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Abstract

The main result is a computation of the Nahm transform of a SU(2)-instanton over R × T 3, called
spatially-periodic instanton. It is a singular monopole over T 3, a solution to the Bogomolny equa-
tion, whose rank is computed and behavior at the singular points is understood under certain condi-
tions.

A full description of the Riemannian ADHMN construction of instantons on R4 is given, preceding
a description of the heuristic behind the theory of instantons on quotients of R4. The Fredholm
theory of twisted Dirac operators on cylindrical manifolds is derived, the spectra of spin Dirac
operators on spheres and on product manifolds are computed. A brief discussion on the decay of
spatially-periodic and doubly-periodic instantons is included.
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Introduction

This introduction is composed of three parts. There is first a description of the main result of this
thesis, then a historical account of the ideas leading to this thesis, and finally a road map composed
of a brief description of each of the chapters in this thesis.

A Yang-Mills instanton on a Riemannian four-manifold is a vector bundle E along with the gauge
equivalence class of a connection A whose curvature FA is anti-self dual and of finite L2 norm.

The Nahm transform of an instanton (E,A) on R × T 3 consists of a bundle V over an open subset
of T 3, a connection B on V , and an element Φ of EndV . These objects are constructed as follows.

Each point z ∈ T 3 correspond to a flat line bundle Lz over R × T 3, and we consider the twisted
spin Dirac operator

D/∗Az
: Γ(R × T 3, S− ⊗E ⊗ Lz) → Γ(R × T 3, S+ ⊗E ⊗ Lz).

The bundle V is defined by the equation

Vz = L2 ∩ ker(D/∗Az
).

Let t be the R-coordinate in R × T 3, and mt denote multiplication by t. Let P denote the L2

projection on V , and dz the trivial connection for the trivial bundle with infinite dimensional fiber
L2(R × T 3, S− ⊗E). Then the connection B and the Higgs field Φ are defined by the equations

B = Pdz,

Φ = −2πiPmt.

The main result of the present thesis is the following theorem.

Theorem (8.0-1 in the text on page 84). Outside of a set W consisting of at most four points, the
family of vector spaces V described above defines a vector bundle of rank

1

8π2

∫

R×T 3

|FA|2,

and the couple (B,Φ) satisfies the Bogomolny equation

∇BΦ = ∗FB .

For w ∈ W and z close enough to w, unless we are in the Scenario 2 of page 91, there are maps

The author can be reached at benoit@alum.mit.edu
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Φ⊥ and Φy such that
Φ =

−i
2|z −w|Φ

⊥ + Φy,

and Φ⊥ is the L2-orthogonal projection on the orthogonal complement of a naturally defined sub-
bundle Vy of V .

We know heuristically, as shown in Chapter 2, that (B,Φ) must satisfies the Bogomolny equation,
up to a limiting term coming out of some integration by parts on R × T 3. As it is shown in Chapter
7, harmonic spinors are exponentially decaying outside of W , and it then must be that the limiting
term just mentioned is 0.

The rank of V is not really a surprise and follows for some relative index theorem. It is a sharp
contrast with the S1 × R3 case where the computation, and the formula itself, is slightly more
involved; see [NS00].

The last part of the theorem follows from a careful analysis of some geometric splitting of V coming
from considering the kernel of the Dirac operator in some weighted L2-space

L2
δ := eδtL2,

and variants. Taking ε > 0 small enough, we define the various spaces

Vyz := e−ε|t|L2 ∩ ker(D/∗Az
), pV z := eε|t|L2 ∩ ker(D/∗Az

),

pKz := eε|t|L2 ∩ ker(D/Az), Hz := eε|t|L2 ∩ ker(D/∗Az
D/Az).

Then obviously Vy ⊂ V ⊂ pV . But also, as shown in Section 8.2,

pV z = Vyz ⊕ D/AzHz.

A progression of ideas

A concrete understanding of instantons played an important role in particle physics since their dis-
covery in mid-’70 by Belavin et al [BPST75]. More importantly for us, it played an important role
in four-dimensional topology and geometry. For example, Donaldson has shown in [Don83] how
to extract information about the intersection form on a given manifold from its moduli space of
instantons; see [FU84] and [DK90] for more details.

Finding a complete description of all instantons on a given space is not an easy task and we have
a description for a limited number of spaces. In particular, we do not completely understand the
moduli spaces for quotients of R4 by lattices. In that picture, a non-linear analog of the Fourier
transform, the “Nahm transform,” appears.

This present thesis takes place in the quest for a unified understanding of moduli spaces of instantons
on R4 invariant under the action of a group of translations via the Nahm transform heuristic.

The problem of describing all instantons on R4 was addressed by Atiyah, Drinfeld, Hitchin and
Manin in 1978 in [ADHM78]. Their description became known as the ADHM construction. Using
twistor methods, they were able to equate the moduli space of instanton on R4 to a finite dimen-
sional space of algebraic data, called the “ADHM data.” Still using twistor methods, and using the
relationship between monopoles on R3 (solutions to Bogomolny equation) and time-invariant in-
stantons on R4, Hitchin [Hit82] proved in 1982 that every monopole can be constructed from some
algebraic geometry data, the “spectral curve.”
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Nahm in 1981-1982 proposed a simplification which he thought would be better understood by
physicists. As it turned out, his idea was very fruitful. The main idea is to construct the ADHM data
by considering the kernel of the Dirac operator coupled to the instanton connection. By twisting the
connection by a flat connection parameterized by t, Nahm also explained how monopoles can arise
from solutions to a set of differential equations on R, which we now call the “Nahm equations.”

These ideas were rapidly exploited by Corrigan and Goddard in [CG84] who formalized the R4

story, a complete proof of which with some algebraico-geometric flavor can be found in [DK90,
Chap. 3], and by Hitchin in [Hit83] who completed the SU(2)-monopole story.

Around 1988, Braam noticed that Nahm’s considerations can be used for instantons on flat tori.
Exploiting Braam’s observation, Schenk and Braam–van Baal in [Sch88] and [BvB89] proved inde-
pendently a bijective correspondence between the moduli spaces of instantons over a flat torus and
over its dual torus.

While the proofs of Corrigan–Goddard–Nahm and Schenk–Braam–van Baal are quite direct, it is
not the case with Hitchin’s construction, which sits in a triangle of equivalences:

SU(2) − monopoles

xxppppppppppppp hh

((QQQQQQQQQQQQQ

spectral
curves

//
solutions to

Nahm’s equations.

In 1989, Hurtubise and Murray completed the monopole story for all classical groups, using in
[HM89] a triangle of ideas similar to Hitchin’s:

G− monopoles

xxrrrrrrrrrrrr hh

PPPPPPPPPPPP

spectral
curves

oo //
solutions to

Nahm’s equations.

Note in both cases that not all arrows go both ways. While the “spectral curves” are interesting
objects to study in themselves, it would be desirable to pass directly from monopoles to Nahm data,
as we do for R4 and T 4. For SU(2)-monopoles, this direct proof was accomplished in 1993 by
Nakajima in [Nak93].

All those various correspondences fit in a more general framework. The Nahm transform takes an
instanton over R4, invariant under the action of some group of translations Λ, and creates some
Nahm data over R4∗, invariant under the action of

Λ∗ := {t ∈ R4∗ | t(Λ) ⊂ Z},

or equivalently, over R4∗/Λ∗.

More precisely, for each instanton A on a bundle E over R4/Λ, the Nahm transform creates a
bundle Ê over R4∗/Λ∗ less a few points and a connection Â. The self-dual part of the curvature FÂ
encodes the behavior of solutions to the Dirac equation in the non-compact directions. The bundle
Ê is assembled from kernels of twisted Dirac operators for perturbations of A varying continuously
over R4∗/Λ∗, less those points where the associated Dirac operator is not Fredholm.
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For an expanded version of the Nahm transform, as well as for examples of non-flat Nahm trans-
forms and a survey of the literature, read the survey paper [Jar].

This idea has been exploited quite successfully by Marcos Jardim in his doctoral thesis [Jar99]
and a series of papers [Jar01, Jar02a, Jar02b]. Some analytical details concerning asymptotics
were tackled by Jardim and Biquard in [BJ01]. This work relates doubly-periodic instantons, or
instantons on T 2×R2, with singular Higgs pairs on T 2. It is worth noting that Jardim’s construction
does use Hitchin’s approach and goes through the spectral curves realm.

And so do Cherkis and Kapustin in [CK98, CK99, CK01] where they relate monopoles on R2 ×S1

to solutions of Hitchin’s equations on S1 × R using the Nahm transform and Hitchin’s approach.

While Nye’s doctoral thesis’s work [Nye01] on the Nahm story for calorons, which are instantons
on S1 × R3, does not directly use spectral curves, it relies on the construction of the Nahm data for
monopoles of [HM89] which does use them. Nye’s work, and the companion paper [NS00] with
Singer, cover a lot of ground but bits and pieces are missing. As mentioned by Nye in his thesis, a
direct proof of the SU(n)-monopole story through a careful analysis of the Dirac operator similar
to Nakajima’s proof for the SU(2) case would help cover even more ground.

Of the four-dimensional quotients of R4, there remains only R × T 3. At this point in time, very
little is known about instantons on R × T 3: some comments about the Nahm transform heuristic,
and numerical approximations are found in [vB96]. This current thesis is a step forward.

Road Map

The heart of this present thesis is composed of Chapter 2, where the heuristic guiding our steps is
presented, and Chapter 8, where the main result is described and proved. The experienced reader
might want to pick and choose what he wants to read from the other chapters in order to get to the
main result. To facilitate this approach, we now rapidly explore the whole thesis.

In Chapter 1, we explore the ADHM construction of instantons on R4, incorporating the idea of
Nahm and using only Riemannian constructions and avoiding at all cost any use of the complex
structure of R4. Acknowledging those facts, this chapter is called “The Riemannian ADHMN con-
struction.”

In Chapter 2, we explore in more details the Nahm Transform heuristic which guides the research
in this field of study. The curvature computation presented in that chapter is the key ingredient in
understanding why the pair (B,Φ) satisfies the Bogomolny equation on almost all of T 3.

In Chapter 3, we study the Dirac spectrum of product manifolds. Of particular interest is the Dirac
Spectrum Formula given in Theorem 3.2-1; see page 41. This formula constructs the spectrum
ΣM×N of the Dirac operator on a spinor bundle of the product manifold Mm ×Nn in terms of the
spectra ΣM on Mm and ΣN on N . More precisely, we get

ΣM×N =

{
±
∣∣ΣM × ΣN

∣∣, if m and n are odd;

±
∣∣Σ>0

M × ΣN

∣∣ ∪ (ΣN )#k+

M ∪ (−ΣN )#k−
M , if m is even.

This formula might not be present in the literature. As a corollary, we derived in Theorem 3.4-1
a formula for the spectrum of the Dirac operator on the spinor bundle of T 3 twisted by a flat line
bundle.

In Chapter 4, we derive formulas for eigenvalues and multiplicities of the Dirac operator on spheres.
Section 4.1 computes the spectrum for S3. The proof presented here is quite similar to a proof of
Hitchin of which the author was not aware at the time of the writing. Knowledge of this spectrum
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is necessary to understand the asymptotic behavior of harmonic spinors on R4 proved in Chapter 7
and used in Chapter 1. Section 4.2 presents a construction of Trautman for the eigenvalues on all
spheres and confirms to some extend the results of the other section.

In Chapter 5, we take note of certain results concerning the asymptotic decay of instantons on
R × T 3. The proof exists elsewhere in the literature and is not included here. Should one be able
to adapt the center manifold proof for instantons on cylindrical manifolds presented in [MMR94]
to warped cylinders, one could use Theorem 5.2-2 on the decay of instantons on T 2 × R2 living in
the gauge group translates of the zero Fourier mode to prove a conjecture of Jardim on finite energy
and quadratic decay.

In Chapter 6, we define weighted Sobolev spaces and study conditions on the weights for a Dirac
operator twisted by an instanton to be Fredholm. An analysis of the time-independent case provides
a formula for the difference of the indices for different weights. A short story of the concepts of
weighted Sobolev spaces is presented to get the chapter off the ground.

In Chapter 7, we derive knowledge of the asymptotic behavior of harmonic spinor. To achieve that
goal, the Fredholm theory of Chapter 6 is extended to weighted Sobolev spaces on half-cylinders.
Once this task is accomplished, a diagram chase gives the desired result. This chapter closes with
an analysis of the asymptotic behavior on R4. The knowledge of this behavior is necessary for part
of the algebraic data in the ADHMN construction of Chapter 1.

In Chapter 8, we describe the Nahm transform of spatially periodic instantons. It is a singular
monopole on T 3. The excision proof of Chapter 6 allows for a computation of the L2-index of
the Dirac operator, which is presented in Section 8.1. A geometric splitting of the bundle V given
in Section 8.2 allows for an understanding of the behavior of the Higgs field at the singular points,
which is given in Section 8.3. A derivation of a precise formula for the Green’s operator on S±⊗Lz

presented in Section 8.4 constitutes some preliminary work on the behavior of the connection B at
the singular points.

Four appendices complete this thesis. In Appendix A, we derive the various dimensional reductions
of the anti-self-dual equation. In Appendix B, we study an excision principle for the index of
Fredholm operators. In Appendix C, we state and prove an algebraic lemma useful for simplifying
the exposition in Chapter 8. In Appendix D, we study how the Dirac operator changes under a
conformal change of the metric. In Appendix E, we visit the treatment of Bartnik of weighted
Sobolev spaces on Rn and Fredholm properties for operators asymptotic to the ordinary Laplacian,
merely cleaning up a part of his paper [Bar86] by adding proofs where needed. The results presented
in this appendix are used in Chapter 1 and parallel to a certain extend our treatment of Dirac operator
on cylindrical manifolds of Chapters 6 and 7.
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Chapter 1

The Riemannian ADHMN construction

On a four dimensional riemannian manifold X , a G-instanton is a G-bundle E equipped with the
gauge equivalence class of a connection A which is such that its curvature FA is anti-self-dual
(written ASD for short)

∗FA = −FA

and has finite energy
‖FA‖L2 <∞.

In the case where X is compact, we can associate to the SU(n)-instanton (E,A) its instanton
number c2(E). In fact, the equalities

c2(E) =
1

8π2

∫
Tr(FA)2

=
1

8π2

∫
−|F+

A |2 + |F−
A |2dµ

and
‖FA‖2

L2 =

∫
|F+

A |2 + |F−
A |2dµ

indicate that
‖FA‖2

L2 = 8π2c2(E) if and only if A is ASD.

Hence not every bundle admit a ASD connection: an obstruction to the existence of a ASD connec-
tion on E is c2(E) ≥ 0.

In this chapter, we explore the ADHM construction of instantons on R4 from a strictly riemannian
viewpoint. Most treatments found in the literature exploit the holomorphic possibilities stemming
from the ASD condition. Nahm’s [Nah84] and Corrigan–Goddard’s [CG84] papers are unlike those,
but provide more of a backbone than a complete construction.

1.1 The setting

In this chapter, we consider only instantons for the group SU(n) on the space R4.

Let S = S+ ⊕ S− be the spinor bundle of R4. Recall that S+ and S− are trivial bundles with
quarternionic fiber H. Let’s denote the Clifford multiplication by ρ.

LetE be a complex vector bundle with structure group SU(n). LetE be equipped with a connection
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A. We denote byDA the Dirac operator Γ(S+⊗E) → Γ(S−⊗E) andD∗
A its adjoint. The Laplacian

∇∗
A∇A we denote ∆A. Thus

∆Af = −
4∑

i=1

(∂i)
2 − 2

4∑

i=1

Ai∂if −
4∑

i=1

(
(∂iAi) +A2

i

)
f.

The main object we are studying are instantons on R4. An instanton connection is

a SU(n) bundle E, and

a connection A on E such that

F+
A = 0 (ASD condition), and

‖FA‖L2 <∞.

An instanton is the gauge equivalence class of an instanton connection. It must be in fact that
k := ‖FA‖L2/8π

2 is an integer that we call the charge. Let MASD
k,n denote the moduli space of

instantons of charge k and rank n.

Equally important are the ADHM data. They are

a hermitian vector space V of rank k,

a hermitian vector space W of rank n,

a 1-form a with values in hermitian endomorphisms of V , and

a map Ψ: V → S+ ⊗W .

