Quantum Coloring Problems

Chris Godsil
University of Waterloo

Fort Collins, November, 2011: In memory of Bob Liebler
Outline

1 Physics 101

2 The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3 The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
Cosmology

Quote

Hydrogen is a colorless, odorless gas which given sufficient time, turns into people. (Henry Hiebert)
Axioms

"The axioms of quantum physics are not as strict as those of mathematics"
Outline

1 Physics 101

2 The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3 The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
An orthogonality graph, and a problem

Definition

We define $\Omega(d)$ to be the graph with the unit vectors in \mathbb{R}^d as its vertices, where two vertices are adjacent if and only if they are orthogonal.

Problem

What is $\chi(\Omega(d))$?
Clique in $\Omega(d)$

Since each orthonormal basis for \mathbb{R}^d forms a clique in $\Omega(d)$, we have

$$\chi(\Omega(d)) \geq d.$$
A finite subgraph of $\Omega(d)$

Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.
A finite subgraph of $\Omega(d)$

Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

1. If d is odd, $\Phi(d)$ has no edges.
A finite subgraph of $\Omega(d)$

Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

1. If d is odd, $\Phi(d)$ has no edges.
2. If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

1. If d is odd, $\Phi(d)$ has no edges.
2. If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
3. $\alpha(\Phi(d)) \leq \frac{2^d}{d}$ and thus $\chi(\Phi(d)) \geq d$; hence if $\chi(\Phi(d)) = d$, then d is a power of two.
Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

1. If d is odd, $\Phi(d)$ has no edges.
2. If $d \equiv 2 \mod 4$, $\Phi(d)$ is bipartite.
3. $\alpha(\Phi(d)) \leq \frac{2^d}{d}$ and thus $\chi(\Phi(d)) \geq d$; hence if $\chi(\Phi(d)) = d$, then d is a power of two.
4. $\omega(\Phi(d)) \leq d$, equality holds if and only if a Hadamard matrix exists.
Definition

Let $\Phi(d)$ denote the graphs with the ± 1-vectors of length d as vertices, where two vectors are adjacent if and only if they are orthogonal.

1. If d is odd, $\Phi(d)$ has no edges.
2. If $d \equiv 2$ modulo four, $\Phi(d)$ is bipartite.
3. $\alpha(\Phi(d)) \leq \frac{2^d}{d}$ and thus $\chi(\Phi(d)) \geq d$; hence if $\chi(\Phi(d)) = d$, then d is a power of two.
4. $\omega(\Phi(d)) \leq d$, equality holds if and only if a Hadamard matrix exists.
5. If $\chi(\Phi(d)) = d$ and there is a $d \times d$ Hadamard matrix, then d is a power of two.
The chromatic number of $\Phi(d)$ increases exponentially

Theorem (Frankl and Rödl)

*There is a constant c such that $0 < c < 2$ and if $4 \mid d$ and d is large enough, then $\alpha(\Phi(d)) < c^d$.***
Outline

1. Physics 101

2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
Coloring planes

Definition

Let $\mathcal{P}(\mathbb{F})$ denote the projective plane over the \mathbb{F}. A proper coloring of \mathcal{P} is a coloring of its points, such that each line gets exactly two colors.
Coloring planes

Definition

Let $\mathcal{P}(\mathbb{F})$ denote the projective plane over the \mathbb{F}. A **proper coloring** of \mathcal{P} is a coloring of its points, such that each line gets exactly two colors.

Theorem (Carter and Vogt, Hales and Straus)

The proper colorings of $\mathcal{P}(\mathbb{F})$ correspond to the non-trivial non-Archimedean valuations of \mathbb{F}.
Planes and spheres

Every coloring of $\Omega(3)$ gives a coloring of the projective plane, but the converse does not hold. But no coloring of the plane lists to a sphere coloring:

Corollary

$\chi(\Omega(3)) > 3$.
Outline

1. Physics 101

2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
Gleason’s theorem

Definition

Let $\Omega(d)$ denote the graph whose vertices are the unit vectors in \mathbb{R}^d, where two unit vectors are adjacent if they are orthogonal. A frame function is a non-negative function on unit vectors that sums to 1 on each orthonormal basis.

