Chapter 7

Product Measures

7.1 The Product Measure Theorem

PROBLEM **7.1.1.** Let (X, A) and (Y, B) be measurable spaces. Is there a natural way to define a measure on the space $X \times Y$ which reflects the structure of the original measure space?

DEFINITION 7.1.2. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces. A measurable rectangle is a set of the form $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Let $Z = X \times Y$ and

$$\mathcal{Z}_0 = \{ \coprod_{i=1}^n A_i \times B_i | A_i \in \mathcal{A}, B_i \in \mathcal{B} \}$$

LEMMA **7.1.3.** \mathcal{Z}_0 is an algebra in $\mathcal{P}(Z)$.

Let \mathcal{Z} be the σ -algebra generated by \mathcal{Z}_0 . We write $\mathcal{Z} = \mathcal{A} \times \mathcal{B}$. Assume that (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ are measure spaces. A measure π on (Z, \mathcal{Z}) is called a *product measure* if $\pi(A \times B) = \mu(A)\lambda(B)$.

THEOREM **7.1.4** [PRODUCT MEASURE THEOREM]. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be measure spaces. Then there exists a measure π on $(X \times Y, \mathcal{A} \times \mathcal{B})$ such that $\pi(A \times B) = \mu(A)\lambda(B)$. Moreover, if μ and λ are σ -finite, then π is unique and σ -finite.

In the case where μ and λ are σ -finite, we denote the uniquely obtained measure by

$$\pi = \mu \times \lambda$$

and call the measure the product of μ and λ .

Proof. Suppose that $A \times B$ can be written as $\sum_{i=1}^{\infty} A_i \times B_i$, where each of the measurable rectangles $A_i \times B_i$ are disjoint. Then

$$\chi_A(x)\chi_B(y) = \chi_{A\times B}(x,y) = \sum_{i=1}^{\infty} \chi_{A_i}(x)\chi_{B_i}(y)$$

for all $x \in X$ and $y \in Y$. Fix x and integrate with respect to λ .

$$\int_{Y} \chi_{A \times B}(x, y) \, d\lambda(y) = \int_{Y} \sum_{i=1}^{\infty} \chi_{A_{i}}(x) \chi_{B_{i}}(y) \, d\lambda(y)$$

$$\int_{Y} \chi_{A}(x) \chi_{B}(y) \, d\lambda(y) = \sum_{i=1}^{\infty} \chi_{A_{i}}(x) \int_{Y} \chi_{B_{i}}(y) \, d\lambda(y) \quad \text{by MCT}$$

$$\chi_{A}(x) \lambda(B) = \sum_{i=1}^{\infty} \chi_{A_{i}}(x) \lambda(B_{i})$$

Further integrating with respect to μ yields (again by MCT) $\mu(A)\lambda(B) = \sum_{i=1}^{\infty} \mu(A_i)\lambda(B_i)$ (*). Define π_0 on \mathcal{Z}_0 by $\pi_0(\bigcup_{i=1}^n A_i \times B_i) = \sum_{i=1}^n \mu(A_i)\lambda(B_i)$. Then π_0 is a measure on \mathcal{Z} by (*) (the only nontrivial issue to check was countable additivity). Caratheodory's Extension Theorem gives us a measure π defined on at least \mathcal{Z} that extends π_0 . If μ and λ are σ -finite, then π_0 is σ -finite, so Hahn's Extension Theorem tells us that π is unique.

DEFINITION 7.1.5. Let $E \subseteq Z = X \times Y$. An x-section of E is the set $E_x = \{y \in Y | (x,y) \in E\}$. A y-section is $E^y = \{x \in X | (x,y) \in E\}$. Let $f: Z \to [-\infty, \infty]$ and $x \in X$. The x-section of f is $f_x(y) = f(x,y)$. For $y \in Y$, the y-section of f is $f^y(x) = f(x,y)$.

LEMMA 7.1.6. If $E \subseteq Z$ is measurable in the product measurable space $(Z, Z = A \times B)$.

- i) E_x , E^y are measurable in the factors for each $x \in X$ and $y \in Y$.
- ii) If $f: Z \to \mathbb{R}^*$ is Z-measurable, then f_x , f^y are measurable in each factor for every $x \in X$, $y \in Y$.