In the more general framework of Chapter 2, ADHM data are called Nahm data.

There is a natural notion of isomorphism of ADHM data. Of course, any two hermitian vector
spaces of same rank are isomorphic, so a can be thought as a 1-form with values in hermitian k× k
matrices, and Ψ as a 2n × k matrix. The ADHM data (V,W, a,Ψ) and (V ′,W ′, a′,Ψ′) are to be
considered equivalent if there exist u ∈ SU(n) and v ∈ U(k) for which

ua′u−1 = a, and (1 ⊗ u−1)Ψ′v = Ψ. (1.1)

The aim of the ADHM construction is to place in correspondence the space of instantons and the
space of equivalence classes of ADHM data satisfying Conditions (1.3) and (1.4) described below.

We identify S+ to its dual using a complex skewform ω on S+:

S+ → (S+)∗

s 7→ ω(·, s).

Hence we can associate to the map Ψ: V → S+ ⊗W the map

Φ = (ω ⊗ 1) ◦ (1 ⊗ Ψ): S+ ⊗ V →W.

We use a and Φ to define the map

Qx : S+ ⊗ V → S− ⊗ V ⊕W

Qx =

[∑4
i=1 ρ(∂i) ⊗ (ai + xi)

Φ

]
.

(1.2)
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The conditions referred to above are the

−ρ([a, a]) + 2Φ∗Φ = 1 ⊗ Ψ∗Ψ (ADHM equation), (1.3)

Qx is everywhere injective. (non-degeneracy condition) (1.4)

Let MADHM
n,k denote the space of ADHM data satisfying the ADHM and non-degeneracy conditions,

modulo the equivalence relation of Equation (1.1).

The goal of this chapter is to prove the following theorem.

Theorem 1.1-1 (ADHM construction). The map

N : MASD
k,n → MADHM

n,k ,

constructed in Section 1.2, and the map

F : MADHM
n,k → MASD

k,n ,

constructed in Section 1.3 are inverses of each other.

1.2 From instanton to ADHM data

We build up the ADHM data bit by bit.

The Weitzenbock formula

D∗
ADA = ∆A + ρ(F+

A ) +
1

4
scalar curvature

tells us that the ASD (anti-self-dual) condition for the connection A is equivalent to the condition
that

D∗
ADA commutes with quaternion multiplication.

It also tells us that for an A connection whose curvature is ASD, ker(DA) ∩ L2 = {0}. Indeed,
because of the Weitzenbock formula, when DAφ = 0 it must be that φ is parallel. But to be L2 on
R4, a parallel section must then be 0.

Set
VE := L2 ∩ ker(D∗

A),

and
WE := bounded harmonic sections of E.

Elements of WE are in natural bijection with sections parallel at infinity. Set the scalar product on
WE to be

〈w1, w2〉 = 4π2(w∞
1 , w

∞
2 ). (1.5)

Let {ψ1, . . . , ψk} be a L2-orthonormal basis of VE . We use the L2 scalar product, which we also
denote 〈 , 〉, and define the projection Π by the formula

Π :=
k∑

j=1

〈ψj , · 〉ψj .
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Let mµ denote multiplication by xµ. Consider the linear map

aµ : VE → VE

ψ 7→ −Πmµψ.
(1.6)

The endomorphism aµ has matrix
[
−〈ψi, xµψj〉L2

]
1≤i,j≤k

.

This matrix is clearly hermitian, that is a∗µ = aµ.

The L2 condition imposes a particular asymptotic behavior to elements of VE . We study in Chapter
7 how harmonic spinors decay on cylindrical manifolds. Since R4 \ {0} = R × S3 conformally,
we reprove in Section 7.3 the classical result that any element of VE has an asymptotic expansion
of the type

|x|−4ρ(x)φ̂+O(|x|−4) (1.7)

for a parallel section φ̂ of S+ ⊗E.

We define the map

Ψ: VE → S+ ⊗WE

φ 7→ φ̂/2.

We package the obtained ADHM data as

N(E,A) = (VE ,WE , a,Ψ). (1.8)

The rest of this section is devoted to the analysis justifying the given description of N(E,A) and
preparing the way for the proof that N(E,A) satisfies the conditions (1.3) and (1.4).

The Green’s function G and Projections

As multiplication by xi could potentially kick an element of L2 out of it, we have to prove that on
ker(D/∗A) it doesn’t. To do so, we observe that the L2-condition on VE is actually too weak. This
observation is best described in the realm of weighted Sobolev spaces see Appendix E or [Bar86]
for conventions and results.

Again using the conformal identification of R4 \ {0} with R × S3, and using the fact that the inter-
val (−3/2, 3/2) contains no eigenvalue of the Dirac operator on S3 (see Section 4.1), we can use
the technology of Chapter 6 or of Appendix E to prove that

VE = W 1,2
δ ∩ ker(D∗

A)

for δ ∈ (−3, 0). In that range, the kernel is constant.

For −2 < δ < 0 and 1 < p <∞, the operator

∆A : W k+2,p
δ (S ⊗E) →W k,p

δ−2(S ⊗E)

is invertible; see for example [KN90, lemma 5.1, p. 279]. Let GA denote its inverse, the so called
Green’s operator. Observe that as ∆A is defined independently of δ, so is GA for δ < 0.

20



Set
PA := Id−DAGAD

∗
A.

In a finite dimensional setting, it is obvious that Π = PA. The next lemma tells us for which
weighted Sobolev spaces these projections are indeed the same.

Lemma 1.2-1. When δ ∈ (−3,−1), the projection PA : W 1,2
δ → VE is a well-defined continuous

map. When δ < −1, the projection Π: L2
δ → VE is a well-defined continuous map. On the spaces

W 1,2
δ for δ ∈ (−3,−1), we have Π = PA.

Proof: All the maps in the sequence

W 1,2
δ

D∗
A−−−−→ L2

δ−1
GA−−−−→ W 2,2

δ+1
DA−−−−→ W 1,2

δ

are continuous when δ + 1 ∈ [−2, 0], thus when δ ∈ [−3,−1]. Since D∗
APA = 0 in the interior of

that range, PA maps into VE for δ ∈ (−3,−1).

We have
|〈ψj , φ〉| ≤ ‖ψj‖2,δ1

‖φ‖
2,δ

with δ + δ1 = −4. Since ψj ∈ VE ⊂ W 1,2
δ1

for δ1 > −3, we have that the scalar product is finite
when φ ∈ L2

δ for δ < −1. We can clearly see that Π is continuous and maps into VE in that range.

Now, suppose φ ∈ V ⊥
E ∩W 1,2

δ . Then

〈PAφ, ψj〉 = 〈φ, ψj〉 − 〈DAGAD
∗
Aφ, ψj〉.

The first term of the right hand side is clearly 0 since ψj ∈ VE . For φ ∈ W 1,2
δ with δ ∈ (−3,−1),

we have the equality
〈DAGAD

∗
Aφ, ψj〉 = 〈GAD

∗
Aφ,D

∗
Aψj〉 = 0.

Hence 〈PAφ, ψj〉 = 0 for all j and PAφ ∈ V ⊥
E . Since we already know that PAφ ∈ VE , we must

have PAφ = 0 and PA = Π. 2

Asymptotic for Gφ

We also need to know the asymptotic behavior of GAφ for φ ∈ VE .

Lemma 1.2-2. For φ ∈ VE , we have

GAφ = r2φ

4
+O(r−2). (1.9)

Proof: Notice first that

∇∗
A∇Ar

2φ = −8φ− 4∇x
Aφ+ r2∇∗

A∇Aφ. (1.10)

Since φ ∈ VE , we have from Equation (1.7) that

φ = |x|−4ρ(x)φ̂+O(r−4).
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In fact, by doing the decomposition in some higher order Sobolev spaces, we see that

∇x
AO(r−4) = O(r−4), and

∇∗
A∇AO(r−4) = O(r−6).

Note now that

∇x
Aρ(ν)r

−3φ̂ = rρ
(∇ν

Aν
)
r−3φ̂+ rρ(ν)(ν · r−3)φ̂+ ρ(ν)r−3r∇ν

Aφ̂

= 0 + rρ(ν)(−3r−4)φ̂+ 0

= −3ρ(ν)r−3φ̂.

Thus, we have

∇x
Aφ = −3φ+O(r−4) + ∇x

AO(r−4)

= −3φ+O(r−4). (1.11)

Similarly, since

4∑

i=1

∇i
A∇i

A

(
r−4

4∑

j=1

xjρ(∂j)φ̂
)

=
4∑

i=1

∇i
A

(
r−4

4∑

j=1

∇i
Axjρ(∂j)φ̂+ ∂i(r

−4)
4∑

j=1

xjρ(∂j)φ̂
)

=
4∑

i=1

∇i
A

(
r−4ρ(∂i)φ̂

)
+

4∑

i=1

∂2
i (r−4)ρ(x)φ̂

+
4∑

i=1

∂i(r
−4)∇i

A

(
ρ(x)φ̂

)

= 2
4∑

i=1

∂i(r
−4)ρ(∂i)φ̂+ 8r−6ρ(x)φ̂

= 2
4∑

i=1

(−4)r−6xiρ(∂i)φ̂+ 8r−6ρ(x)φ̂

= 0

we have

∇∗
A∇Aφ = −

4∑

i=1

∇i
A∇i

A

(
r−4ρ(x)φ̂

)
+ ∇∗

A∇AO(r−4)

= O(r−6) (1.12)

Summing up what we know with Equations (1.10), (1.11), and (1.12), we find that

∇∗
A∇Ar

2φ = −8φ− 4
(−3φ+O(r−4)

)
+ r2O(r−6).

Applying GA on both sides, we get

GAφ = r2φ

4
+GAO(r−4).
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Lemma 3.3.35 from [DK90, p. 105] tells us that

GAO(r−4) = O(r−4) +O(r−2) +O(r4−(2+4)) = O(r−4).

Substituting in the previous equation, we complete the proof. 2

The Curvature of a

In view of the heuristic we explore in Chapter 2, we choose to temporarily view VE as the fiber of
a trivial bundle over R4. The endomorphisms aµ then team up to produce the constant connection

a = a1dx
1 + · · · + a4dx

4.

Lemma 1.2-3. The curvature Fa = 1
2 [a, a] of the connection a on the trivial bundle with fiber VE

over R4, seen as an element of End(VE) ⊗∧2 R4 is given by

Fa = ΠGA

3∑

i=1

ρ(ε̄i) ⊗ ε̄i −
1

8

3∑

i=1

Ψ∗ρ(εi)Ψ ⊗ εi.

Proof: Component-wise, the curvature is

(Fa)ij =
1

2
[ai, aj ].

To compute this curvature, we need to to see that

[mi, DA] = −ρ(∂i), (1.13)

and that
[ρ(∂i), GA] = 0. (1.14)

These two results are independent of the ASD condition on A. The second has to do with the fact
that the ∂i are parallel.

Let φ ∈ VE . We have
[ai, aj ](φ) = Π(miΠmjφ) − Π(mjΠmiφ). (1.15)

Since at this point we have two formulas for Π, let’s use both and use PA to denote the usage of the
1 −DAGAD

∗
A formula, and Π for the scalar product type formula. We then compute

Π(miPAmjφ) =
k∑

l=1

lim
r→∞

(∫

B4(r)
(mi(1 −DAGAD

∗
A)mjφ, ψl)

)
ψl, (1.16)

but
(mi(1 −DAGAD

∗
A)mjφ, ψl) = (mimjφ, ψl) − (miDAGAD

∗
Amjφ, ψl). (1.17)

The first term gets killed when we antisymmetrize with respect to i and j. We thus compute only
the second term. Equation (1.13) tells us that

(miDAGAD
∗
Amjφ, ψl) = (miDAGAmjD

∗
Aφ, ψl) + (miDAGAρ(∂j)φ, ψl)

= (DAmiGAρ(∂j)φ, ψl) − (ρ(∂i)GAρ(∂j)φ, ψl). (1.18)
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The second term gives the ΠGAρ(∂i)ρ(∂j) part of the curvature once we integrate, take the limit,
substitute, antisymmetrize as asked by Equation (1.15) and divide by 2 to get its part in Fa.

As proved in [Roe98, p. 46], we have

(DAs, ψl) − (s,D∗
Aψl) =

4∑

h=1

∂h(ρ(∂h)s, ψl).

Since D∗
Aψl = 0, the first term of Equation (1.18) transforms:

(DAmiGAρ(∂j)φ, ψl) =
4∑

h=1

∂h(ρ(∂h)GAρ(∂j)φ, ψl).

We now integrate by parts over the ball of radius r to obtain
∫

B4(r)
(DAmiGAρ(∂j)φ, ψl) =

∫

S3(r)
(ρ(ν)miGAρ(∂j)φ, ψl).

We now use the asymptotic given by Equations (1.7) and (1.9) to get

ψl = r−3ρ(ν)ψ̂l +O(r−4), and

GAφ = ρ(ν)φ̂/4r +O(r−2).

Then
∫

S3(r)
(ρ(ν)miGAρ(∂j)φ, ψl)

=
4∑

h=1

∫

S3(r)
r−1xixh

(
ρ(ν)ρ(∂j)ρ(∂h)φ̂/4r +O(r−2), r−3ρ(ν)ψ̂l +O(r−4)

)

=
4∑

h=1

∫

S3(r)
(r−5/4)xixh(ρ(∂j)ρ(∂h)φ̂, ψ̂l) +

∫

S3(r)

(
O(r−5) +O(r−4) +O(r−4)

)

= (r−5/4)
4∑

h=1

(ρ(∂j)ρ(∂h)φ̂, ψ̂l)

∫

S3(r)
xixh +O(r−4)V ol(S3(r)).

As r → ∞, the volume of S3(r) is O(r3) thus the last term vanish in the limit. The integral∫
S3(r) xixh vanishes when i 6= l and is otherwise

r2V ol(S3(r))/4 = r5V ol(S3(1))/4 = r5π2/2.

Thus we have from Equations (1.17), (1.16) and (1.15) that

[ai, aj ](φ) = 2ΠGAρ(∂i)ρ(∂j)φ− π2

4

k∑

l=1

(ρ(∂i)ρ(∂j)φ̂, ψ̂l)ψl.

Note that
∑

1≤i,j≤4

ρ(∂i)ρ(∂j)dx
i ∧ dxj =

3∑

i=1

ρ(εi)εi + ρ(ε̄i)ε̄i.
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Remember that
∧+ acts trivially on VE ⊂ Γ(S− ⊗E) and

∧− acts trivially on Γ(S+ ⊗E). Hence,
the curvature is

Fa(φ) = ΠGA

3∑

i=1

ρ(ε̄i)φε̄i −
π2

8

3∑

i=1

k∑

l=1

(ρ(εi)φ̂, ψ̂l)ψlεi

= ΠGA

3∑

i=1

ρ(ε̄i)φε̄i −
π2

2

3∑

i=1

k∑

l=1

(ρ(εi)Ψ(φ),Ψ(ψl))ψlεi.

Using the scalar product given by Equation (1.5), we complete the proof. 2

The ADHM data satisfies the conditions

Before going further, let’s walk through the association between Φ and Ψ in more details. Using the
identification R4 = H = S+ = S−, the Clifford multiplication ρ(x) : S+ → S− is multiplication
by −x̄ and ρ(x) : S− → S+ is multiplication by x.

Let εi and ε̄i denote the usual basis of
∧+ and

∧− respectively. The action of self-dual forms on
S+ is

ρ(ε1) = 2i, ρ(ε2) = 2j, ρ(ε3) = 2k.

We use the complex basis s1 = 1, s2 = j of S+, with the identification

C ⊕ C = S+

(z1, z2) 7→ z1 + jz2.
(1.19)

Then,

ρ(ε1) = 2

[
i 0
0 −i

]
, ρ(ε2) = 2

[
0 −1
1 0

]
, ρ(ε3) = 2

[
0 −i
−i 0

]
. (1.20)

We split the map Ψ as

Ψ: V → S+ ⊗W

Ψ = s1 ⊗ Ψ1 + s2 ⊗ Ψ2.

We identify S+ to its dual using the skewform ω = s1 ∧ s2:

S+ → (S+)∗

s 7→ ω(·, s).

Thus

s1 7→ −s2

s2 7→ s1.

