CO444/644
Assignment 2: Homomorphisms

Due: Monday, March 4

1. If X is bipartite, show that any cycle of length equal to the girth of X is a retract. [discuss]

2. If $S \subseteq V(X)$ and $\chi(X \setminus S) < \chi(X)$, show that any retract of X contains a vertex from S.

3. Show that the core of a generously transitive graph is generously transitive. [discuss]

4. If X and Y are graphs and $X \times X \cong Y \times Y$, prove that $X \cong Y$.

5. Assume $r \geq 2$. Show that $X \times K_r \cong Y \times K_r$ if and only if $X \times K_2 \cong Y \times K_2$.

6. Show that the subgraph obtained from the Petersen graph by deleting one vertex is a core.

7. Determine the core of $L(K_n)$ for each n.

8. If X is a graph, let $\mathcal{N}(X)$ denote the multiset of neighborhoods of X. (Here a neighborhood is just a set of vertices.) If X and Y are graphs with the same vertex set, show that $X \times K_2 \cong Y \times K_2$ if and only if $\mathcal{N}(X) \cong \mathcal{N}(Y)$.

9. If X is a Cayley graph for an abelian group, prove that $X \square X \rightarrow X$.

10. Let P'_n be the graph formed from the path with vertex set $\{0, \ldots, n-1\}$ by putting a loop on 0. Construct the graph $\Delta_n(X)$ by adding a new vertex to $P'_n \times X$ and joining it to each vertex in the set $\{(n-1, u) : u \in V(X)\}$.

Show that there is a proper r-coloring of $\Delta_n(X)$ if and only if there is a walk of length n in K^X_r whose first vertex is a homomorphism and whose last vertex is a constant function. [discuss]

11. Prove or disprove: each proper homomorphomorph image of the Petersen graph contains a triangle.

12. Show that $X \rightarrow X \times Y$ if and only if $X \rightarrow Y$.

13. Let r be fixed, and suppose that for each pair of distinct vertices u and v in X, there is an r-coloring of X where u and v get different colors. Show that X is a subgraph of a product of some number of copies of K_r, i.e., a subgraph of K^m_r or some m.

14. Show that the Cayley graph $X(\mathbb{Z}_{13}, \{\pm 1, \pm 5\})$ has chromatic number four, but each proper induced subgraph is 3-colorable. [What about proper subgraphs.]

15. Show that if X is cubelike and contains a coclique of size three, then $\chi(X) \leq |V(X)|/4$.

16. Prove that if the endomorphism f of a connected graph is locally injective, it is an isomorphism.

17. The distance-two graph X_2 of X is a graph with the same vertex set as X; two vertices are adjacent in X_2 if and only if they are at distance two in X. When X is connected and bipartite, X_2 has exactly two components and these are called the halved graphs of X. (They need not be isomorphic in general.) Show that the halved graphs of the product of K_2 with the Kneser graph $K_{2k-1; k-1}$ are isomorphic to the Johnson graphs $J(2k-1, k-1, k-2)$.
18. Let $\mathcal{S}(d)$ denote the graph with the unit vectors in \mathbb{C}^d as its vertices, with two unit vectors adjacent if they are orthogonal. Let $\mathcal{P}(d)$ be the graph with matrices xx^* as vertices, where x is a unit vector in \mathbb{C}^d; two matrices P and Q are adjacent if $\text{tr}(PQ) = 0$. Show that $\mathcal{P}(d)$ is a retract of $\mathcal{S}(d)$. [discuss]

19. Given a graph X, we define $P_3(X)$ to be the graph with the same vertex set of X, where two vertices are adjacent in $P_3(X)$ if the are joined in X by a walk of length three. (Note that X is a spanning subgraph of $P_3(X)$, and that if X contains a triangle, then $P_3(X)$ has a loop.) A strong n-colouring of a graph is proper n-colouring such that the neighbourhood of each colour class is a coclique. Prove that X has a strong n-colouring if and only if $P_3(X) \rightarrow K_n$. [discuss]

20. Prove that if $X \rightarrow Y$, then $P_3(X) \rightarrow P_3(Y)$. Prove that $P_3(X \times Y) \cong P_3(X) \times P_3(Y)$.

21. Define the graph $P_3^{-1}(X)$ as follows. Its vertices are the ordered pairs (u, S), where $u \in V(X)$ and S is a non-empty subset of the neighbours of u. The pairs (u, S) and (u, T) are adjacent if:
 (a) $u \in T$,
 (b) $v \in S$,
 (c) each vertex in S is adjacent to each vertex in T.

 Prove that $P_3(P_3^{-1}(X))$ and X are homomorphically equivalent. [I’m not sure whether $P_3^{-1}(P_3(X))$ is also homomorphically equivalent to X.]

22. Prove that if X is connected, cubic and vertex transitive, then X^* is K_2, an odd cycle, or X itself.

23. Show that if X is a quartic vertex-transitive graph on an odd number of vertices, then X^* is either an odd cycle, a complete graph, or X itself. [What if $|V(X)|$ is a power of two?]

24. If X is connected, show that the constant functions from $V(X)$ to $V(F)$ induce a copy of F in F^X.

25. If X is connected and not bipartite, prove that K_2^X is the disjoint union of K_2 with some number of isolated vertices. [discuss]

26. By constructing an explicit colouring, prove that for any graph X, the product $X \times K_n^X$ is n-colourable.

27. Prove the previous question by a counting argument.

28. Prove or disprove: $\chi(X \square Y) = \max\{\chi(X), \chi(Y)\}$.

29. [withdrawn]
30. Prove that if X and Y are connected graphs, then K_n is a retract of $X \times Y$ only if it is a retract of X or Y. [Remark: if we could prove this without the assumption that X and Y are connected, we would have established Hedetniemi's theorem.]

31. If $X = \mathbb{Z}_3(K_4)$, prove that $\alpha(X) \geq 4$ and $\omega(X) \geq 4$. (Gordon Royle has computed that equality holds in both cases, and that $\chi(X) = 7$.)

32. Prove that if $X \rightarrow Y$, then $\mathbb{Z}_n(X) \rightarrow \mathbb{Z}_n(Y)$.

33. [withdrawn]

34. If C is an odd cycle, prove that $\chi(\Delta_3(C)) = 4$. (It may be easier if you do not use exponential graphs.)

35. Prove that if n is odd, the folded n-cube contains an induced subgraph isomorphic to $\Delta_{(n-1)/2}(C_n)$. [The folded n-cube is the graph we get from the n-cube by identifying the pairs of vertices at distance n, it is cubelike.]

36. If X is connected and $\chi(X) = r$, prove that X folds onto K_r.

37. Assume X is connected. Show that the subgraph of C_{2k+1}^X induced by the loops is connected if and only if X is bipartite and does not fold onto $C_{2k+1} \times K_2 = C_{4k+2}$. [Discuss]

38. Show that the subgraph of C_{2k}^X induced by the loops has exactly two components if and only if X does not fold onto C_{2k}.