Theorem (Gleason, 1957)

If $d \geq 3$ and f is a frame function, then there is a positive semidefinite matrix M such that $\text{tr}(M) = 1$ and $f(x) = x^T M x$ for all x.
No d-colorings

Corollary

If $d \geq 3$ then $\chi(\Omega(d)) > d$.
Corollary

If $d \geq 3$ then $\chi(\Omega(d)) > d$.

Proof.

Suppose $\Omega(d)$ is d-colorable and let S be a color class in a d-coloring. Then each orthonormal basis must contain a vertex in S, and therefore the characteristic vector of S is a frame function.
No \(d \)-colorings

Corollary

If \(d \geq 3 \) then \(\chi(\Omega(d)) > d \).

Proof.

Suppose \(\Omega(d) \) is \(d \)-colorable and let \(S \) be a color class in a \(d \)-coloring. Then each orthonormal basis must contain a vertex in \(S \), and therefore the characteristic vector of \(S \) is a frame function. But this characteristic function is not continuous.
Applying compactness

Theorem (Kochen and Specker)
Assume $d \geq 3$. There is a finite subgraph of $\Omega(d)$ whose vertex set is a union of orthonormal bases, such that no coclique contains a vertex in each orthonormal basis.
Outline

1. Physics 101

2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
A line in \mathbb{C}^d can be represented by a unit vector that spans it. If x spans a line then

$$P = (x^* x)^{-1} xx^*$$

represents orthogonal projection onto the line spanned by x.
The angle between the lines spanned by unit vectors x and y is determined by

$$|\langle x, y \rangle| = |x^* y|.$$

If P and Q are the projections xx^* and yy^*, then

$$\text{tr}(PQ) = \text{tr}(xx^* yy^*) = \text{tr}(y^* xx^* y) = |\langle x, y \rangle|^2.$$
Linear combinations of projections

Suppose we have m lines in \mathbb{C}^d such that the angle between any pair of lines is the same. Let P_1, \ldots, P_m be the corresponding projections. If

$$0 = \sum_r c_r P_r$$

then, if $\text{tr}(P_r P_s) = a^2$ when $r \neq s$,

$$0 = \sum_r c_r \text{tr}(P_k P_r) = c_k(1 - a^2) + a^2 \sum c_r.$$

Hence the coefficients c_r are all equal and it follows they are all zero.
A bound on the size of a set of equiangular lines

Lemma

If P_1, \ldots, P_m are the orthogonal projections onto a set of equiangular lines in \mathbb{C}^d, then they form a linearly independent subset of the vector space of $d \times d$ Hermitian matrices. Hence $m \leq d^2$.
If equality holds, the angle is determined

Theorem

*If we have a set of d^2 equiangular lines in \mathbb{C}^d, then $a^2 = (d + 1)^{-1}$.***

Proof.

Suppose \mathcal{L} is an equiangular set of m lines in \mathbb{C}^d, with associated projections P_1, \ldots, P_m. If $m = d^2$ then there are scalars c_i such that $I = \sum_r c_r P_r$ and therefore

$$1 = \text{tr}(P_k) = (1 - a^2) c_k + a^2 \sum_r c_r.$$

So the scalars c_r are all equal and, since $\text{tr}(I) = d$, we have $c_r = d/m$. Substituting this into the above equation yields the value stated for a^2.

Chris Godsil University of Waterloo
Graph Spectra
An question about chromatic number

Let $X(d)$ be the graph on lines in \mathbb{C}^d, where lines given by projections P and Q are adjacent if $\text{tr}(PQ) = (d + 1)^{-1}$. Then $\omega(X(d)) \leq d^2$.

Problem

What is the chromatic number of $X(d)$?
What can we construct?

- Sets of d^2 lines that are equiangular to machine precision have been constructed up to $d = 67$ (Scott and Grassl 2009).
What can we construct?

- Sets of d^2 lines that are equiangular to machine precision have been constructed up to $d = 67$ (Scott and Grassl 2009).
- Equiangular sets with size d^2 exist when $d \in \{2, \ldots, 15, 19, 24, 35, 48\}$ (Scott and Grassl 2009).
What can we construct?