As mentioned before, in doing so we identify Ψ with the map

Φ = (ω ⊗ 1) ◦ (1 ⊗ Ψ): S+ ⊗ V →W

Φ = −s2Ψ1 + s1Ψ2.
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The adjoints are

Ψ∗ : S+ ⊗W → V

Ψ∗ = s1Ψ∗
1 + s2Ψ∗

2,

and

Φ∗ : W → S+ ⊗ V

Φ∗ = −s2 ⊗ Ψ∗
1 + s1 ⊗ Ψ∗

2.

Thus
Ψ∗ = −(ω ⊗ 1) ◦ (1 ⊗ Φ∗).

We have

Ψ∗Ψ: V → V,

Ψ∗Ψ = Ψ∗
1Ψ1 + Ψ∗

2Ψ2, (1.21)

and
Φ∗Φ: S+ ⊗W → S+ ⊗W

is given by s2 ⊗ s2 ⊗ Ψ∗
1Ψ1 + s1 ⊗ s1 ⊗ Ψ∗

2Ψ2 − s1 ⊗ s2 ⊗ Ψ∗
2Ψ1 − s2 ⊗ s1 ⊗ Ψ∗

1Ψ2. In matrix
form, this expression becomes

Φ∗Φ =

[
Ψ∗

2Ψ2 −Ψ∗
2Ψ1

−Ψ∗
1Ψ2 Ψ∗

1Ψ1

]
. (1.22)

Theorem 1.2-4. The ADHM data (VE ,WE, a,Ψ) obtained from the SU(n)-instanton connection
(E,A) satisfies the ADHM and nondegeneracy conditions (1.3) and (1.4).

Proof: Let’s first consider the action of [a, a] = 2Fa on S+ ⊗ V . On that space, only the self-dual
part matters. Recall from Lemma 1.2-3 that for φ ∈ VE , we have

[a, a]+(φ) = 2F+
a =

1

4

3∑

i=1

Ψ∗ρ(εi)Ψ(φ)εi.

Let’s break it down using the identification of Equation (1.19) and the matrices of Equation (1.20).
We have

Ψ∗ρ(ε1)Ψ =
[
Ψ∗

1 Ψ∗
2

] [i 0
0 −i

] [
Ψ1

Ψ2

]
= 2i(Ψ∗

1Ψ1 − Ψ∗
2Ψ2),

and similarly

Ψ∗ρ(ε1)Ψ = 2(Ψ∗
2Ψ1 − Ψ∗

1Ψ2),

Ψ∗ρ(ε1)Ψ = −2i(Ψ∗
2Ψ1 + Ψ∗

1Ψ2).

For the map ρ([a, a]) : S+ ⊗ V → S− ⊗ V , only the self-dual part matters and in term of the
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identification of Equation (1.19), it is given by

ρ([a, a]) =
1

4

(
2

[
i 0
0 −i

]
Ψ∗ρ(ε1)Ψ + 2

[
0 −1
1 0

]
Ψ∗ρ(ε2)Ψ + 2

[
0 −i
−i 0

]
Ψ∗ρ(ε3)Ψ

)

=



Ψ∗

2Ψ2 − Ψ∗
1Ψ1 −2Ψ∗

2Ψ1

−2Ψ∗
1Ψ2 Ψ∗

1Ψ1 − Ψ∗
2Ψ2


 .

Using Equations (1.21) and (1.22), we see that

−ρ([a, a]) + 2Φ∗Φ = 1 ⊗ Ψ∗Ψ (ADHM equation).

Hence the ADHM equation (1.3) is satisfied. 2

1.3 From ADHM data to instanton

We now start with some ADHM data (V,W, a,Ψ) satisfying the ADHM and nondegeneracy condi-
tions (1.3) and (1.4), and want to construct an instanton connection

F(V,W, a,Ψ) = (E,A).

Recall from Equation (1.2) that we define Qx : S+ ⊗ V → S− ⊗ V ⊕W as

Qx =



∑4

i=1 ρ(∂i) ⊗ (ai + xi)

Φ


 .

Since Qx is injective for every x, the map Q∗
xQx : S+ ⊗ V → S+ ⊗ V is an isomorphism at for

every x. Let
GQx = (Q∗

xQx)−1 (1.23)

be its inverse.

Let E be the bundle with fiber ker(Q∗
x) at x. The bundle E sits in the trivial bundle with fiber

S− ⊗ V ⊕W . To simplify the notation, we drop the subscript x. The map

R := 1 −QGQQ
∗ (1.24)

is the orthogonal projection on E. We equip E with the induced connection

A := Rd.

Theorem 1.3-1. The pair (E,A) is an instanton connection on R4.

Proof: To compute the curvature, we first need a better grip on GQ. We have

Q∗ =
[
−∑4

i=1 ρ(∂i) ⊗ (ai + xi) Φ∗
]
,
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thus

Q∗Q = −
∑

1≤i,j≤4

ρ(∂i)ρ(∂j) ⊗ (ai + xi)(aj + xj) + Φ∗Φ

= 1 ⊗
4∑

i=1

(ai + xi)
2 − 1

2
ρ([a, a]) + Φ∗Φ

= 1 ⊗
( 4∑

i=1

(ai + xi)
2 +

1

2
Ψ∗Ψ

)
. (1.25)

Thus, Q∗Q commutes with the quaternions and so does its inverse GQ. We can then write

GQ = 1 ⊗ gQ

with gQ the inverse of the map qq : V → V given by

qq =
4∑

i=1

(ai + xi)
2 − (1/2)Ψ∗Ψ.

Notice that

[∂µ, Q] =

[
ρ(∂µ)

0

]
.

The curvature acts on φ ∈ E as

RdRdφ =
∑

1≤i,j≤4

R∂iR∂jφdx
i ∧ dxj,

and

R∂iR∂jφ = R∂i∂jφ−R∂iQGQQ
∗∂jφ

= R∂i∂jφ−R∂iQGQ∂jQ
∗φ+R∂iQF

[
ρ(∂j) 0

]
φ

= R∂i∂jφ+ 0 +RQ∂iGQ

[
ρ(∂j) 0

]
φ−R

[
ρ(∂i)

0

]
GQ

[
ρ(∂j) 0

]
φ

= R∂i∂jφ−R

[
GQρ(∂i)ρ(∂j) 0

0 0

]

Thus, we find

Fâ = −R
3∑

i=1

[
GQρ(ε̄i) 0

0 0

]
ε̄i,

and the connection has ASD curvature.

Since qq = r2 +O(r) as r tends to ∞, we have that

gQ = r−2 +O(r−3) as r → ∞.
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Then

R = 1 −QGQQ
∗

= 1 −
[
ρ(x) +O(1)

O(1)

]
(r−2 +O(r−3))

[
−ρ(x) +O(1) O(1)

]

= 1 −
[
−ρ(x)2r−2 +O(r−1) O(r−1)

O(r−1) O(r−2)

]

=

[
O(r−1) O(r−1)

O(r−1) 1 +O(r−2)

]
,

thus the curvature of the connection Rd on E satisfies

R

[
GQ 0
0 0

]
=

[
O(r−3) 0

0 0

]
as r → ∞,

and is consequently in L2.

The proof is now complete. 2

In fact, we can prove even a better asymptotic formula for gQ.

Lemma 1.3-2. In fact, we even have

gQ = r−2 − 2
∑

xjajr
−4 −

(∑
a2

j −
1

2
Ψ∗Ψ

)
r−4 + 4

∑

j,k

ajakxjxkr
−6 +O(r−5). (1.26)

Proof: The proof is mechanical. We build up the asymptotics of gQ from the asymptotics of qq,
term by term. 2

1.4 Uniqueness

We now wish to prove that starting from some ADHM data, creating the associated instanton and
looking at the ADHM data this instanton produce, we come back to where we started. In other
words, we prove in this section that the composition

ADHM data
(V,W, a,Ψ)

Sect.1.3−−−−→
F

instanton
(E,A)

Sect.1.2−−−−→
N

ADHM data
(V ′,W ′, a′,Ψ′)

gives (V ′,W ′, a′,Ψ′) = (V,W, a,Ψ).

We are thus searching for a proof that V is isomorphic, in a somewhat canonical way, to ker(D∗)
in sections of S− ⊗E. As E is a subbundle of S− ⊗ V ⊕W , we would be happy to find a map

ψ : V → S− ⊗ (S− ⊗ V ⊕W
)
,

or equivalently
ψ̃ : S+ ⊗ V → S− ⊗ V ⊕W,
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such that

Im(ψ̃) ⊂ E,

D∗ψ = 0,

ψ is injective.

Using the identification S+ ≡ S−, define the map

b : S+ ⊗ V → S− ⊗ V ⊕W (1.27)

x 7→ (x, 0).

Our candidate is
ψ̃ = RbGQ. (1.28)

Obviously, Im(ψ̃) ⊂ E as R projects on E. To prove that D∗ψ = 0, we observe that

D̃∗
Aψ = 〈D∗

Aψ, ·〉

=
4∑

j=1

〈ρ(∂j)∇j
Aψ, ·〉

= −
4∑

j=1

〈∇j
Aψ, ρ(∂j)·〉

= −
4∑

j=1

(∇j
Aψ̃) ◦ ρ(∂j).

Hence

D̃∗ψ = −
4∑

j=1

R(∂jψ̃)ρ(∂j)

= −
4∑

j=1

R∂j(RbGQ)ρ(∂j)

= −
4∑

j=1

R(∂jR)bGQρ(∂j) −
4∑

j=1

Rb(∂jGQ)ρ(∂j)

=
4∑

j=1

R∂j(QGQQ
∗)bGQρ(∂j) −

4∑

j=1

Rb(∂jGQ)ρ(∂j)

=
4∑

j=1

R(∂jQ)GQQ
∗bGQρ(∂j) +

4∑

j=1

RQ∂j(GQQ
∗)bGQρ(∂j) −

4∑

j=1

Rb(∂jGQ)ρ(∂j).

On that last line, the second sum is obviously null as RQ = 0. As for the first sum, observe that
∂jQ = bρ(∂j), while

GQQ
∗bGQ =

1

2

4∑

i=1

ρ(∂i)∂iGQ. (1.29)

Indeed, from Equation (1.25), we derive that ∂iGQ = −2GQ(ai + xi)GQ. Equation (1.29) follows
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immediately once we recognize that Q∗b = −∑4
i=1 ρ(∂i)(ai + xi).

Going back to where we left, we have

D̃∗
Aψ =

1

2

∑

1≤i,j≤4

Rbρ(∂j)ρ(∂i)(∂iGQ)ρ(∂j) −
4∑

j=1

Rb(∂jGQ)ρ(∂j)

= Rb
4∑

i=1

(1

2

4∑

j=1

ρ(∂j)ρ(∂i)ρ(∂j) − ρ(∂i)
)
∂iGQ

= 0.

Now that we know that ψ maps V to sections of S− ⊗ E satisfying the Dirac equation, we would
like to see that ψ is actually an isomorphism V → V ′. To prove this result, we use the following
analytic lemma. But first let ∂2 denote the Laplacian

∑
i ∂

2
i .

Lemma 1.4-1. For ψ defined by Equation (1.28), we have

ψ∗ψ = −1

4
∂2gQ. (1.30)

Proof: Let tr2 denote the trace along the spinor factor. Notice that

ψ∗ψ = tr2(ψ̃
∗ψ̃).

Indeed, as we have

ψ = s1 ⊗ ψ1 + s2 ⊗ ψ2, ψ∗ = s1 ⊗ ψ∗
1 + s2 ⊗ ψ∗

2 ,

ψ̃ = s1 ⊗ ψ1 + s2 ⊗ ψ2, ψ̃∗ = s1 ⊗ ψ∗
1 + s2 ⊗ ψ∗

2 ,

then

tr2(ψ̃
∗ψ̃) = s1 ⊗ s1ψ∗

1ψ1 + s1 ⊗ s2ψ∗
1ψ2 + s2 ⊗ s1ψ∗

2ψ1 + s2 ⊗ s2ψ∗
2ψ2

= ψ∗
1ψ1 + ψ∗

2ψ2 = ψ∗ψ.

On one hand, multiplying ψ̃∗ψ̃ by GQ
−1 yields

ψ̃∗ψ̃ = GQb
∗RbGQ

= GQ(b∗bGQ − b∗QGQQ
∗bGQ)

= GQ
2 − 1

2

4∑

i=1

GQb
∗Qρ(∂i)∂iGQ.

On the other hand, for each k, we have

∂2
i (GQ

−1GQ) = ∂i

(
2(ai + xi)GQ

)
+ ∂i(GQ

−1∂iGQ)

= 2GQ + 4(ai + xi)∂iGQ +GQ
−1∂2

i GQ.
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As ∂2 =
∑4

i=1 ∂
2
i , those equalities sum up to

∂2GQ = −8GQ
2 − 4

4∑

i=1

GQ(ai + xi)∂iGQ. (1.31)

We hence have

ψ∗ψ = tr2(ψ̃
∗ψ̃)

= tr2
(
GQ

2 − 1

2

4∑

i=1

GQb
∗Qρ(∂i)∂iGQ

)

= 2gQ
2 − tr2

2

( ∑

1≤i,j≤4

GQ(aj + xj)ρ(∂j)ρ(∂i)∂iGQ
)

= 2gQ
2 +

4∑

i=1

gQ(ai + xi)∂igQ − tr2
2

(
GQ

∑

i6=j

(aj + xj)ρ(∂j)ρ(∂i)∂iGQ

)
.

The tr2 part of this last line cancels as for j 6= k we have ρ(∂j)ρ(∂i) = −ρ(∂i)ρ(∂j) while
tr2(ρ(∂j)ρ(∂i)) = tr2(ρ(∂i)ρ(∂j)). Equation (1.30) then follows from this computation and Equa-
tion (1.31). The proof of the lemma is now complete. 2

Using that lemma, we show that ψ is an isomorphism. Recall from Lemma 1.3-2 that we have
the asymptotic behavior gQ = r−2 + O(r−3) as r → ∞, and more to the point, it is so that
∂rgQ = −2r−3 +O(r−4) as r → ∞. We then have

∫

R4

ψ∗ψ = −1

4

∫

R4

∂2gQ

= − lim
r→∞

1

4

∫

S3(r)
∂rgQ

=
1

2
V ol(S3)idV

= π2idV .

Thus an orthonormal basis v1, . . . , vk of V gives an orthonormal basis π−1ψ(v1), . . . , π
−1ψ(vk)

of V ′. Indeed, as ψ =
∑

j ψ(vj)v
j , we have ψ∗ =

∑
j vj ⊗ 〈ψ(vj), ·〉 hence pointwise we have

ψ∗ψ =
∑

i,j〈ψ(vj), ψ(vi)〉vj ⊗ vi, or once we integrate,
∫

R4

ψ∗ψ =
∑

1≤i,j≤4

〈ψ(vj), ψ(vi)〉L2 vj ⊗ vi.

Remembering that the ψ(vj) do not have norm 1, we compute the endomorphism a′µ of V ′:

a′µ =
1

π2

∑

1≤i,j≤4

〈ψ(vj),−xµψ(vi)〉L2 vj ⊗ vi = − 1

π2

∫

R4

xµψ
∗ψ.

Using from Lemma 1.3-2 the asymptotic knowledge that

∂rgQ = −2r−3 + 6
4∑

j=1

xjajr
−5 +O(r−5),
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we find that
∫

R4

xµψ
∗ψ = −1

4

∫

R4

xµ∂
2gQ

=
1

4
lim

r→∞

∫

S3(r)
∂r(xµ)gQ − xµ∂rgQ

=
1

4
lim

r→∞

∫

S3(r)

xµ

r

(
r−2 − 2

4∑

j=1

xjajr
−4 +O(r−4)

)

+ 2xµr
−3 − 6

4∑

j=1

xµxjajr
−5 +O(r−5)

=
1

4
lim

r→∞

(
3r

∫

S3(1)
xj − 8

4∑

j=1

aj

∫

S3(1)
xµxj +O(r−1)

)

= −2aµ

∫

S3

x2
j

= −2aµV ol(S
3)/4

= −π2aµ.

Hence we obtain back the same maps, a′µ = aµ.

1.5 Completeness

We now close this chapter by proving that every instanton arise from some ADHM data. In other
words, we prove in this section that the composition

instanton
(E,A)

Sect.1.2−−−−→
N

ADHM data
(V ′,W ′, a′,Ψ′)

Sect.1.3−−−−→
F

instanton
(E′, A′)

gives an instanton (E ′, A′) gauge equivalent to (E,A).