Proof. i) First observe that it is a routine exercise to show that the set

$$\mathcal{S} = \{ E \in \mathcal{Z} \mid E_x \text{ is measurable } \}$$

is a σ -algebra. However if $E = A \times B$ where $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then

$$E_x = \begin{cases} B & \text{if } x \in A, \\ \emptyset & \text{if } x \notin A \end{cases}$$

so $A \times B \in \mathcal{S}$ and hence $\mathcal{S} = \mathcal{Z}$.

A similar argument works for the sections E^{y} .

Proof: ii) Let $f: Z \to \mathbb{R}^*$ be measurable, $x \in X$ and $\alpha \in \mathbb{R}$. Then

$$\{y \in Y \mid f_x(y) > \alpha\} = \{y \in Y \mid f(x,y) > \alpha\}$$

= \{(w,y) \in X \times Y \setminus f(w,y) > \alpha\}_x

which is measurable by i).

A similar argument shows that f^y is measurable.

7.2The Fubini's Theorem

DEFINITION 7.2.1. A monotone class is a non-empty collection $M \subseteq \mathcal{P}(X)$ such that

- 1. If $\{E_n\}_{n=1}^{\infty} \subseteq M$ with $E_n \subseteq E_{n+1}$, then $\bigcup_{n=1}^{\infty} \in M$.
- 2. If $\{E_n\}_{n=1}^{\infty} \subseteq M$ with $E_n \supseteq E_{n+1}$, then $\bigcap_{n=1}^{\infty} \in M$.

Every σ -algebra is a monotone class. If $\mathcal{A} \subseteq \mathcal{P}(X)$ is any collection of subsets, then there is a smallest monotone class $M(\mathcal{A})$ that contains \mathcal{A} . Simply take the intersection of all monotone classes that contain \mathcal{A} . With this in mind, it is clear that $M(\mathcal{A}) \subseteq \sigma(\mathcal{A})$, the smallest σ -algebra that contains \mathcal{A} . In fact, the reverse inclusion also holds when \mathcal{A} is an algebra.

LEMMA 7.2.2 [MONOTONE CLASS LEMMA]. If $A \subseteq \mathcal{P}(X)$ is an algebra, then $M(A) = \sigma(A)$.

Proof. We need only show that $M=M(\mathcal{A})$ is an algebra, since this combined with the fact that M is closed under countable ascending unions implies that M is closed under countable unions. For $E \in M$ define $M(E) = \{F \in M | E \setminus F, E \cup F, F \setminus E \in M\}$. Then $\emptyset \in M(E)$ and $E \in M(E)$. Further, if $F \in M(E)$ then $E \in M(F)$ by the symmetry of the definition. M(E) is a monotone class since complementation, union, and intersection play nicely together.

Suppose that $E \in \mathcal{A}$. Then since \mathcal{A} is an algebra, $\mathcal{A} \subseteq M(E)$. But M(E) is also a monotone class, so $M \subseteq M(E) \subseteq M$ and M = M(E). It follows that $\mathcal{A} \subseteq M(F)$ for every $F \in M$, and again we have M = M(F). But \emptyset , $X \in \mathcal{A} \subseteq M(E)$, so this implies that M is closed under intersections and finite unions.

LEMMA 7.2.3. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ -finite. If $E \in \mathcal{Z} = \mathcal{A} \times \mathcal{B}$, then $f(x) = \lambda(E_x)$ and $g(y) = \mu(E^y)$ are measurable and

$$\int_X f \, d\mu = \pi(E) = \int_Y g \, d\lambda$$

Proof. **Proof:** Case 1) Assume that μ and λ are finite.

Let \mathcal{M} denote the collection of all such E for which the lemma holds. We claim that \mathcal{M} is a monotone class containing \mathcal{Z}_0 and that as such $\mathcal{M} = \mathcal{Z}$.

Let $E = A \times B$ where $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then

$$f(x) = \chi_A(x)\lambda(B)$$
 and $g(y) = \mu(A)\chi_B(y)$

so

$$\int_X f \, d\mu = \mu(A)\lambda(B) = \int_Y g \, d\lambda.$$

Since \mathcal{Z}_0 consists of disjoint unions of such sets, $\mathcal{Z}_0 \subseteq \mathcal{M}$.