- Sets of d^2 lines that are equiangular to machine precision have been constructed up to $d = 67$ (Scott and Grassl 2009).
- Equiangular sets with size d^2 exist when $d \in \{2, \ldots, 15, 19, 24, 35, 48\}$ (Scott and Grassl 2009).
- In \mathbb{R}^d we can get sets of size at most $\binom{d+1}{2}$ and, if $d > 3$, then d is odd and $d + 2$ is a perfect square. Examples are known only for $d = 2, 3, 7, 23$.
Outline

1. Physics 101

2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
A unitary Cayley graph

Definition

Let cD denote the set of $d \times d$ unitary matrices for which all diagonal entries are zero. A graph Y as a quantum d-coloring if there is a graph homomorphism from Y into the Cayley graph $X(U(d), D)$.

Chris Godsil University of Waterloo
A unitary Cayley graph

Definition

Let cD denote the set of $d \times d$ unitary matrices for which all diagonal entries are zero. A graph Y as a quantum d-coloring if there is a graph homomorphism from Y into the Cayley graph $X(U(d), D)$.

$\Phi(d)$ has a quantum d-coloring if d is a power of two.
Embedding the symmetric group

View the symmetric group $\text{Sym}(d)$ as a group of $d \times d$ permutation matrices.

- $\text{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\text{Sym}(d)$ are adjacent in $X(U(d), D)$ if and only if $\tau \sigma^{-1}$ is a derangement.
Embedding the symmetric group

View the symmetric group $\text{Sym}(d)$ as a group of $d \times d$ permutation matrices.

- $\text{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\text{Sym}(d)$ are adjacent in $X(U(d), D)$ if and only if $\tau \sigma^{-1}$ is a derangement.
- A regular subgroup of $\text{Sym}(d)$ forms a clique of size d.

Chris Godsil University of Waterloo
Graph Spectra
Embedding the symmetric group

View the symmetric group $\text{Sym}(d)$ as a group of $d \times d$ permutation matrices.

- $\text{Sym}(d) \leq U(d, \mathbb{C})$ and two elements σ and τ of $\text{Sym}(d)$ are adjacent in $X(U(d), D)$ if and only if $\tau \sigma^{-1}$ is a derangement.
- A regular subgroup of $\text{Sym}(d)$ forms a clique of size d.
- The map that sends a permutation σ to 1σ is a proper d-coloring of the image of $\text{Sym}(d)$.
Outline

1. Physics 101

2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines

3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions
Unbiased bases

Definition

Two orthonormal bases x_1, \ldots, x_d and y_1, \ldots, y_d of \mathbb{C}^d are unbiased if

$$|\langle x_r, y_s \rangle|$$

is independent of r and s. (If it is, then it must be equal to $1/\sqrt{d}$.)
Unbiased bases

Definition

Two orthonormal bases x_1, \ldots, x_d and y_1, \ldots, y_d of \mathbb{C}^d are **unbiased** if

$$|\langle x_r, y_s \rangle|$$

is independent of r and s. (If it is, then it must be equal to $1/\sqrt{d}$.)

If U_1 and U_2 are unitary matrices, their columns are unbiased if and only if all entries of $U_1^* U_2$ have the same absolute value, that is, if the matrix $U_1^* U_2$ is **flat**.
Let \mathcal{F} denote the set of flat matrices in $U(d, \mathbb{C})$. Then a set of mutually unbiased bases for \mathbb{C}^d is a clique in the Cayley graph $X(U(d), \mathcal{F})$.
How large can a set of mutually unbiased bases be?

If \(U \) is a flat unitary matrix and \(D, E \) are diagonal matrices of order \(d \times d \), then

\[
\text{tr}(DU^{-1}EU) = \text{tr}(D) \text{tr}(E)
\]

If \(\mathcal{D} \) denotes the algebra of all diagonal matrices, it follows that

\[
\mathcal{D} \cap U^{-1}DU = \{cI : c \in \mathbb{C}\}.
\]
How large can a set of mutually unbiased bases be?