This last fact establishes the validity of Theorem 1.1-1.

Since (E′, A′) = F(V,W, a,Ψ), then E ′
x sits in S− ⊗ V ⊕W as ker(Q∗

x). Elements of S− ⊗ V ,
once contracted using the skewform ω, give sections of E. Hence the map

αx : S− ⊗ V ⊕W → Ex[
ψ
φ

]
7→ ωGAψ(x) +

1

2
φ(x)

is well defined. Its adjoint α∗
x gives the map we want between E and E ′. To prove that fact, we

need to show that Q∗
xα

∗
x = 0, or equivalently αxQx = 0. For any s⊗ ψ ∈ S+ ⊗ V , we have

αxQx(s⊗ ψ) =
4∑

j=1

ω(ρ(∂j)s⊗GA(aj + xj)ψ)(x) +
1

2
Φ(s⊗ ψ)(x)

= ω
(
s,

4∑

j=1

ρ(∂j)GA(aj + xj)ψ)(x) +
1

2
Ψ(ψ)(x)

)
,
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hence it suffices to prove that for every ψ ∈ V ,

4∑

j=1

ρ(∂j)GA(aj + xj)ψ)(x) +
1

2
Ψ(ψ)(x) = 0. (1.32)

Since V sits in L2
−3+ε for all small ε, it must be that ρ(∂j)GAajψ ∈ L2

−1+ε. Equation (1.9) guaran-
tees that

GAψ =
r2ψ

4
+O(r−2)

=
ρ(x)

2r2
Ψ(ψ) +O(r−2)

hence ρ(x)GAψ + (1/2)Ψ(ψ) ∈ L2
−1+ε as well. Hence the left-hand-side of Equation (1.32) is all

in L2
−1+ε, and thus must be 0 if harmonic.

Applying ∆ kills the Ψ(ψ) term, and for the rest we obtain

∆
( 4∑

j=1

ρ(∂j)GA(aj + xj)ψ)(x)
)

=
4∑

j=1

ρ(∂j)ajψ + ρ(∂j)mjψ − 2ρ(∂j)∇j
AGAψ

=
( 4∑

j=1

ρ(∂j)DAGAD
∗
Amjψ

)
− 2D∗

AGAψ

=

( 4∑

j=1

ρ(∂j)
( 4∑

k=1

ρ(∂i)∇i
A

)
ρ(∂j)GAψ

)
− 2D∗

AGAψ,

which is 0 since
4∑

j=1

ρ(∂j)ρ(∂i)ρ(∂j) = 2ρ(∂i).

The validity of Equation (1.32) is now established, and so is the fact that α∗ maps E to E ′. Proving
that (α∗)∗A′ is gauge equivalent to A is an exercise in rewriting [KN90, Section 6a]. It is left to the
author and the reader for further study.
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Chapter 2

The Nahm transform heuristic

Heuristically, the Nahm transform places instantons on R4/Λ in reciprocity with certain data on the
dual R4∗/Λ∗. This short chapter describes in more details this heuristic.

Let Λ be a closed subgroup of R4. We associate two R-vector spaces to Λ:

ΛR := maximal R-linear subspace of Λ,

ΛZ := orthogonal complement of ΛR in Λ,

L(Λ) := R-vector subspace of R4 generated by Λ.

Obviously, Λ is isomorphic to some Rr × Zs with r + s ≤ 4, and then dimΛR := r, dimΛZ := s,
and dimL(Λ) := r + s.

The dual Λ∗ is defined to be
Λ∗ := {z ∈ R4∗ | z(Λ) ⊂ Z}.

Obviously, dimΛ∗
R

= 4 − r − s, dimΛ∗
Z

= s, and dimL(Λ∗) = 4 − r.

We start with a SU(n)-bundle E over R4 and a SU(n)-connection A on E, both invariant under
the action of Λ. We require the curvature of A, denoted FA, to be anti-self-dual (ASD) and to have
finite L2-norm on the quotient R4/Λ. Equivalently, we start with a vector bundle E on R4/Λ, and
a connection A and endomorphisms a1, . . . , ar of E, such that (A, a1, . . . , ar) satisfies the (4− r)-
dimensional reduction of the ASD equation, as given in Appendix A, and such that its L2-energy,
to be defined appropriately, is finite.

It might happen that the finite L2-norm condition is too strong to get any interesting solutions, in
which case we need to search for a better condition. This need arises for example on R2 × S1, and
Cherkis–Kapustin give in [CK98] an appropriate logarithmic decay condition for the endomorphism
a1. Anyhow, we are exploring a heuristic for studying instantons or their various dimensional
reductions, not a precise recipe, and adjustments need to be made in many cases.

Suppose now z is an element of R4∗, the space of R-valued linear functions on R4. We define the
bundle Lz over R4 to be a trivial C-bundle with connection

ωz := 2πiz = 2πi
4∑

j=1

zjdx
j .

Notice that Lz is invariant under the action of Λ, and that it is flat. Furthermore, whenever z ′ ∈ Λ∗,
the bundles with connections Lz and Lz+z′ are isomorphic over R4/Λ, or equivalently we can

35



parameterize flat connections over R4/Λ by elements of R4∗/Λ∗.

Indeed, for z ∈ R4∗, define the function gz : R4 → U(1) by

gz(x) = e−2πiz(x),

and notice that gz is invariant under the action of Λ for each z ∈ Λ∗. But more importantly, we have

gz · ωz′ = ωz′−z.

We write Az for the connection A⊗1+1⊗ωz on E⊗Lz = E. For z ∈ R4∗, consider the operator

D∗
Az

: Γ(R4, S− ⊗E ⊗ Lz) → Γ(R4, S+ ⊗E ⊗ Lz).

A section of the bundle S− ⊗E ⊗ Lz is said to be in L2
Λ if it is invariant under the action of Λ and

if its L2-norm over R4/Λ is finite.

We set
Vz := L2

Λ ∩ ker(D∗
Az

).

By putting some restrictions on A, for example that (E,A) has no flat factor, we ensure via the use
of the Weitzenbock formula that L2

Λ ∩ ker(DAz) = {0}. At this point, we need to prove that D∗
Az

is Fredholm to prove that V is a bundle, and compute the index of D∗
Az

to find its rank.

It turns out in many cases that D∗
Az

is not Fredholm for every z, which is a good thing. Without
going into details, suppose for example that D∗

Az
was Fredholm everywhere when Λ = Z3. As we

explore in this present thesis, the object created by the Nahm transform would be a monopole over
T 3. But as one can show (see [Pau98, Prop. 1]), monopoles over compact 3-manifolds are not very
interesting.

Notice that for any section φ of S− ⊗E, we have

D∗
Az

(gzφ) = gz
(
D∗

Aφ+ 2πicl(z)φ
)

+ cl(grad gz)φ

= gzD
∗
Aφ.

Then for all z′ ∈ Λ∗, we have an isomorphism

gz′ : Vz → Vz+z′ , (2.1)

hence V is a bundle over R4∗/Λ∗.

It is important to keep two points of view in parallel, the full R4∗ view and the quotient R4∗/Λ∗

view. In the first view, we perform a curvature computation and observe how far the curvature of the
connection B we introduce on V is from being anti-self-dual. In the second view, we can sometime
reduce dimension, as in the R4-ADHM case.

Let’s stick to the R4∗ point of view for now. We define a connection B on V . Each fiber Vz is in
fact contained in L2

Λ(S− ⊗ E). We can then consider the trivial connection dz in the trivial bundle
of fiber L2

Λ(S− ⊗E), and its projection Pdz to V .

The operator D∗
Az
DAz should be invertible, and we use the Green’s operator GAz = (D∗

Az
DAz)

−1

to define the projection P by the formula

P = 1 −DAzGAzD
∗
Az
.
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To help ease the notation, set Ω := 2πi
∑4

j=1 cl(dx
j)dzj .

Let’s now compute the curvature of B. Notice that

[dz , DAz ] = [dz, DA + 2πi
4∑

j=1

zjcl(dx
j)] = Ω,

and similarly for D∗
Az

.

The Leibnitz’s rule tells us that

dz〈Pdzφ, ψ〉 = 〈dzPdzφ, ψ〉 − 〈Pdzφ, dzψ〉,

but as 〈Pdzφ, ψ〉 = 〈dzφ, ψ〉, we also have

dz〈Pdzφ, ψ〉 = dz〈dzφ, ψ〉
= 〈dz2φ, ψ〉 − 〈dzφ, dzψ〉
= −〈dzφ, dzψ〉,

hence the curvature FB can be computed as follows:

〈(Pdz)2φ, ψ〉 = 〈dzPdzφ, ψ〉
= 〈Pdzφ, dzψ〉 − 〈dzφ, dzψ〉
= −〈DAzGAzDAzd

zφ, dzψ〉
= 〈DAzGAzΩφ, d

zψ〉.

Let ν be the normal vector field to Sr−1(R)× T s. The integration by parts necessary to bring D on
the right-hand-side of the scalar product introduces a boundary term

lim∂ := lim
R→∞

∫

Sr−1(R)×T s
〈cl(ν)GΩφ, dzψ〉. (2.2)

Performing the said integration by parts, we obtain

〈FBφ, ψ〉 = 〈GAzΩφ,DAzd
zψ〉 + lim∂

= −〈GAzΩφ,Ωψ〉 + lim∂

= 〈GAzφ,Ω ∧ Ωψ〉 + lim∂ .

The first term is ASD since

Ω ∧ Ω = −4π2
∑

1≤i,j≤4

cl(dxi ∧ dxj)dzi ∧ dzj

= −4π2
3∑

j=1

(
cl(εj)εj + cl(ε̄j)ε̄j

)
.

and
∧− acts on S− ⊗E. (Remember from page 25 that the εj and ε̄j are the usual basis of

∧+ and∧− respectively.)

The key to the ADHMN construction of instantons on R4 as portrayed in Chapter 1 is to get a good
grip of the boundary term lim∂ , which is precisely the role of Φ and the ADHM condition (1.3).
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Let’s now see how the heuristic described so far can lead to the ADHMN construction for R4,
and explore what happen in the second point of view, where we look at everything on the quotient
R4∗/Λ∗.

Of course, our first task is now to interpret the connection B in that new setting. It passes really
well to the quotient by Λ∗

Z
, the difficulty lies in quotienting by the remaining Λ∗

R
.

Suppose we have coordinates (x1, . . . , x4) on R4 and associated coordinates (z1, . . . , z4) on R4∗

such that
Λ∗

R = {z1 = · · · = zr+s = 0}.
Let’s introduce new coordinates (u1, . . . , ur+s, v1, . . . , v4−r−s) = (z1, . . . , z4). Using the gauge
transformation of Equation (2.1), we regard the space Vu as V(u,0). We go back to the other point of
view using the isomorphism

gv : Vu → V(u,v).

Suppose φu is a section of V on R4∗/Λ∗. Then

g−1
v B(gvφu) = g−1

v P
(
(du + dv)gvφu

)

= Pduφu − 2πi
4∑

j=r+s+1

Pmxj (φu).

Hence the connection matrices Bj for r + s + 1 ≤ j ≤ 4 get replaced by −2πiPmxj . Of course,
mxj is multiplication by xj , as in Equation (1.6).

The heuristic presented in this chapter therefore allows us to say that, to any connection A on a
bundle E over R4/Λ satisfying the appropriate dimensional reduction (see Appendix A) of the
ASD equation, we can associate the following objects:

1. a family V of vector spaces over R4∗/Λ∗ defined by the kernel Vz = ker(D∗
Az

) of the Dirac
operator lifted to R4, family which forms a bundle over the open set on which D∗

Az
is Fred-

holm;

2. a connection B on V defined by the projection Pdz of the trivial connection dz on R4∗/Λ∗;

3. a family of endomorphisms aα, as many as dim(L(Λ)⊥) = dimΛ∗
R

, of V , defined by the
projection −2πiPmxα of the multiplication mxα by the coordinate xα on R4.

When the boundary term of Equation (2.2) is 0, the (B, {aα}) satisfies the appropriate dimensional
reduction of the ASD equation on R4∗/Λ∗. When it is not, further ad hoc analysis is required.

The various dimensional reductions of the ASD equations are presented in Appendix A.
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Chapter 3

Dirac Spectrum of Product Manifolds

In this chapter, we compute the spectrum of the Dirac operator of manifolds which are products,
using the spectrum of the Dirac operator on each factor.

The spectrum of the Dirac operator has been computed in many cases: spheres in [Tra93], three-
dimensional Berger spheres in [Hit74], odd-dimensional Berger spheres in [Bär96], flat manifolds
in [Pfä00], tori in [Fri84], simply connected Lie groups in [Feg87], fibrations over S1 in [Kra01],
etc. To learn more about the current state of affairs related to spectra and eigenvalue estimates for
Dirac operator, see the survey paper [Bär00].

The explicit formula of Theorem 3.2-1 for the spectrum of the Dirac operator on a general product
manifold seems to be missing in the literature.

As a special case, we compute in theorem 3.3-1 the spectrum of the Dirac operator on the n-
dimensional torus. Our computation confirms the result in [Fri84].

In Section 3.1, we construct the spinor bundles onM×N from the spinor bundles on the factor. This
section is somewhat inspired by [Kli]. In Section 3.2, we compute the Dirac spectrum of product
manifolds M ×N . In Section 3.3, we use the acquired knowledge to compute the Dirac spectrum
for a torus. In Section 3.4, we consider the special case where N = S1 and we twist the spinor
bundle by a flat line bundle on S1. We extend the result to the torus.

For the reader interested in a shortcut to the main result of this thesis, most of this chapter can be
skipped, only Theorem 3.4-1 and the remarks that follow it are necessary.

3.1 Complex Spinor Bundles of M × N

Let M and N be two manifolds equipped with spinor bundles SM and SN respectively. Let p1, p2

be the projections on the first and second factor of M × N . In this section, we construct a spinor
bundle S for M ×N using SM and SN .

For a vector v tangent to M , let ρv and cv denote the Clifford multiplication on SM and S respec-
tively. For a vector w tangent to N , we similarly use ρw and cw.

Suppose at least one of the manifolds, say M , is even-dimensional. Thus SM splits as S+
M ⊕ S−

M .
In that case, we set

S := p∗1SM ⊗ p∗2SN ,

and set S± := p∗1S
±
M ⊗ p∗2SN .
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Suppose on the contrary that both manifolds are odd-dimensional. In that case, we set

S := (p∗1SM ⊗ p∗2SN ) ⊕ (p∗1SM ⊗ p∗2SN ).

Let S+ denote the first factor, and S− the second.

In both cases, with respect to the decomposition S = S+ ⊕ S−, set

cv :=

[
ρv ⊗ 1

ρv ⊗ 1

]
, and cw :=

[
1 ⊗ ρw

−1 ⊗ ρw

]
.

Proposition 3.1-1. The map c is a Clifford multiplication. The bundle S is a spinor bundle.

Proof: First, for the Clifford multiplication. We have

cwcv =

[
−ρv ⊗ ρw

ρv ⊗ ρw

]
= −cvcw,

hence cvcw + cwcv = 0, as wanted.

Let dm be the dimension of a complex irreducible representation of Clm. From [LM89, Thm 5.8,
p. 33], we have

d2k+1 = d2k = 2k.

Since S has the required dimension and is a Clifford bundle, it must be a spin bundle. 2

Positive and Negative Spinors

At this point, a warning is necessary: the splitting S = S+ ⊕ S− on Mm ×Nn when both m and
n are odd is not the same as the splitting S = S+ ⊕ S− in terms of positive and negative spinors.
The second splitting appears through the isomorphism

S+ ⊕ S− → S+ ⊕ S−

(a, b) 7→ (ia, a) + (b, ib),
(3.1)

and its inverse
S+ ⊕ S− → S+ ⊕ S−

(a, b) 7→ 1

2
(b− ai, a− bi).

(3.2)

Let’s verify the accuracy of this last statement. The orientation class in Clm is

ω =




invol for m = 2n

in+1vol for m = 2n+ 1.

It satisfies ω2 = 1. We define S± = (1 ± c(ω))S; see [LM89, Prop 5.15, p. 36], where his ωC is
our ω. Note that c(ω) acts as ±1 on S±.

