
Preface

A discrete quantum walk is determined by a unitary matrix U , the tran-

sition matrix of the walk. If the initial state of the system is given by
a vector z, then the state of the system at time k is Ukz. The problem
is to choose U and z so that we can do something useful, and indeed
we can—Grover showed how an implementation of this setup could be
used to enable quantum computers to search a database faster than any
known classical algorithm.

The framework we have just described is impossibly general, a quan-
tum computer can conveniently implement only a small subset of the
set of unitary matrices. There is also a mathematical di�culty, in that
it may be impossible to derive useful predictions of the behaviour of the
walk without imposing some structure on U .

As we have described it, the transition matrix U is an operator on the
complex inner product space Cd. However, for the reasons just given,
much of the work on discrete quantum walks considers the case where
U is an operator on the space of complex functions on the arcs (ordered
pairs of adjacent vertices) of a graph X . Physically meaningful questions
must be expressed in terms of the absolute values of the entries of the
powers Uk. Thus we might ask if, for a given initial state z, is there an
integer k such that the absolute values of the entries of Uk are close to
being equal?

Then goal of our work on this topic has been to attempt to relate the
properties of the walk to the properties of the underlying graph, and this
book is both an introduction to the topic and a report on our progress.

We start our treatment with the most famous topic, Grover’s search
algorithm. We o�er two approaches, but in both cases we find that the
transition matrix arises as a product U = RC, where R and C are
unitary matrices with simple structure and are defined in terms of an
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underlying graph. In fact R and C are both involutions, and the algebra
they generate is a matrix representation of the dihedral group. We make
use of the fact to determine the spectral decomposition of U , in terms
of the underlying graph. (If the graph is k-regular on n vertices, U is
of order nk ◊ nk, so we have reduced the scale of the problem.) We
then apply the resulting theory to the study of properties of our walks,
and determine useful parameters. Of course, each time we identify a
parameter of a walk, we have introduced a possibly new graph parameter,
and many interesting questions raise their heads.

In the second part of the book we relax our assumptions that R and
C are involutions. We find that, to properly specify the resulting walks,
we must specify a linear ordering on the arcs leaving a vertex. As any
graph theorist is aware, embeddings of graphs in an orientable surface are
specified by cyclic orderings of the arcs leaving a vertex. Hence we o�er
a detailed treatment of graph embeddings and graph covers. Following
this we consider walks based on shunts and walks on the line. We close
the book with a treatment of what we call vertex-face walks, which are
explicitly derived from embeddings of graphs in orientable surfaces.

We note that this book is based on the Ph.D. thesis of the second au-
thor https://uwspace.uwaterloo.ca/handle/10012/13952. The intended
audience is mathematicians, particularly those who might be interested
in new graph theoretical problems arising from the study of discrete
quantum walks. The book by Portugal [58] provides a complementary
view. We do not think any knowledge of physics is required to profit from
this work; the required background is linear algebra (spectral decomposi-
tion) and some field theory. We have tried to keep things self-contained,
but G&R [34] may prove a useful backup.
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