If \(U \) is a flat unitary matrix and \(D, E \) are diagonal matrices of order \(d \times d \), then

\[
\text{tr}(DU^{-1}EU) = \text{tr}(D) \text{tr}(E)
\]

If \(\mathcal{D} \) denotes the algebra of all diagonal matrices, it follows that

\[
\mathcal{D} \cap U^{-1}DU = \{ cI : c \in \mathbb{C} \}.
\]

Corollary

*The columns of the unitary matrices \(U_1, \ldots, U_m \) are mutually unbiased if and only if for all \(r \) and \(s \) (with \(r \neq s \))

\[
U_r^{-1}\mathcal{D}U_r \cap U_s^{-1}\mathcal{D}U_s = \{ cI : c \in \mathbb{C} \}.
\]

Hence we can have at most \(d + 1 \) mutually unbiased matrices in \(\mathbb{C}^d \).
The basic question?

Question

For which values of d can we construct a mutually unbiased set of $d + 1$ orthonormal bases of \mathbb{C}^d?
Some partial answers

- There are mutually unbiased bases of size $d + 1$ if d is a prime power.
Some partial answers

- There are mutually unbiased bases of size $d + 1$ if d is a prime power.
- There is always a set of size three.
Some partial answers

- There are mutually unbiased bases of size $d + 1$ if d is a prime power.
- There is always a set of size three.
- If $d = 2d_0$ where d_0 is odd, we do not know how to do better than three.
Constructions from projective planes

All known examples of sets of $d + 1$ mutually unbiased bases in \mathbb{C}^d can be constructed from either:

- A $(d, d, d, 1)$-relative difference set in an abelian group of order d^2.
Constructions from projective planes

All known examples of sets of \(d + 1 \) mutually unbiased bases in \(\mathbb{C}^d \) can be constructed from either:

- A \((d, d, d, 1)\)-relative difference set in an abelian group of order \(d^2 \).

- A symplectic spread in a vector space of even dimension: a set of \(q^d \) symmetric \(d \times d \) matrices such that the difference of any two distinct matrices is invertible.
Outline

1. Physics 101
2. The Unit Sphere
 - Coloring the Sphere
 - Projective Planes
 - Gleason
 - Equiangular Lines
3. The Unitary Group
 - Quantum Colorings
 - Mutually Unbiased Bases
 - Partitions

Chris Godsil University of Waterloo
Graph Spectra
A graph on set partitions

Definition

Let V be a set of size d^2. Define $\mathcal{P}(d)$ to be the graph whose vertices are the partitions of V into d cells of size d, where two such partitions are adjacent if each cell of the first partition contains a point from each of the d cells of the second partition.
A graph on set partitions

Definition

Let V be a set of size d^2. Define $\mathcal{P}(d)$ to be the graph whose vertices are the partitions of V into d cells of size d, where two such partitions are adjacent if each cell of the first partition contains a point from each of the d cells of the second partition.

We can represent each partition π by a $d^2 \times d$ matrix $M(\pi)$ whose columns are the characteristic vectors of its cells. Then $\pi \sim \rho$ in $\mathcal{P}(d)$ if and only if

$$M(\pi)^T M(\rho) = J_d.$$
Example

Assume $d = 3$. Then $\mathcal{P}(3)$ has 280 vertices and is regular with valency 36. There are 70 partitions which have 1 and 2 in the same cell, these form a coclique of maximal size (and all cocliques of size 70 are equivalent to this).
Coloring partitions

Meagher and Stevens:

\[\chi(\mathcal{P}(d)) \leq \binom{d + 1}{2}. \]
Coloring partitions

Meagher and Stevens:

\[\chi(\mathcal{P}(d)) \leq \binom{d+1}{2}. \]

(The upper bound is tight if \(d = 3 \). Nothing more is known.)
Clique in $\mathcal{P}(k)$

Lemma

The cliques of size k in $\mathcal{P}(d)$ correspond to orthogonal arrays with k rows and entries from $\{1, \ldots, d\}$.

Corollary

$\omega(\mathcal{P}(d)) = d + 1$ if and only if there is an affine plane of order d.

Chris Godsil University of Waterloo

Graph Spectra
Cliquies in $\mathcal{P}(k)$

Lemma

The cliques of size k in $\mathcal{P}(d)$ correspond to orthogonal arrays with k rows and entries from $\{1, \ldots, d\}$.

Corollary

$\omega(\mathcal{P}(d)) = d + 1$ if and only if there is an affine plane of order d.
The End(s)