Since m is odd, we know from [LM89, Prop 5.9, p. 34] that ρ(ωM ) can be either ±1 and that
the corresponding representations are inequivalent. However, the definition of the complex spin
representation is independent of which irreducible representation of Clm is used; see [LM89, Prop
5.15]. For simplicity, let’s fix a sign and always choose the spinor bundle for which the orientation
class acts with that sign.
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The orientation class is ω = −iωMωN , and

c(ω) =

[
iρ(ωM ) ⊗ ρ(ωN )

−iρ(ωM ) ⊗ ρ(ωN )

]
=

[
i

−i

]
.

The decomposition S = S+ ⊕ S− given by S+ = {(ia, a)} and S− = {(b, ib)} is thus accurate.

When m and n are both even, the orientation class is ω = ωMωN , and

c(ω) =

[
ρ(ωM ) ⊗ ρ(ωN )

ρ(ωM ) ⊗ ρ(ωN )

]
.

The splitting SN = S+
N ⊕ S−

N induces splittings for S+ and S−. Using the very evident notation
coming from those splittings, we have

S+ = S++ ⊕ S−−, and

S− = S+− ⊕ S−+.

3.2 Dirac Spectrum Formula

To describe the spectrum of the Dirac operator on M ×N , we need to work with multisets, as most
eigenvalues appear with high multiplicity. For the multiset A, let A#a be the union of a copies of
A. Of course, the kernel is always a very special set and we need some notation for the multiplicity
of 0 in the spectrum when m is even. For that purpose, set

k±M := dimkerD±
M .

Theorem 3.2-1. The spectrum of the Dirac operator onMm×Nn on the spinor bundle constructed
in Section 3.1 from chosen spinor bundles on M and N is given as a multiset in terms of the
respective spectrum ΣM and ΣN by the formula

ΣM×N =




±
∣∣ΣM × ΣN

∣∣, if m and n are odd;

±
∣∣Σ>0

M × ΣN

∣∣ ∪ (ΣN )#k+

M ∪ (−ΣN )#k−
M , if m is even.

Proof: For the decomposition S = S+ ⊕ S−, the Dirac operator on the spinor bundle of M ×N is

D =

[
DN DM

DM −DN

]
.

Suppose first that m and n are both odd.

Let {ψµ}µ∈ΣM
be a basis of eigenvectors of DM on L2(SM ), with DMψµ = µψµ. There might

be more than one function called ψµ, but this abuse of notation should not cause any problems.
Similarly, let {φν}ν∈ΣN

be a basis of eigenvectors of DN for L2(SN ).

We have L2(S) = C2 ⊗ L2(SM ) ⊗ L2(SN ), and on C2 ⊗ ψµ ⊗ φν , we have

D =

[
ν µ
µ −ν

]
.
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This matrix has two eigenvectors, of respective eigenvalue ±
√
µ2 + ν2. The corresponding eigen-

vectors are respectively [ν ±
√
µ2 + ν2 µ]T when µ 6= 0 while for µ = 0, the vector [1 0]T and

[0 1]T correspond respectively to the eigenvalues ν and −ν.

We just proved the theorem for m and n both odd.

Suppose now that m is even. As before, let {ψµ} and {φν} be eigenbasis for DM and DN . Recall
that the positive and negative eigenspaces of any Dirac operator DM (not just the spin one) are
isomorphic via

ψµ = ψ+
µ + ψ−

µ 7→ ψ−µ = ψ+
µ − ψ−

µ .

For µ = 0, we have the positive spinors ψ+
0 ∈ L2(S+

M ), and the negative spinors ψ−
0 ∈ L2(S−

M ).

We thus have a unique decomposition

f = f+
0 ψ

+
0 + f−0 ψ

−
0 +

∑

µ>0

(fµ + f−µ)ψ+
µ +

∑

µ>0

(fµ − f−µ)ψ−
µ .

Note that

D(ψ+
0 ⊗ φν) = νψ+

0 ⊗ φν , and

D(ψ−
0 ⊗ φν) = −νψ−

0 ⊗ φν .

Then kerDM contributes
(ΣN )#k+

M ∪ (−ΣN)#k−
M .

Suppose now that µ 6= 0. Then

D(ψµ ⊗ φν) = µψµ ⊗ φν + νψ−µ ⊗ φν .

Thus, for µ > 0, the Dirac operator acts on the span of ψµ ⊗ φν and ψ−µ ⊗ φν as
[
µ ν
ν −µ

]
.

This matrix has two eigenvectors, of respective eigenvalue ±
√
µ2 + ν2.

We just proved the theorem for m even. The proof is now complete. 2

Corollary 3.2-2. When both m and n are odd, we have

ker(D+) is isomorphic to ker(D−).

When both m and n are even, we have

k+
M×N = k+

Mk
+
N + k−Mk

−
N , and

k−M×N = k+
Mk

−
N + k−Mk

+
N .

Proof: When m and n are both odd, a basis of ker(D) is given by all the
[
i
1

]
⊗ ψ0 ⊗ φ0 (sections of S+), and

[
1
i

]
⊗ ψ0 ⊗ φ0 (sections of S−).
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When m and n are both even, a basis of ker(D) is given by all the

ψ+
0 ⊗ φ+

0 , ψ
−
0 ⊗ φ−0 (sections of S+),

ψ+
0 ⊗ φ−0 , ψ

−
0 ⊗ φ+

0 (sections of S−).

The proof is now complete. 2

Corollary 3.2-3. The index of D+ on an even-dimensional product Mm ×Nn is given by

ind(M ×N) =

{
0, if m and n are both odd;
ind(M) · ind(N), if m and n are both even.

3.3 Dirac Spectrum of T n

The work we have done so far allows us to compute the spectrum of the Dirac operator on the
n-torus T n = Rn/Λ.

Recall first that there are two possibilities for the spinor bundle S1, the trivial, denoted S0, and the
nontrivial, denoted S1. In either case, we have ρθ = i.

Let Sε1···εn denote the spin structure constructed inductively using the procedure given in Section
3.1. Let b∗1, . . . , b

∗
n be a basis for the lattice

Λ∗ := {λ∗ ∈ R∗ | λ∗(Λ) ⊂ Z}

dual to the lattice Λ defining T n.

Theorem 3.3-1. The Dirac Spectrum for the spin structure Sε1···εn on the torus T n = Rn/Λ is the
multiset of all the

±2π|b∗ +
∑

εjb
∗
j/2|,

for b∗ ∈ Λ∗ given with multiplicity 2bn/2c−1.

Proof: Note that we can rewrite this theorem as saying that the spectrum is

±|ΣS1 × · · · × ΣS1 |#2bn/2c−1

.

When n = 1 and S1 has length `, we have

ΣS1 = (2π/`)(ε/2 + Z).

The factor 1/2 counterbalances the ± as −ΣS1 = ΣS1 .

In fact, we will use the more general fact that −ΣT n = ΣT n , and that k+
T 2k = k−

T 2k .

Suppose now that n = 2k+ 1. Then T n = T 2k × S1. From Theorem 3.2-1, we know the spectrum
is

±|Σ>0
T 2k × ΣS1 | ∪ (ΣS1)

#k+

T2k ∪ (−ΣS1)
#k−

T2k ,

which is
±|ΣT 2k × ΣS1 | # 1

2 .

43



By induction, this multiset is

±
∣∣±|ΣS1 × · · · × ΣS1 | × ΣS1

∣∣ # 1

2
2k−1

= ±
∣∣ΣS1 × · · · × ΣS1 × ΣS1

∣∣ #2k−1

,

as wanted.

Suppose now that n = 2k. Then T n = T 2k−1 × S1, and using Theorem 3.2-1, we find that this
spectrum is

±|ΣT 2k−1 × ΣS1 | = ±
∣∣±|ΣS1 × · · · × ΣS1 | × ΣS1

∣∣ #2k−2

= ±
∣∣ΣS1 × · · · × ΣS1 × ΣS1

∣∣ #2k−1

,

as wanted.

The proof is now complete. 2

3.4 Tensoring by Lz

Suppose now we change the Clifford bundle, tensoring it by the flat bundle Lz on S1, which is
trivial with connection 2πiz dθ. Since it is constant in the M direction, it doesn’t affect ΣM .

Whether m is odd or even, the new Dirac operator is

D =

[
DS1 − 2πz DM

DM −(DS1 − 2πz)

]
,

hence we just need to shift the eigenvalues of DS1 by −2πz.

For m odd and even, the new spectrum is respectively

±|ΣM × (ΣS1 − 2πz
)|, and

±
∣∣Σ>0

M × (ΣS1 − 2πz)
∣∣ ∪ (ΣS1 − 2πz)#k+

M ∪ (−ΣS1 + 2πz)#k−
M .

Suppose now we tensor the spinor bundle on T n by the flat bundle Lz with connection

2πi
n∑

j=1

zj dx
j,

with z ∈ Λ∗. A modification of the proof used in Section 3.3 works to prove by induction that the
spectrum of the Dirac operator Dz on T n for n ≥ 2 is

{±2π|b∗ − z +
n∑

i=1

εib
∗
i /2| | b∗ ∈ Λ∗}#2bn/2c−1

.

This result implies that 0 is in the spectrum if and only if z ∈ ∑n
i=1 εib

∗
i /2 + Λ∗.

As we need it later on, let’s summarize the situation for the three-dimensional torus T 3.

Theorem 3.4-1. Choose the trivial spin structure S on T 3 = R3/Λ. Pick z ∈ R3∗. The spectrum
of the Dirac operator on S ⊗ Lz is given by the multiset

±2π|Λ∗ − z|.
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The eigenspaces coming from 0 ∈ Λ∗ are found as follows. Notice first that S = C2 and that S+

and S− on T 2 are found using Maps (3.1) and (3.2) by the projections

P+ =
1

2

[
1 i
−i 1

]
, and P− =

1

2

[
1 −i
i 1

]
.

Then

D = DT 2,z − 2πz3P+ + 2πz3P−

= 2π

[
−z2 −(z1 + z3i)

−(z1 − z3i) z2

]
.

When (z1, z3) = (0, 0), the eigenspaces are the

C

[
1
0

]
of eigenvalue − 2πz2,

C

[
0
1

]
of eigenvalue 2πz2,

while when (z1, z3) 6= (0, 0), they are the

C

[
−(z1 + z3i)
z2 ± |z|

]
of eigenvalue ± 2πz2.

We can consider the bundle V2πε created from the eigenspace of Dz of eigenvalue 2πε on the sphere
|z| = ε. A non-zero section is obviously given by [−(z1 + z3i) z2 + |z|]T . This section vanishes
only at (0, ε, 0) and its multiplicity is obviously 1, hence c1(V2πε) = e(V2πε) = ±1, depending on
the choice of orientation class.
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Chapter 4

Dirac Spectrum of S
n

Because of the splitting relation

D±
R×S3 = ± ∂

∂t
+DS3 ,

and because of the conformal equivalence R × S3 ≡ R4 \ {0}, the eigenvalues of the Dirac operator
D on S3 and the kernel of the Dirac operator on R4 are intimately related. So we first proceed
to study the eigenvalues of D on S3. We then exploit these results in Section 7.3 to prove the
asymptotic behavior of Equation (1.7).

In Section 4.1, we compute the Spectrum of DS3 in a way quite similar to Hitchin’s [Hit74]. In
Section 4.2, we confirm the results of Section 4.1, using a construction of Trautman for the spectrum
of the Dirac operators of spheres. The drawback of Trautman’s method is that it does not give easily
the multiplicities, which is why we need the computations.

4.1 S3: Spherical harmonics and representations

Let’s start by writing down an explicit formula for DS3 and D2
S3 . Consider the left-invariant or-

thonormal frame on S3 given by

e1(x) := x · i,
e2(x) := x · j, and

e3(x) := x · k.

As derivations, the ei satisfy the commuting relations obtained by cyclicly permuting {1, 2, 3} in
the expression

[e1, e2] = 2e3.

The Levi-Civita connection matrix in that orthonormal frame is

[ωa
b ] =




0 −e3 e2

e3 0 −e1
−e2 e1 0


 .

The spinor bundle S(S3) of S3 is a trivial H-bundle. The vectors e1, e2 and e3 act by Clifford
multiplication on S(S3) simply by left-multiplication by i, j and −k respectively, so that the volume
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element acts as +1. Thus the spin connection endomorphism is

Ω =
1

2

∑

1≤a<b≤3

ωa
b ⊗ cl(eb)cl(ea)

=
1

2

(
e1 ⊗ i+ e2 ⊗ j + e3 ⊗ k

)
,

and the spin connection is d+ Ω. The Dirac operator hence, obeys the rule

D = ie1 + je2 − ke3 +
3

2
.

Then, we have the formula

D2 = −e1e1 − e2e2 − e3e3 + ie1 + je2 − ke3 +
9

4
.

In this formula, the part which looks second order is actually the standard Laplacian on S 3:

∆ := −e1e1 − e2e2 − e3e3.

The eigenvalues of D are distributed symmetrically with respect to 0, as we now establish.

Theorem 4.1-1. Let n ≡ 3 mod 4 and M be a riemannian manifold of dimension n. Let φ be an
orientation-reversing isometry. Then the spectrum Σ of the Dirac operator D on the spinor bundle
of M is symmetric: Σ = −Σ.

Proof: In this case, the square of the Clifford volume element ω is ω2 = 1. Thus Cln splits as

Cln = V+ ⊕ V−.

It turns out that the V± are invariant for the action of Cln.

The algebra map α : Cln → Cln, generated by α(v) = −v for v ∈ Rn, exchange V+ and V−. It is
an isomorphism of Spin(n)-representations since Spin(n) ⊂ Cl0n.

Note now that there is a canonical isomorphism PSO(M) ≡ φ∗PSO(M): on the fibers over a given
point, it is given by (e1, . . . , en) 7→ (dφ(en), . . . , dφ(e1)).

This isomorphism induces an isomorphism PSpin(M) ≡ φ∗PSpin(M).

Let ` : Spin(n) → V± be left-multiplication and set

S± := PSpin(M) ×` V±.

Both are “the” spinor bundle on M . They are isomorphic via α. Let’s choose S+ to work with.

Set ClSpin(M) := PSpin(M) ×` Cln. Then, as Clifford-modules, we have the isomorphism
φ∗ClSpin(M) ≡ ClSpin(M). This isomorphism exchange S± and S∓.

Suppose now that s ∈ Γ(S+) and consider α(φ∗s) ∈ Γ(S+). At the point x, we have that
α(φ∗s)(x) = α(s(φ(x))) ∈ (S−)φ(x) ≡ (S+)x.

The connection on ClSpin(M), being 1/4 ·∑1≤a,b≤n ωbaeaeb, is preserved by the canonical iso-
morphism. Thus

D(α(φ∗s)) = −α(D(φ∗s)) = −α(φ∗(Ds)).

Hence, if Ds = λs, then D(α(φ∗s)) = −λ · α(φ∗s). The proof is now complete. 2
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Recall that L2(S3) has a decomposition in eigenspaces of D and ∆; in fact, they are linked since
the Laplacian commutes with our canonical basis as it is parallel:

[∆, ea] = 0 for a = 1, 2, 3.

Indeed, we have, for example, that

[∆, e1] = −e1e1e1 − e2e2e1 − e3e3e1 + e1e1e1 + e1e2e2 + e1e3e3

= −e2[e2, e1] − e2e1e2 − e3[e3, e1] − e3e1e3

+ [e1, e2]e2 + e2e1e2 + [e1, e3]e3 + e3e1e3

= 2e2e3 − 2e3e2 + 2e3e2 − 2e2e3

= 0.

Thus the eigenspaces are invariant under the action of sp(1).

Let’s review now some classical theory. Let f be a function on S3 and F an extension of f to R4.
Then

∆(f) = ∆R4(F ) + 3
∂F

∂r
+
∂2F

∂r2
. (4.1)

This decomposition is fantastically simple and allows for a complete description of the eigenvalues
of ∆. LetHm(R4) denote the set of harmonic homogeneous polynomials of degreem and denote by
Hm(S3) its restriction to S3. It follows from Equation (4.1) that Hm(S3) consists of eigenvectors
for the Laplacian ∆ on function on S3. The corresponding eigenvalues are m(m+2). In fact, these
are all the eigenvalues.

In fact, the eigenvectors of the Laplacian on Sn are always the corresponding Hm(Sn) and the
eigenvalues are correspondingly the m(m+ n− 1); see [GHL90, Cor 4.49].