Let $\{E_n\} \subseteq \mathcal{M}$ with $E_n \subseteq E_{n+1}$ and let

$$E = \bigcup_{n=1}^{\infty} E_n.$$

Then

$$f_n(x) = \lambda((E_n)_x)$$
 and $g_n(y) = \mu((E_n)^y)$

are measurable with

$$\int_{Y} f_n \, d\mu = \pi(E_n) = \int_{Y} g_n \, d\lambda$$

If

$$f(x) = \lambda(E_x)$$
 and $g(y) = \mu(E^y)$,

then $f_n \nearrow f$ and $g_n \nearrow g$ so the Monotone Convergence Theorem and continuity from below for π shows that

$$\int_X f \, d\mu = \pi(E) = \int_Y g \, d\lambda.$$

Given that π is finite, we can argue in much the same way using the continuity from above for π and the Lebesgue Dominated Convergence Theorem that if $\{E_n\} \subseteq \mathcal{M}$ with $E_{n+1} \subseteq E_n$ and

$$E = \bigcap_{n=1}^{\infty} E_n,$$

then $E \in \mathcal{M}$.

Case 2) If the measures are σ -finite, we let

$$Z = \bigcup_{n=1}^{\infty} Z_n$$

where $Z_n \subseteq Z_{n+1}$ and $\pi(Z_n) < \infty$. We then apply Case 1) to $E \cap Z_n$ and derive the final result from the MCT.

THEOREM **7.2.4** [TONELLI'S THEOREM]. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ -finite. Let $F: Z = X \times Y \to [0, \infty]$ be measurable. then the functions defined by $f(x) = \int_Y F_x d\lambda$ and $g(y) = \int_X F^y d\mu$ are mesurable and $\int_X f d\mu = \int_Z F d\pi = \int_Y g d\lambda$, where $\pi = \mu \times \lambda$. This is to say that

$$\int_X \left(\int_Y F(x, y) d\lambda(y) \right) d\mu(x) = \int_Z F d\pi = \int_Y \left(\int_X F(x, y) d\mu(x) \right) d\lambda(y)$$

Proof. If $F = \chi_E$ for some $E \in \mathcal{Z} = \mathcal{A} \times \mathcal{B}$, then the theorem is exactly the previous lemma. It follows immediately that the theorem holds for all non-negative measurable simple functions. If F is arbitrary, we can find a sequence $\{\Phi_n\}_{n=1}^{\infty}$ of non-negative simple functions such that $\Phi_n \nearrow F$. Let $\varphi_n(x) = \int_Y (\Phi_n)_x d\lambda$ and $\psi_n(y) = \int_X (\Phi_n)^y d\mu$. then φ_n and ψ_n are measurable and monotonic in n. By the Monotone Convergence Theorem,

$$\lim_{n \to \infty} \varphi_n(x) = f(x)$$
 and $\lim_{n \to \infty} \psi_n(y) = g(y)$

Again, by the Monotone Convergence Theorem,

$$\int_X f \, d\mu = \lim_{n \to \infty} \int_X \varphi_n \, d\mu = \lim_{n \to \infty} \int_Z \Phi_n \, d\pi = \int_Z F \, d\pi$$

and similarly, $\int_{Y} g \, d\lambda = \int_{Z} F \, d\pi$.

THEOREM **7.2.5** [Fubini's Theorem]. Let (X, \mathcal{A}, μ) and $(Y, \mathcal{B}, \lambda)$ be σ -finite and let $\pi = \mu \times \lambda$. If F is integrable with respect to π on $Z = X \times Y$, then the extended real valued functions defined almost everywhere by $f(x) = \int_Y F_x d\lambda$ and $g(y) = \int_X F^y d\mu$ have finite integrals and $\int_X f d\mu = \int_Z F d\pi = \int_Y g d\lambda$. That is to say,

$$\int_X \left(\int_Y F(x,y) d\lambda(y)\right) d\mu(x) = \int_Z F \, d\pi = \int_Y \left(\int_X F(x,y) d\mu(x)\right) d\lambda(y)$$

Proof. Since F is π -integrable, so are F^+ and F^- . Apply Tonelli's Theorem to establish that f^+ and f^- have finite integrals and hence are finite almost everywhere. Therefore $f=f^+-f^-$ is defined almost everywhere and $\int_X f \, d\mu = \int_Z F \, d\pi$. Similarly, we can show that $g=g^+-g^-$ is defined almost everywhere and $\int_X f \, d\lambda = \int_Z F \, d\pi$.