Are Almost All Graphs Cospectral?

Chris Godsil

November 9, 2007
Outline

1 Cospectral Graphs
 ■ Polynomials and Walks
 ■ Constructing Cospectral Graphs
 ■ Switching

2 1-Full Graphs
 ■ A Cyclic Subspace
 ■ Generating All Matrices
 ■ Cospectral 1-Full Graphs
Outline

1 Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
The Characteristic Polynomial

Definition

Let G be a graph with adjacency matrix A. The characteristic polynomial $\phi(G, t)$ of G is the characteristic polynomial of A:

$$\phi(G, t) := \det(tI - A).$$
Examples

The characteristic polynomials of K_1, K_2 and P_3 are respectively:

$$t, \quad t^2 - 1, \quad t^3 - 2t.$$
WALKS

Lemma

If A is the adjacency matrix of G, then $(A^r)_{i,j}$ is the number of walks in G from vertex i to vertex j with length r.

Chris Godsil

Are Almost All Graphs Cospectral?
Closed Walks

A walk in G is **closed** if its first and last vertices are equal. The number of closed walks in G with length r is

$$\sum_{i \in V(G)} (A^r)_{i,i} = \text{tr}(A^r).$$
Short Closed Walks

If G has n vertices, e edges and contains exactly t triangles, then

$$\text{tr}(A^0) = n$$
$$\text{tr}(A^1) = 0$$
$$\text{tr}(A^2) = 2e$$
$$\text{tr}(A^3) = 6t.$$
Short Closed Walks

If G has n vertices, e edges and contains exactly t triangles, then

\[
\begin{align*}
\text{tr}(A^0) &= n \\
\text{tr}(A^1) &= 0 \\
\text{tr}(A^2) &= 2e \\
\text{tr}(A^3) &= 6t.
\end{align*}
\]

(And then it gets messy!)
A Generating Function

The generating function for the closed walks in G, counted by length, is

$$
\sum_{r \geq 0} \text{tr}(A^r)t^r.
$$

It is a rational function:

$$
\sum_{r \geq 0} \text{tr}(A^r)t^r = \frac{t^{-1}\phi'(G,t^{-1})}{\phi(G,t^{-1})}.
$$
A Characterisation

Corollary

Two graphs G and H are cospectral if and only if their generating functions for closed walks are equal.
The Smallest Cospectral Graphs

Chris Godsil

Are Almost All Graphs Cospectral?
The Smallest Connected Cospectral Graphs
Cospectral, Cospectral Complements?

The graphs $\overline{C_4 \cup K_1}$ and $\overline{K_{1,4}}$ have two and four triangles respectively—they are not cospectral.
Another Generating Function

The number of walks of length r in G is equal to

$$\text{tr}(A^r J) = 1^T A^r 1$$

and thus

$$\sum_{r \geq 0} \text{tr}(A^r J) t^r$$

is the generating function for all walks in G.

Chris Godsil
Are Almost All Graphs Cospectral?
Complements and Walks

Theorem

Suppose G and H are cospectral graphs with respective adjacency matrices A and B. Then \overline{G} and \overline{H} are cospectral if and only if the generating functions for all walks in G and in H are equal.
Regular Graphs

If G is a k-regular graph on n vertices then its walk generating function is

$$\frac{n}{1 - kt}.$$
Regular Graphs

If G is a k-regular graph on n vertices then its walk generating function is

$$\frac{n}{1 - kt}.$$
Two Irregular Graphs

Chris Godsil
Are Almost All Graphs Cospectral?
Outline

1. Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2. 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
0-Sums

The 0-sum of two graphs G and H is got by identifying a vertex in G with a vertex in H:

![Diagram of 0-sum of graphs G and H with identified vertex v]
Spectrum of a 0-Sum

If we create the 0-sum F by merging v in G with v in H, then

$$\phi(F) = \phi(G)\phi(H \setminus v) + \phi(G \setminus v)\phi(H) - t\phi(G \setminus v)\phi(H \setminus v).$$
Example

If $G = K_2$ and $K = K_2$ then their 0-sum F is P_3, whence

$$\phi(P_3, t) = (t^2 - 1)t + t(t^2 - 1) - t(t^2) = t^3 - 2t.$$
Corollary

If we hold \(G \) and its vertex \(v \) fixed, then the characteristic polynomial of the 0-sum of \(G \) and \(H \) is determined by the characteristic polynomials of \(H \) and \(H \setminus v \).
Constructing Cospectral Graphs

Deleting Vertices

If H is the graph

then $H \setminus u$ and $H \setminus v$ are isomorphic...
A Cospectral Pair

...and thus we obtain a pair of cospectral graphs:
Another Pair

Chris Godsil

Are Almost All Graphs Cospectral?
Constructing Cospectral Graphs

A Hint

Chris Godsil

Are Almost All Graphs Cospectral?
A Theorem

Theorem (Schwenk... Godsil & McKay)

Almost all trees are cospectral...
A Theorem

Theorem (Schwenk... Godsil & McKay)

Almost all trees are cospectral... with cospectral complements.
Outline

1 Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
Yet Another Construction

Chris Godsil
Are Almost All Graphs Cospectral?
If

\[K := \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

then \(K1 = 1 \) and \(K^2 = I \), whence \(K \) is orthogonal, and

\[KM = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = J_4 - M. \]
Switching

\[
\begin{pmatrix}
K & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
0 & M & 0 \\
M^T & A_1 & B_1 \\
0 & B_1^T & A_2
\end{pmatrix}
\begin{pmatrix}
K & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{pmatrix}
\]

\[
= \begin{pmatrix}
0 & (J - M)^T \\
(J - M)^T & A_1 & B_1 \\
0 & B_1^T & A_2
\end{pmatrix}
\]
Therefore...