Since they correspond to different eigenvalues, the spaces Hm(S3) are invariant under the action of
sp(1). So we reduce our study of eigenvalues of D to the study of its eigenvalues on eigenspaces of
∆. For those we have the beautiful decomposition theorem that follows.

Theorem 4.1-2. We have the following isomorphism of complex representation of the Lie algebra
sp(1):

Hm(S3; C) ∼= (m+ 1)SymmC2.

Proof: The left-invariant vector fields e1, e2, e3 satisfy the same commuting relation as i, j, and k.
Thus, we can view them in su(2) as

e1 ≡
[
i 0
0 −i

]
,

e2 ≡
[
0 −1
1 0

]
, and

e3 ≡
[

0 −i
−i 0

]
.

To study the representation theory of su(2), it is convenient to use the standard basis H,X , and Y
of sl2 since su(2) and sl2 have the same irreducible representations. In terms of the ea, we have
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H = −ie1,

X =
1

2
(−e2 + ie3), and

Y =
1

2
(e2 + ie3).

We set z1 = x1 + ix2, and z2 = x3 + ix4. In these coordinates, we have

H = − ∂

∂r
+ 2

(
z1

∂

∂z1
+ z̄2

∂

∂z̄2

)

X = z̄2
∂

∂z̄1
− z1

∂

∂z2
,

Y = −z2
∂

∂z1
+ z̄1

∂

∂z̄2
, and

∆Rn = 4
( ∂

∂z1

∂

∂z̄1
+

∂

∂z2

∂

∂z̄2

)

Consider now the m+ 1 homogeneous polynomials

pa := za
1 z̄

m−a
2 , a = 0, . . . ,m.

They are obviously killed by ∆Rn and thus are in Hm(S3,C).

Equally obvious is the fact that they are killed by X . Hence, each pa generates an irreducible
submodule of Hm(S3). Since

H(pa) = −mpa + 2
(
apa + (m− a)pa

)

= mpa,

this module is isomorphic to SymmC2 as a representation of su(2).

We have so far establish the presence of (m + 1)SymmC2 inside Hm(S3; C). Since both spaces
have dimension (m+ 1)2 (see [ABR01, p. 78, Prop. 5.8]) they must be equal. 2

Now consider the isomorphism between H and C2 given by the natural decomposition z1 + jz2.
This isomorphism induces an isomorphism between Sp(1) and SU(2) as follows:

Sp(1) ≡ SU(2)

i 7→
[
i 0
0 −i

]
,

j 7→
[
0 −1
1 0

]
,

k 7→
[

0 −i
−i 0

]
.
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Basically, the operator D restricts to a set of operators, one for every m:

Hm(S3; C)2 → Hm(S3; C)2
[
F1

F2

]
7→
[

ie1 −e2 + ie3
e2 + ie3 −ie1

] [
F1

F2

]
+

3

2

[
F1

F2

]
.

Following Hitchin, we let Q denote the operator

Q :=

[
−H 2X
2Y H

]
.

The operator D is thus the sum Q + 3/2 on the invariant subspace (SymmC2)2. Let’s find the
eigenvalues of Q on this subspace.

Let x, y be the standard basis of C2. Then SymmC2 is the set of homogeneous polynomials of
degree m in x and y. As such, there is an obvious basis ha := xaym−a for SymmC2 and we have

H(ha) = (2a−m)ha,

X(ha) = (m− a)ha+1, and

Y (ha) = aha−1.

The vectors [
h0

0

]
, and

[
0
hm

]

are eigenvectors of Q, of eigenvalues m. Each of them appear with multiplicity m+ 1 in the space
Hm(S3; C)2. Consider now the vectors

[
(1 +m− a)ha

aha−1

]
and

[
ha

−ha−1

]
.

These 2m vectors, along with the two others, span (SymmC2)2. Furthermore, they are eigenvectors
of Q, of respective eigenvalues m and −m − 2. The m + 1 diagonal (SymmC2)2 factors in
Hm(S3; C)2 span the whole space. Hence these eigenvalues appear with multiplicities m(m+ 1).

We just proved the following theorem.

Theorem 4.1-3. The eigenvalues of the Dirac operator on the spinor bundle of S 3 are the

±(k + 3/2), for k ∈ N,

each ±(k + 3/2) appearing with multiplicity (k + 1)(k + 2).

This result is confirmed by a similar computation in [Hit74, Prop 3.2] and by a different method of
Andrzej Trautman in [Tra93] which apply to all spheres, and which we describe in Section 4.2.

4.2 Trautman’s construction

We now confirm the results of the previous two sections by a method of Trautman which apply to
all spheres. This method appeared as a first paper [Tra93] in a projected series of paper of Trautman

51



with E. Winkowska on the spectrum of the Dirac operator on hypersurface. The promised sequel
Spinors and the Dirac operator on hypersurfaces. II. The spheres as an example was apparently
never completed and does not appear in the literature.

Let S be the spinor bundle on Rn+1. Let i : Sn(r) → Rn+1 be the inclusion. Then i∗(S) is a
Clifford bundle on Sn(r). On this bundle, we have a spin connection, which gives us a Dirac
operator Dr. Let D be the Dirac operator on S. We now look at the relationship between D and
Dr.

Let e1, . . . , en be an orthonormal frame on a patch of Sn(1). We can extend this frame by radial
parallel transport to a cone of Rn+1 \ {0}. Let e0 = ν be the radial vector field. Let IIr be the
second fundamental form of S(r). Then

D = ρ(e0)∇e0
+

∑

0<i≤n

ρ(ei)∇ei

= ρ(ν)
∂

∂r
+

∑

0<i≤n

ρ(ei)ei +
1

2
ρ(ei)

∑

0≤j<k≤n

ωj
k(ei)ρ(ekej)

= ρ(ν)
∂

∂r
+

1

2

∑

0<i≤n

∑

0<k≤n

ω0
k(ei)ρ(eiek)ρ(ν) +Dr

= ρ(ν)
∂

∂r
− 1

2
tr(IIr)ρ(ν) +Dr.

A simple computation shows that tr(IIr) = −n/r. Thus

D = Dr + ρ(ν)
∂

∂r
+

n

2r
ρ(ν). (4.2)

Let p : Rn+1 → S be a spinor-valued homogeneous harmonic polynomial of degree l + 1. The
polynomial Dp has degree l and is killed by D. Consider then

s± =
(1 ∓ ρ(ν))

2
Dp.

We have Ds± = 0. Since Dp is homogeneous of degree l, we have ∂s±/∂r = (l/r)s±. Thus

Drs± = −ρ(ν)∂s±
∂r

− n

2r
ρ(ν)s±

=
(l + n/2)

r
ρ(−ν)s±

= ±(l + n/2)

r
s±.

For n = 3, we see the spectrum described by Theorem 4.1-3.

Now, i∗(S) splits as a direct sum of irreducible spinor bundles. Because of dimensional reason and
because n-spheres (n > 1) have only one spin structure, for n = 3, the bundle i∗(S) splits as two
copies of the spinor bundle of S3, and for n = 2, the bundle i∗(S) is the spinor bundle of S2.

As i∗(S) splits, the eigenspaces of Dr split too. So we are building genuine eigenspaces for the
Dirac operator on the spinor bundle of Sn.
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Chapter 5

Decay of instantons

On a cylindrical manifold R×Y with any warped product metric, the ASD equation for a connection
in temporal gauge is

∂tA = − ∗3 F
(3)
A , (5.1)

On R × T 3 with coordinates (t, θ), we can expand any connection according to its Fourier modes:

A(θ, t) =
∑

ν∈Z3

Aν(t)eiθ·ν .

While the ASD equation mixes terms from different Fourier modes, the zero-mode behaves partic-
ularly nicely. Set

H := {A | Aν = 0 for ν 6= 0}.

For the product metric, Equation (5.1) is autonomous, and it turns out that GH is then a center mani-
fold for the flow of that equation. Hence, every flow line with finite energy approaches exponentially
a flow line in GH .

Since finite energy correspond here to
∫

[1,∞)×T 3

|FA|2 <∞,

it remains to study the flow lines in the finite dimensional space H and in order to understand the
decay of instantons.

This material is well known to [MMR94], where it is proved that every instanton converges to a flat
connection, and the decay to that instanton is exponential if the flat limit is irreducible.

For the warped metric on [1,∞) × T 3 coming from T 2 × R2 by polar coordinate on the R2 factor,
the Flow Equation (5.1) is not autonomous and consequently we cannot use the traditional center
manifold theorem. It is worthwhile however to study the behavior of flow lines on GH as well.

Any element of H can be expressed as

A = a1dθ
1 + a2dθ

2 + a3dθ
3,

with aj ∈ su(n).
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The Flow Equation (5.1), once written with the aj , gives rise to the equations

a′1 = [a2, a3]
a′2 = [a3, a1]
a′3 = [a1, a2]





for the product metric R × T 3, (5.2)

and
a′1 = t−1[a2, a3]
a′2 = t−1[a3, a1]
a′3 = t [a1, a2]





for the warped metric T 2 × R2. (5.3)

These equations are quite symmetrical, and we can reduce the study of those systems to the study
of their invariants.

5.1 On R × T 3

Let’s restrict our attention to su(2), and let’s first deal with System (5.2). Define the following real
valued functions:

f := |a′1|2 + |a′2|2 + |a′3|2,
g := |a1|2 + |a2|2 + |a3|2, (5.4)

d := 〈a1, [a2, a3]〉.

Lemma 5.1-1. For a1, a2, a3 flowing according to System (5.2), and for f, g, d defined by Equations
(5.4), we have

f ′ = 16dg,

g′ = 6d,

d′ = f.

Proof: We equip SU(2) with its bi-invariant metric that gives it the riemannian structure of S 3.
For elements X,Y,Z,W of the Lie algebra, the covariant derivative and Riemann tensor have the
simple expressions

∇XY =
1

2
[X,Y ], and

R(X,Y,Z,W ) =
1

4
〈[X,Y ], [Z,W ]〉;

see for example [GHL90, 3.17].

Since the sectional curvature is 1 everywhere, we have

R(X,Y,Z,W ) = 〈X,Z〉〈Y,W 〉 − 〈Y,Z〉〈X,W 〉.

Notice, then, that for any permutation ijk of 123, we have

〈ai, a
′
k〉 = ±〈ai, [ai, aj ]〉 = ±2〈ai,∇aiaj〉 = ∓2〈∇aiai, aj〉 = ∓〈[ai, ai], aj〉 = 0,

while d = 〈a1, a
′
1〉 = 〈a2, a

′
2〉 = 〈a3, a

′
3〉. It is then quite obvious that g′ = 6d.
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We have

(|a′1|2)′ = 2〈[a2, a3], [a
′
2, a3]〉 + 2〈[a2, a3], [a2, a

′
3]〉

= 8R(a2, a3, a
′
2, a3) + 8R(a2, a3, a2, a

′
3)

= 8〈a2, a
′
2〉|a3|2 + 8|a2|2〈a3, a

′
3〉

= 8d(|a3|2 + |a2|2).

This equation together with similar equations for (|a′2|2)′ and (|a′3|2)′ yield f ′ = 16dg.

As for d, we have

d′ = 〈a′1, [a2, a3]〉 + 〈a1, [a
′
2, a3]〉 + 〈a1, [a2, a

′
3]〉

= |a′1|2 − 〈[a1, a3], a
′
2〉 − 〈[a2, a1], a

′
3〉

= |a′1|2 + |a′2|2 + |a′3|2 = f.

The proof is now complete. 2

We are now ready to prove decay properties of instantons.

Theorem 5.1-2 (Decay of instantons). Let A be an instanton on R × T 3. Then

|FA| = o(t−1)

as t→ ∞.

Proof: As we mentioned in the introduction to this chapter, we only have to study the flow lines in
H as any other is exponentially decaying to a flow line in GH .

Notice first the ||FA||2 =
∫
f =

∫
d′ hence lim d exist as t → ∞. Suppose lim d = 2l > 0. For

some T and t > T , we have d > l. Hence g′ > l, or once we integrate, g(t) > lt + C . Thus
f ′ = 16dg > 16l2t + C and lim f ′ = ∞. But then surely lim f = ∞ and f cannot be integrable,
which clearly contradicts the finite energy condition. Hence we proved

lim d ≤ 0.

In fact, as d′ = f ≥ 0, we have
d ≤ 0 always.

Consequently, f ′ = 16dg ≤ 0. Thus f must have a finite limit since f ≥ 0. Since
∫
f converges,

we have
lim f = 0.

As g ≥ 0 and g′ = 6d ≤ 0, we have
lim g exists.

Then we judiciously apply l’Hospital’s rule, denoted HR below. Since

(lim g) = lim
g/t

1/t
HR
= lim

−g/t2 + 6d/t

−1/t2
= (lim g) − 6 lim td

we have
d = o(t−1).
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But then,

0 = lim td = lim
d

1/t
HR
= lim

f

−1/t2
= − lim t2f.

Since f = |FA|2, the conclusion follows. 2

We can actually pull out more decay from those equations, even exponential decay in [MMR94].
Here we prove polynomial decay to infinite order for non-zero limits.

Theorem 5.1-3 (Extra decay for non-zero limits). Let A be an instanton on R × T 3. Suppose that
the flat connection to which A converges at infinity is not gauge equivalent to 0 ∈ H . Then for all
k,

|FA| = o(t−k)

as t→ ∞.

Proof: We work in H . We already proved in Theorem 5.1-2 and its proof that f = o(t−2) and
d = o(t−1).

Once we suppose d = o(t−k), we find 0 = lim d/t−k = −k lim f/t−k−1 using l’Hospital’s rule.
Hence

d = o(t−k) implies f = o(t−k−1), (5.5)

Suppose now lim g 6= 0, and f = o(t−k). Then

0 = lim
f

t−k
= −1

k
lim

dg

t−k−1

HR
= −1

k
(lim g) lim

d

t−k−1
.

Hence
f = o(t−k) implies d = o(t−k−1), (5.6)

under the condition lim g 6= 0.

The conclusion follows by pumping up Equations (5.5) and (5.6). 2

5.2 On T
2 × R2

We keep our attention on su(2), and deal now with System (5.3). Define the following real valued
functions:

f := |a′1|2 + |a′2|2 +
1

t2
|a′3|2,

u :=
1

t2
|a′3|2

g1 := |a1|2 + |a2|2 (5.7)

g2 := |a3|2,
d := 〈a1, [a2, a3]〉.

Lemma 5.2-1. For a1, a2, a3 flowing according to System (5.3), and for f, u, g1, g2, d defined by
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Equations (5.7), we have

g′1 =
4

t
d, u′ =

8

t
g1d,

g′2 = 2td, d′ = tf

Proof: We proceed as in the proof of Lemma 5.1-1.

Using the Leibnitz rule, we find

d′ = 〈a′1, [a2, a3]〉 + 〈a1, [a
′
2, a3]〉 + 〈a1, [a2, a

′
3]〉

= t|a′1|2 − 〈[a1, a3], a
′
2〉 − 〈[a2, a1], a

′
3〉

= t|a′1|2 + t|a′2|2 +
1

t
|a′3|2,

hence proving d′ = tf .

While g′2 = 2〈a3, a
′
3〉 = 2td, we have

g′1 = 2〈a1, a
′
1〉 + 2〈a2, a

′
2〉

=
2

t

(〈a1, [a2, a3]〉 + 〈a2, [a3, a1]〉
)

=
4

t
d,

thus proving the differential equations for g1 and g2.

We have

u′ =
(|[a1, a2]|2

)′

= 2〈[a1, a2], [a
′
1, a2]〉 + 2〈[a1, a2], [a1, a

′
2]〉

=
8

t

(
R(a1, a2, [a2, a3], a2) +R(a1, a2, a1, [a3, a1])

)

=
8

t

(〈a1, [a2, a3]〉|a2|2 − 〈a2, [a2, a3]〉〈a1, a2〉 + |a1|2〈a2, [a3, a1]〉 − 〈a2, a1〉〈a1.[a3, a1]〉
)

=
8

t
g1d.

The proof is now complete. 2

Theorem 5.2-2. In the gauge group translates of the zero Fourier mode on T 2 × R, finite energy
instantons have quadratically decaying curvature.

Proof: We of course aim to prove that f = o(t−4).

