $A_0 = I$.

Hence \mathcal{N}_W has a basis of 01-matrices $\mathcal{A} = \{A_0, \ldots, A_d\}$ such that:

- $A_0 = I$.
- $\sum A_i = J$.

Axioms
Hence \mathcal{N}_W has a basis of 01-matrices $\mathcal{A} = \{A_0, \ldots, A_d\}$ such that:

- $A_0 = I$.
- $\sum A_i = J$.
- $A_i^T \in \mathcal{A}$, for all i.

Axioms

Hence \(\mathcal{N}_W \) has a basis of 01-matrices \(\mathcal{A} = \{A_0, \ldots, A_d\} \) such that:

- \(A_0 = I \).
- \(\sum A_i = J \).
- \(A_i^T \in \mathcal{A} \), for all \(i \).
- \(A_i A_j \in \text{span}(\mathcal{A}) \).
Hence \mathcal{N}_W has a basis of 01-matrices $\mathcal{A} = \{A_0, \ldots, A_d\}$ such that:

- $A_0 = I$.
- $\sum A_i = J$.
- $A_i^T \in \mathcal{A}$, for all i.
- $A_iA_j \in \text{span}(\mathcal{A})$.
- $A_iA_j = A_jA_i$, for all i and j.
Discreteness

There are only finitely many association schemes on \(v \) vertices.
Outline

1 Matrices
 - Definitions
 - Examples: Unitary
 - Examples: Combinatorial
 - Examples: Geometric

2 Link Invariants
 - Algebra
 - Braids

3 Association Schemes
 - DFT
 - Schemes
 - Questions
A Question

If \mathcal{A} is an association scheme, can $\mathbb{C}[\mathcal{A}]$ contain infinitely many type-II matrices? (If the dimension of the scheme is three, then it contains at most six.)
Examples

We have the following classes of spin models:

- Cyclic models.
Examples

We have the following classes of spin models:

- Cyclic models.
- Potts models.
We have the following classes of spin models:

- Cyclic models.
- Potts models.
- Higman-Sims—the Nomura algebra is the Bose-Mesner algebra of the Higman-Sims graph. (Found by Jaeger.)
Examples

We have the following classes of spin models:

- Cyclic models.
- Potts models.
- Higman-Sims—the Nomura algebra is the Bose-Mesner algebra of the Higman-Sims graph. (Found by Jaeger.)
- A class of examples with Nomura algebra equal to the Bose-Mesner algebra of distance-regular antipodal double cover of a complete bipartite graph. (Found by Nomura.)
Examples

We have the following classes of spin models:

- Cyclic models.
- Potts models.
- Higman-Sims—the Nomura algebra is the Bose-Mesner algebra of the Higman-Sims graph. (Found by Jaeger.)
- A class of examples with Nomura algebra equal to the Bose-Mesner algebra of distance-regular antipodal double cover of a complete bipartite graph. (Found by Nomura.)
- Products of the above.
Problem

Find new non-trivial examples of type-II matrices W such that $\dim(N_W) \geq 3$.

We do not have any examples that are not spin models!