Theorem

Switching related graphs are cospectral, with cospectral complements.
Is it true that almost all graphs are determined by their spectrum?
A Related Example

Chris Godsil

Are Almost All Graphs Cospectral?
Outline

1. Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2. 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
Let G be a graph on n vertices with adjacency matrix A. Define U to be the subspace of \mathbb{R}^n spanned by the vectors $A^r 1$, for all non-negative integers r.
Automorphisms

Theorem

*If the permutation matrix P is in $\text{Aut}(G)$, then $Pu = u$ for all u in U.***
Automorphisms

Theorem

*If the permutation matrix P is in $\text{Aut}(G)$, then $Pu = u$ for all u in U.***

Proof.

If P is a permutation matrix, $P1 = 1$. If $P \in \text{Aut}(G)$, then $PA = AP$ and so, for all r

$$PA^r1 = A^rP1 = A^r1.$$
1-Rank

Definition

The 1-rank of G is the dimension of U.
1-Rank

Definition

The \textbf{1-rank} of G is the dimension of U.

Lemma

\textit{The 1-rank of G is less than or equal to the number of orbits of $\text{Aut}(G)$ on the vertices of G.}
Definition

A graph G on n vertices is 1-full if its 1-rank is n.

Chris Godsil

Are Almost All Graphs Cospectral?
1-Full Graphs

Definition

A graph G on n vertices is 1-full if its 1-rank is n.

Corollary

A 1-full graph is asymmetric.
A Cyclic Subspace

Also...

Theorem (Godsil & McKay)

A 1-full graph is vertex reconstructible.
A Cyclic Subspace

A Question

Is it true that almost all graphs are 1-full?
Outline

1. Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2. 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
A Basis of Matrices

Theorem

Let G be a graph on n vertices. If G is 1-full, the matrices

$$A^i J A^j,$$

$0 \leq i, j < n$

form a basis for $\text{Mat}_{n\times n}(\mathbb{R})$.

Chris Godsil

Are Almost All Graphs Cospectral?
The Proof

Proof.

For \(i = 0, \ldots, n - 1 \), set \(u_i = A^i \mathbf{1} \). Then \(A^i J A^j = u_i u_j^T \). The vectors \(u_0, \ldots, u_{n-1} \) are linearly independent, and so any non-zero linear combination of the matrices can be written as

\[
 u_0 v_0^T + \cdots + u_{n-1} v_{n-1}^T
\]

where none of the vectors \(v_0, \ldots, v_{n-1} \) are zero. Since the \(u_i \)'s are linearly independent, this sum cannot be zero. \(\Box \)
Outline

1. Cospectral Graphs
 - Polynomials and Walks
 - Constructing Cospectral Graphs
 - Switching

2. 1-Full Graphs
 - A Cyclic Subspace
 - Generating All Matrices
 - Cospectral 1-Full Graphs
Walk Equivalent

Definition

Two graphs G and H are walk equivalent if their generating functions for walks are equal.
Walk Equivalent

Definition

Two graphs G and H are walk equivalent if their generating functions for walks are equal.

(Thus any two k-regular graphs on the same number of vertices are walk equivalent.)
Walk-Equivalent 1-Full Graphs

Theorem

If G and H are walk equivalent graphs and G is 1-full, then G and H are cospectral with cospectral complements.
An Endomorphism

Assume \(A \) and \(B \) are the adjacency matrices of \(G \) and \(H \) respectively. Since the matrices \(A^i J A^j \) (where \(0 \leq i, j < n \)) form a basis for \(\mathcal{M} = \text{Mat}_{n \times n}(\mathbb{R}) \), there is a unique linear map \(\Phi : \mathcal{M} \to \mathcal{M} \) such that

\[
\Phi(A^i J A^j) = B^i J B^j.
\]
Let w_r denote the number of walks of length r in G. Then

$$A^i J A^j A^k J A^\ell = w_{j+k} A^i J A^\ell$$

and consequently

$$\Phi(A^i J A^j A^k J A^\ell) = w_{j+k} \Phi(A^i J A^\ell)$$

$$= w_{j+k} B^i J B^\ell$$

$$= B^i J B^j B^k J B^\ell$$
It follows that Φ is a homomorphism (and not just a linear map). Since \mathcal{M} is a simple algebra, Φ is an isomorphism. By the Noether-Skolem theorem it follows that there is an invertible matrix L such that

$$\Phi(M) = L^{-1}ML$$

for all matrices M.
Conclusion

So we have

$$L^{-1} AL = B,$$

whence G and H are cospectral.
Conclusion

So we have

\[L^{-1}AL = B, \]

whence \(G \) and \(H \) are cospectral.

Since \(\Phi(J) = J \), we have \(L^{-1}JL = J \), whence \(\overline{G} \) and \(\overline{H} \) are cospectral.