Notice first the ||FA||2 =
∫
tf =

∫
d′ hence lim d exist as t→ ∞.

Suppose lim d = 2l > 0. For some T and t > T , we have d > l. Hence g ′1 = 4t−1d > 4t−1l, or
once we integrate, g1(t) − g1(T ) > 4l log(t/T ), or g1(t) > 4l log(γt) for some γ > 0.
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Then u′ = 8t−1g1d > 32l2t−1 log(γt). Since
(
log2(γt)

)′
= t−1 log(γt), we have

u(t) − u(T ) =

∫ t

T
u′

> 32l2
∫ t

T

(
log2(γt)

)′

= 32l2
(
log2(γt) − log2(γT )

)
,

or for some constant ε, we get u(t) > 32l2 log2(γt) + ε. Hence lim u = ∞, and then surely
lim f = ∞ and f cannot be integrable, which clearly contradicts the finite energy condition. Hence
we proved

lim d ≤ 0.

In fact, as d′ = tf ≥ 0, we have
d ≤ 0 always.

Since g′a = 2td ≤ 0 and g2 ≥ 0, the quantity lim g2 exist and is finite.

Then we judiciously apply l’Hospital’s rule. Since

(lim g2) = lim
g2/t

1/t
HR
= lim

−g2/t2 + g′2/t

−1/t2

′

= (lim g) − 2 lim t2d

we have
d = o(t−2).

But then,

0 = lim t2d = lim
d

1/t2
HR
= lim

tf

−2/t3
= −1

2
lim t4f.

Since f = |FA|2, the conclusion follows. 2

Theorem 5.2-2 is perhaps a first step in a dynamical system approach to proving a conjecture of
Jardim that every doubly-periodic instanton connection of finite action ‖FA‖L2 <∞ has quadratic
curvature decay. This conjecture appeared in [Jar02a, p. 433] and is supported in part by Nahm
transform considerations in [BJ01].

5.3 Notes on different quotients

We proved in Section 5.1 that given an instanton A on R × T 3, its curvature FA decays like o(r−1).
It was first observed by Mrowka that there are instantons who decay like r−1. For example, let i, j,k
be the usual basis of su(2), and consider

A =
idx+ jdy + kdz

2r
.

The curvature of that connection is

FA =
−idr ∧ dx− jdr ∧ dy − kdr ∧ dz + kdx ∧ dy + jdz ∧ dx+ idy ∧ dz

2r2
,

which is quite stronger than o(r−1).
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On R2 × T 2, Jardim gave the example of the connection

A =

[
−i 0
0 i

]
dθ

log r
+

1

r log r

[
0 e−iθ(dx− idy)

−eiθ(dx+ idy) 0

]

with
FA = O

( 1

r2 log r

)
,

which again is a bit stronger than the conjectured O(r−2) of Section 5.2.

For the classical R4 case, it was proved originally by Uhlenbeck in [Uhl82, Cor. 4.2] that the
condition ‖FA‖L2 < ∞ implies that |FA| = O(r−4); see also the appendix of the seminal work of
Donaldson [Don83]. This decay is achieved by the connection

A =
1

1 + r2
(θ1i + θ2j + θ3k),

with

θ1 = x1dx
2 − x2dx

1 − x3dx
4 + x4dx

3

θ2 = x1dx
3 − x3dx

1 − x4dx
2 + x2dx

4

θ3 = x1dx
4 − x4dx

1 − x2dx
3 + x3dx

2.

While this connection in this particular gauge is O(r−1), its curvature

FA =
1

1 + r4
(dθ1i + dθ2j + dθ3k)

is exactly of order 1/r4.

As for S1 × R3, by taking a monopole (A,Φ) on R3, we get an example of an instanton Φdr + A
whose curvature (∇AΦ) ∧ dr + FA is exactly of order 1/r2.
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Chapter 6

Fredholm theory on R × Y

Let Y be a three-dimensional compact orientable manifold. Let (E,A) be a SU(2)-instanton over
R × Y . We suppose for this section that A is in temporal gauge, that is it has no dt term. This
assumption allows us to consider the restriction A(t) to a cross-section {t}×Y . The Dirac operator
on {t} × Y is denoted DA. We consider the Dirac operator

D/A = ∂t +DA

on sections of S+ ⊗E.

Our aim in this chapter is to find spaces on which D/A is a Fredholm operator, and on those spaces
compute its index. It is quite natural for such problems to consider Sobolev spaces, as in the compact
case. While it is quite natural, it is perhaps too restrictive and what is happening on cylindrical
manifolds in terms of Fredholmness is better understood in the realm of weighted Sobolev spaces.

It was observed long ago that for the usual Laplacian on Rn, the classical Sobolev spaces are the
wrong spaces for domains: the Laplacian is not Fredholm for those domains. The same is true for
other elliptic partial differential operators on Rn.

As an attempt to remedy the situation, Homer Walker in [Wal71, Wal72, Wal73] proves that for
certain domains, first order elliptic partial differential operators obtained from constant coefficients
operators by adding a perturbation on a compact set are practically Fredholm, in the sense that
the dimension of the kernel is finite and that the range can be described by a finite number of
orthogonality condition.

In [NW73], the results are extended to a broader class of elliptic operators, perturbed in a less
restrictive way, and Lp-type domains replace the L2-type domains presents in the papers just de-
scribed. We are presented with a sort of Gårding inequality decorated with weights, the treatment
of which is not fully systematized at this point, and finite dimensionality of the kernel is proved.

The use of weights to describe which type of behavior is allowed at infinity was systematized in
[Can75] with the introduction of weighted Sobolev spaces. Around the same time, Atiyah, Patodi
and Singer in [APS75] made the crucial observation that the condition for an operator to be Fred-
holm in L2 on a cylindrical manifold is that the restriction to the slice at infinity must have an empty
kernel.

In [Loc81], and independently in [McO79], we are given specific APS-like conditions on the
weights for an elliptic partial differential operator of any order with a certain type of asymptotic
behavior to be Fredholm on the given weighted Sobolev spaces. The result and proof of that pa-
per are extensions of [NW73], and partial results along these lines can be found in [Can75], where
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isomorphism properties of the Laplacian were derived.

Choquet-Bruhat and Christodoulou in [CBC81] remove restriction on p from another work of Cantor
[Can79] and prove semi-Fredholmness, finite dimensionality of kernel and isomorphism theorems
for operators on non-compact manifolds while giving improvements on imbedding and multiplica-
tion results for weighted Sobolev spaces. Those two papers constitute partial results along the lines
of the more advanced and complete joint work [LM83, LM84] of Lockhart and McOwen. Their
work extends the results of [Loc81] and [McO79] for systems of partial differential operators which
are elliptic in the sense of Douglis–Nirenberg, and similar conditions on the weights are described
to ensure Fredholmness.

Very similarly to what we do in this chapter, [LM85] study a much larger class of elliptic oper-
ator C∞(E) → C∞(f) for bundles E and F over a manifold with cylindrical ends. Conditions
on weights to obtain Fredholmness and wall crossing formulas are derived. The paper also treats
boundary valued problems with Lopatinski–Shapiro boundary conditions; see [APS75] along those
lines.

As a prelude to proving that the mass of an asymptotically flat manifold is a geometric invariant,
[Bar86] reviews the theory of weighted Sobolev spaces with an emphasis on two basic ideas which
underlie the subject: the use of scaling arguments to pass from local estimates to global estimates
and the derivation of sharp estimate from explicit formulas for Greens functions. Bartnik’s paper add
a number of technical improvements and some new observations to the theory. A simple example
is that the indexing chosen for the weights is different from the one used by his predecessors, but
it clearly reflects the growth at infinity allowed. An expanded version of his presentation, with
complete proofs, can be found in Appendix E.

These results can be put in a geometric form following Melrose; see [Mel93]. Melrose’s technique
involves adding a boundary at infinity to the underlying non-compact complete riemannian mani-
fold. Later work of Mazzeo–Melrose [MM98] was used by Singer–Nye in [NS00] for computing
the index of the Dirac operator twisted by a caloron on S1 × R3.

6.1 Fredholmness

Suppose first that A is independent of t.

The space W k,p(X,F ) is the space of Lp sections of the vector bundle F over X , whose derivatives
up to order k for a given reference connection are also in Lp on X . Because D/A is obviously
defined on sections of S+ ⊗ E and D/∗A is obviously defined on sections of S− ⊗ E, we lighten up
the notation by omiting the F , and most of time we omit the X as well, in which case it is assumed
to be R × Y , or R × T 3 when appropriate.

Lemma 6.1-1. Suppose the connection A does not depend of t. Then

D/A : W 1,2 → L2

is Fredholm if and only if 0 6∈ Spec(DA).

We actually prove a stronger version of the lemma, as this more powerful version is useful later on.

Lemma 6.1-2. Let T be a formally self-adjoint elliptic 1st order operator on a compact manifold
Y . The operator T̂ := ∂t + T seen as

T̂ : W 1,2 → L2
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is Fredholm if and only if 0 6∈ Spec(T ). Furthermore, it is an isomorphism when Fredholm.

Proof: Suppose 0 6∈ Spec(T ). Then we have the estimate ‖Tφ‖
L2(Y )

≥ C‖φ‖
W 1,2(Y )

. Suppose φ
is compactly supported. Then

‖T̂ φ‖2
= ‖∂tφ‖2

+ ‖Tφ‖2
+ 2

∫

R

∂t〈φ, Tφ〉L2(Y )

≥ (1 + C2)
(
‖∂tφ‖2

+
∥∥‖φ‖

W 1,2(Y )

∥∥2

L2(R)

)

≥ (1 + C2)‖φ‖2

W 1,2 , (6.1)

thus T̂ has closed range and no kernel.

If φ ∈ L2 is orthogonal to the image of T̂ , then it is a weak solution to T̂ φ = 0. Elliptic theory, for
example in [LM89, Thm III.5.2(i), p. 193], implies that φ is C∞. But the only C∞ solution to be
L2 is 0. Thus T̂ is an isomorphism.

Suppose now 0 ∈ Spec(T ), and let φ0 be in ker(T ). We show that T̂ does not have closed range. It
suffices to do so to prove that ∂t : W

1,2(R) → L2(R) does not have closed image. Set

f(x) :=

{
1/x, for |x| ≥ 1;

x, for |x| ≤ 1;

F (x) :=

{
1/2 − log |x|, for |x| ≥ 1;

x2/2, for |x| ≤ 1.

The function f clearly belongs to L2. In fact, ‖f‖
L2 = 2

√
2/3. We have ∂tF = f , but c+ F 6∈ L2

for all c ∈ R. Hence f is not in the image of ∂t.

Choose χR : R → [0,∞) with χR(x) = χR(−x), and

χR(x) =

{
0, when |x| ≥ 2R;

1, when |x| ≤ R.

Set fR := χRf . It is obvious that fR → f in L2, and fR(x) = −fR(−x). This last property
ensures that the function

FR :=





∫ x
−3R fR, for x ≤ 0;

− ∫ 3R
x fR, for x ≥ 0,

is well-defined at x = 0. The function FR satisfies ∂tFR = fR, and thus, since FR is compactly
supported, fR is in the image of ∂t. The image is therefore not closed. The proof is now complete.

2

We now add a number of weighted Sobolev spaces to our arsenal. The weight function we use
here, denoted σδ, depends only on t, and its definition depends on whether δ ∈ R or δ ∈ R2. For
δ = (δ−, δ+) ∈ R2, we want σδ > 0 with

σδ =

{
e−δ−t, for t < −1;

e−δ+t, for t > 1.
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To achieve such a weight function, choose c smooth and positive with

c(t) =

{
1, for t ≤ −1;

0, for t ≥ 1.

Then set
σδ := e−

(
cδ−+(1−c)δ+

)
t.

For δ ∈ R, set
σδ := e−δt.

The weighted Sobolev spaces are defined by the equation

W k,p
δ := {f | ‖σδf‖W k,p <∞} = σ−δW

k,p.

As usual, Lp
δ = W 0,p

δ . For δ ∈ R, notice that σδ = σ(δ,δ) hence W k,p
δ = W k,p

(δ,δ).

Theorem 6.1-3. Suppose A is translation invariant (it does not depend on t). Then

D/A : W 1,2
δ → L2

δ

is Fredholm if and only if δ 6∈ Spec(DA). Moreover, it is an isomorphism if Fredholm.

Proof: The following diagram is commutative:

W 1,2
δ

D/
- L2

δ

W 1,2

∼=
?

σD/σ−1

- L2

∼=
?

Because the columns are isomorphisms, the top row is Fredholm if and only if the bottom row is.
But

σδ D/Aσ
−1
δ = ∂t + (D/A + δ).

Using Lemma 6.1-2, we see it is Fredholm if and only if 0 6∈ Spec(D/A + δ), or equivalently when
−δ 6∈ Spec(D/A). Since Spec(D/A) = −Spec(D/A), the conclusion follows. 2

Our ultimate goal is to find Fredholmness conditions for D/A, with the only hypothesis that A is an
instanton. As we know, being an instanton forces A to have flat limits at ±∞, say Γ− and Γ+. As
a notational convenience, we define the grid

GA :=
(
Spec(Γ−) × R

) ∪ (R × Spec(Γ+)
)
. (6.2)

Theorem 6.1-4. Let Γ+ and Γ− be two flat connections on Y . Suppose A is a connection on R×Y
such that

A =

{
Γ−, on (−∞,−R) × Y ;

Γ+, on (R,∞) × Y.

Then for a weight δ ∈ R2,
D/A : W 1,2

δ → L2
δ

is Fredholm if and only if δ 6∈ GA.
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Proof: Consider the three following manifolds:

X1 = R × Y,

X2 =
(
[−R− 2, R + 2]/(R+2)∼(−R−2)

)× Y,

X3 = R × Y.

Using a path from Γ− to Γ+, we can find Ã on X2 such that Ã = A on [−R− 1, R + 1] × Y , and
we can also find a function σ̃ defined on X2 which restrict to σδ on that same subspace.

Choose a square root of a partition of unity

φ2
1 + φ2

2 + φ2
3 = 1

subordinate to the covering
(
(−∞,−R) × Y, (−R− 1, R + 1) × Y, (R,∞) × Y

)
.

Consider the operators

D1 := σδ− D/Γ−σ
−1
δ−
,

D2 := σ̃D/Ãσ̃
−1, and

D3 := σδ+ D/Γ+
σ−1

δ+

defined on the spaces X1, X2, and X3 respectively.

When δ 6∈ GA, all the Di are Fredholm. In fact, D1 and D3 are even isomorphisms. Hence there
exist

Pi : L
2(Xi) →W 1,2(Xi), i = 1, 2, 3, and

K2 : L2(X2) → L2(X2)

with K2 compact such that

D1P1 = 1, D3P3 = 1,

D2P2 = 1 +K2.

Set
P := φ1P1φ1 + φ2P2φ2 + φ3P3φ3.

Notice that P is a well defined operator L2(R × Y ) →W 1,2(R × Y ). Then

σδ D/Aσ
−1
δ (Pf) =

∑

i

DiφiPiφif

=
(∑

i

φiDiPiφif
)
+
(∑

i

[Di, φi]Piφif
)

=
(∑

i

φ2
i f
)
+
(
φ2K2φ2f +

∑

i

[Di, φi]Piφif
)

= f +Kf

with K compact.
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Similarly, we can find left-parametrices for the Di and construct a left parametrix for σδ D/Aσ
−1
δ

using them. Hence δ 6∈ GA implies D/A : W 1,2
δ → L2

δ is Fredholm.

The converse is a corollary of Theorem 6.4-1. It should be noted that we do not use this part of the
result to establish Theorem 6.4-1. 2

This last theorem now allows us to prove at last what we are really after.

Theorem 6.1-5. Let (E,A) be a SU(2)-instanton on R× Y . Suppose that A is in temporal gauge
and that it converges to flat connections Γ+ at +∞ and Γ− at −∞. Then the operator

D/A : W 1,2
δ → L2

δ

is Fredholm if and only if δ 6∈ GA.

Proof: Let
(χ+

R, χ
−
R, χ

0
R)

be a partition of unity subordinate to the covering
(
(R,∞) × Y, (−∞,−R) × Y, (−R− 1, R + 1) × Y

)
.

Suppose Γ± = d + γ± and A = d + a. Then a tends to γ+ and γ− when t tends to +∞ and −∞
respectively. Set

aR = χ+
Rγ+ + χ−

Rγ− + χ0
Ra. (6.3)

For simplicity, we bring the discussion back to the classical Sobolev spaces W 1,2 and L2 as we did
in the proof of Theorem 6.1-3. Set

En := σδ D/anσ
−1
δ , and

E := σδ D/Aσ
−1
δ .

All the E and En are operators from W 1,2 to L2. Our aim is to show that E is Fredholm if and only
if δ 6∈ GA. By virtue of Theorem 6.1-4, it is precisely out of that grid that E1 is Fredholm. We now
prove that E −E1 is compact, whence the result.

Define the operator Kn := D/an − D/a1
. Then

Kn = cl(an − a1)

= (χ+
n − χ+

1 )cl(γ+) + (χ−
n − χ−

1 )cl(γ−) + (χ0
n − χ0

1)cl(a).

As it is a zeroth order operator, Kn is continuous W 1,2 → W 1,2. Observe that the coefficients in
Kn have compact support:

supp(χ−
n − χ−

1 ) = [−n− 1,−1] × Y

supp(χ+
n − χ+

1 ) = [1, n+ 1] × Y

supp(χ0
n − χ0

1) = supp(χ−
n − χ−

1 ) ∪ supp(χ+
n − χ+

1 ).

Hence Kn factorizes through the compact inclusion

W 1,2([−n− 1, n+ 1] × Y
) ⊂ L2([−n− 1, n+ 1] × Y

)
.
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Thus Kn is compact.

Suppose without loss of generality that n < m. Since

Kn −Km = (χ+
n − χ+

m)cl(γ+) + (χ−
n − χ−

m)cl(γ−) + (χ0
n − χ0

m)cl(a),

we have

‖(Kn −Km)φ‖2
=
(∫ m+1

n

)
+
(∫ −n

−m−1

)
.

The first integral involves only γ+ and a. On that domain, χ0
j + χ+

j = 1 for any j. Hence on
[n,m+ 1],

(Kn −Km)φ = (χ0
n − χ0

m)cl(a− γ+)φ.

Since a = γ+ +O(1/t), we have

‖(Kn −Km)φ‖ ≤ C
1

n
‖φ‖

for any Sobolev norm. Hence the sequence of compact operator Kn is Cauchy and its limit K is
compact. Now obviously D/A − D/a1

= K hence D/A is Fredholm if and only if D/a1
is Fredholm.

The proof is now complete. 2

6.2 Elliptic estimates

As for the compact case, we do have elliptic estimates but those are not sufficient to prove the
Fredholmness of D/, which is why we need the more involved proofs of the previous section. We
do however need those inequalities for finding the asymptotic behavior of harmonic spinors in the
Chapter 7. Let’s derive them.

Theorem 6.2-1 (Gårding Inequality). Let A be an instanton on R × Y . If s ∈ L2 and D/As ∈ L2,
then s ∈W 1,2 and

‖s‖
W 1,2 ≤ C

(‖D/As‖L2 + ‖s‖
L2

)
. (6.4)

Proof: Let sc denote the scalar curvature of Y . We start with the Weitzenbock formula:

D/∗AD/As = ∇∗
A∇As+

(
cl(FA) +

sc

4

)
s.

Suppose s has compact support. Then ‖D/As‖2

L2 = ‖∇As‖2

L2 + 〈(cl(FA) + sc/4)s, s〉L2 , thus

‖∇As‖2

L2 ≤ ‖D/As‖2

L2 + sup(|FA + sc/4|)‖s‖2

L2

≤ max(sup(|FA + sc/4|), 1)
(‖D/As‖L2 + ‖s‖

L2

)2
.

While this inequality is good, we must not forget that the W 1,2-norm is defined using the trivial
connection ∇. Fortunately, for C being, say, 2 + sup(

√
|FA + sc/4|) + sup(|A|), we have

‖∇s‖
L2 ≤ ‖∇As‖L2 + ‖As‖

L2

≤ ‖∇As‖L2 + sup(|A|)‖s‖
L2

≤ C
(‖D/As‖L2 + ‖s‖

L2

)
.
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Since A is in radial gauge, the ASD and L2 conditions on the curvature imply that C is finite. Thus
Equation (6.4) is proved for s with compact support.

Suppose now that s does not have compact support. We use now a trick used also in [LM89, p. 117]
to show that ker(D/) = ker(D/2) on a complete manifold.

Choose χ ∈ C∞(R) such that

0 ≤ χ ≤ 1,

χ(t) = 1 for |t| ≤ 1,

χ(t) = 0 for |t| ≥ 2, and |χ′| ≤ 2.

We set χn(x, t) := χ(t/n) on R × Y , and set sn := χns. The sequence sn has compact support
and

sn → s in L2. (6.5)

We know that
D/Asn = cl(grad χn)s+ χnD/As.

Obviously χnD/As converges to D/As in L2, and ‖cl(grad χn)s‖
L2 ≤ (2/n)‖s‖

L2 , hence

D/Asn → D/As in L2. (6.6)

Consequently, because of (6.5) and (6.6), and because Equation (6.4) is true for the sn, we see that
sn is a Cauchy sequence in W 1,2. Hence sn converges to, say, s̃ in W 1,2, whence it converges to s̃
in L2. Thus s̃ = s, and s ∈ W 1,2 as wanted, with norm bounded as in Equation (6.4). The proof is
now complete. 2

We push things up the scale a tiny bit with the next result.

Corollary 6.2-2 (Elliptic Estimate). LetA be an instanton on R×Y If s ∈W k,2 and D/As ∈W k,2,
then s ∈W k+1,2 and

‖s‖
W k+1,2 ≤ C

(‖D/As‖W k,2 + ‖s‖
W k,2

)
. (6.7)

Proof: We prove it by induction, the first step being the result of Theorem 6.2-1. Suppose the result
is true for k − 1, and suppose s ∈W k,2 and D/As ∈W k,2. Then ∇s ∈W k−1,2 and

D/A∇s = ∇D/As+ [D/a,∇]s.

The first term of the right hand side is in W k−1,2, while the second,

[D/as,∇]s = −
∑

j

cl(∂j)∇(A(∂j))s,

is in W k−1,2 if A ∈W k−1,∞, which is the case for a good choice of gauge as A is an instanton.

We hence have, by induction, that ∇s ∈W k−1,2, which means that s ∈W k,2 and

‖s‖
W k,2 = ‖s‖

L2 + ‖∇s‖
W k−1,2

≤ ‖s‖
L2 + C

(‖D/A∇s‖W k−1,2 + ‖∇s‖
W k−1,2

)

≤ C
(‖s‖

L2 + ‖∇D/As‖W k−1,2 + ‖[D/A,∇]s‖
W k−1,2 + ‖∇s‖

W k−1,2

)

≤ C ′(‖D/As‖W k,2 + ‖s‖
W k,2

)
.
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The proof is now complete. 2

Remark 6.2-3. Note that in Estimates (6.4) and (6.7), we can choose a uniform C for any family
of connections Az parameterized by z in a compact set, independently of whether or not D/Az is
Fredholm everywhere.

We can even prove a better estimate, which also hints to Fredholmness properties for δ 6∈ GA.

Theorem 6.2-4 (Gårding plus). Suppose δ 6∈ GA. Then there exist a compact subcylinder K large
enough so that for any s ∈W 1,2, we have

‖s‖
W 1,2

δ

≤ C
(‖D/As‖L2

δ

+ ‖s‖
L2

δ
(K)

)
, (6.8)

with K and C depending only on A and δ.

Proof: First set KR := (−∞, R] × T 3, and suppose supp(s) ∩KR = ∅. Then

‖(D/A − D/Γ)s‖
L2 ≤

(
sup
t>R

|A− Γ|
)
‖s‖

L2

hence as R→ ∞, the operator norm of the restriction of D/A − D/Γ on elements with support out of
KR, denoted ‖D/A − D/Γ‖op,R

, decreases to 0.

Let χR be a cut off function, with χR(t) = 0 for t > R + 1, and χR(t) = 1 for t ≤ R. Write
s = s0 + s∞, with s0 = χRs and s∞ = (1 − χR)s. Since D/Γ is an isomorphism, we have

‖s∞‖
W 1,2 ≤ C‖D/Γs∞‖

L2

≤ C
(‖D/As∞‖

L2 + ‖(D/A − D/Γ)s∞‖
L2

)

≤ C
(‖D/As∞‖

L2 + ‖D/A − D/Γ‖op,R
‖s∞‖

L2

)

≤ C
(‖D/As∞‖

L2 + ‖D/A − D/Γ‖op,R
‖s∞‖

W 1,2

)
.

But now,

‖D/As∞‖
L2 ≤ ‖D/As‖L2 + ‖D/As0‖L2

≤ ‖D/As‖L2 + ‖χRD/As‖L2 + ‖cl(grad χR)s‖
L2

≤ C
(‖D/As‖L2 + ‖s‖

L2(KR+1)

)
.

Hence
‖s∞‖

W 1,2 ≤ C
(‖D/As‖L2 + ‖s‖

L2(KR+1)
+ ‖D/A − D/Γ‖op,R

‖s∞‖
W 1,2

)
.

For R big enough, we can rearrange to obtain

‖s∞‖
W 1,2 ≤ C

(‖D/As‖L2 + ‖s‖
L2(KR+1)

)
.

We can now play the same game at −∞, splitting s0 as s−∞ + s̃0 and we obtain a similar estimate.
Once we patch all those estimates together, we find that there is a R big enough so that for the
compact subcylinder K := [−R,R] × T 3, we have the desired Inequality (6.8). 2

Note that the assumption s ∈ W 1,2 is important. This Theorem does not prove that D/Aφ ∈ L2 and
φ|K ∈ L2 implies φ ∈ W 1,2. If that implication were true, then in the language of Chapter 8, it
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would rule out the possibility that D/H ∩ V 6= {0}, hence would imply that V and Vy are always
equal.

6.3 Invariance of the kernels

We define the spaces
ker(δ) := ker(D/A : W 1,2

δ → L2
δ),

ker∗(δ) := ker(D/∗A : W 1,2
δ → L2

δ),
(6.9)

and the integers
ind(δ) := ind(D/A : W 1,2

δ → L2
δ)

N(δ) := dimker(δ), and

N∗(δ) := dimker∗(δ).

(6.10)

Since (L2
δ)

∗ = L2
−δ , Theorem 6.2-1 tells us that dim coker(D/A) = N∗(−δ), hence

ind(δ) = N(δ) −N ∗(−δ).

That the formal adjoint D/∗A on W 1,2
−δ is really the adjoint of D/A on W 1,2

δ is guaranteed by the
following lemma.

Lemma 6.3-1. The subspace ker∗(−δ) of L2
−δ = (L2

δ)
∗ kills Im(δ) in the L2 natural pairing.

Proof: Suppose φ is a smooth function with compact support. Then for all ψ ∈ ker∗(−δ), we have
〈ψ, D/φ〉 = 〈D/∗ψ, φ〉 = 0. Since C∞

c is dense in W 1,2
δ , the lemma holds. 2

Let’s say our instanton A has limit Γ± as t tends to ±∞. Recall from Equation (6.2) the definition
of the grid

GA =
(
Spec(Γ−) × R

) ∪ (R × Spec(Γ+)
)

in R2. As we have shown in Theorem 6.1-5, the operator D/A : W 1,2
δ → L2

δ is Fredholm if and only
if δ 6∈ GA. In fact, we have more, as in shown by the next theorem.

Theorem 6.3-2. In each open square of R2 delimited by the grid GA, the quantities

ind(δ), N(δ), and N ∗(δ)

are constant. In fact, for δ, η in a same square,

ker(δ) = ker(η), and ker∗(δ) = ker∗(η).

Proof: We use the family Dδ : W 1,2 → L2 of operators defined as

Dδ := σδ D/Aσ
−1
δ .

The family is linear in δ as

Dδ = D/A + σδcl(grad σ
−1
δ )

= D/A +
(
cδ− + (1 − c)δ+ + tc′(δ− − δ+)

)
.
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Hence the family depends continuously in the operator topology on the parameter δ ∈ R2. Since

ind(δ) = ind(Dδ),

we see that indeed ind(δ) is constant on each open square.

Let’s define a partial ordering on R2 as follows

δ ≤ η ⇐⇒ δ− ≥ η−, and δ+ ≤ η+.

This ordering is designed so that

δ ≤ η =⇒ W k,p
δ ⊂W k,p

η .

Suppose for the moment that δ, η in the same open square are such that δ ≤ η. We then have

ker(δ) ⊂ ker(η), hence

N(δ) ≤ N(η). (6.11)

Similarly, as −δ ≥ −η, we have

ker∗(−δ) ⊃ ker∗(−η), hence

N∗(−δ) ≥ N ∗(−η). (6.12)

But then, ind(δ) = ind(η) implies

N(δ) −N(η) = N ∗(−δ) −N ∗(−η).

Inequality (6.11) shows that the left-hand-side is nonpositive, while Inequality (6.12) shows that the
right-hand-side is nonnegative. Hence both sides must be zero, and moreover

ker(δ) = ker(η),

ker∗(−δ) = ker(−η).

The proof is not complete yet, as δ and η could be incomparable. In that case, we can find γ in the
same open square smaller than both. We then have

ker(δ) = ker(γ) = ker(η),

and similarly for ker∗, N and N ∗. The proof is now complete. 2

6.4 Wall crossing

The following theorem tells us how the index changes as we cross a wall to change square. This
theorem is quite useful for our main purpose on R × T 3 especially once we know the index of D/A

on weighted Sobolev spaces for weights contained in the open square around 0, which we compute
in Section 8.1,

Theorem 6.4-1 (Wall Crossing). For an ASD connection A on R × Y converging to the flat con-
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nections Γ± on Y at ±∞, the index of D/A and D/∗A changes as follows:

ind(δ) = ind(η) + dim{DΓ+
φ = −λφ}, and

ind∗(δ) = ind∗(η) + dim{DΓ+
φ = λφ}

when δ+ < η+, and δ and η are in adjacent open squares separated by the wall R × {λ} ⊂ GA;

ind(δ) = ind(η) + dim{DΓ−φ = −λφ}, and

ind∗(δ) = ind∗(η) + dim{DΓ−φ = λφ}

when δ− > η−, and δ and η are in adjacent open squares separated by the wall {λ} × R ⊂ GA.

Proof: We start by considering that A is constant in t; say A = Γ. For simplicity, set

Wλ = {DΓφ = λφ}, and

dλ = dimWλ.

We have

ker(D/Γ) =
⊕

λ

e−λtWλ,

ker(D/∗Γ) =
⊕

λ

eλtWλ.

Hence

ker(D/Γ) ∩W 1,2
δ =

⊕

δ−<−λ<δ+

e−λtWλ,

ker(D/∗Γ) ∩W 1,2
δ =

⊕

δ−<λ<δ+

eλtWλ.

Now for δ 6∈ GΓ, we know D/Γ is Fredholm hence

ind(δ) = N(δ) −N ∗(−δ)
=

∑

δ−<−λ<δ+

dλ −
∑

−δ−<λ<−δ+

dλ

=
∑

δ−<−λ<δ+

dλ −
∑

δ+<−λ<δ−

d−λ.

Suppose δ and η are in adjacent open squares delimited by R2 \GΓ, say δ is in the square to the left
of the square containing η, and both squares are separated by {a} × R ⊂ GΓ.

Since the index is constant in each open square, we can pick δ and η such that

δ = (a− ε, b)

η = (a+ ε, b)

with a+ ε < b or b < a− ε.
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Suppose a+ ε < b. Then N ∗(−δ) = N ∗(−η) = 0 and

N(δ) =
∑

a−ε<−λ<b

dλ = d−a +
∑

a+ε<−λ<b

dλ = d−a +N(η).

Suppose on the contrary that b < a− ε. Then N(δ) = N(η) = 0 and

N∗(−δ) =
∑

b<−λ<a−ε

d−λ = −da +
∑

b<−λ<a+ε

d
λ

= −da +N∗(−η).

Hence in both cases, we find
ind(δ) = d−a + ind(η).

This formula also holds when δ is in the square above the one containing η.

Now suppose A has limiting connections Γ+ and Γ− at +∞ and −∞. We bring all the different
operators we want to deal with on W 1,2 and L2, and set

D1 := σδ D/Aσ
−1
δ ,

D2 := ση D/Aσ
−1
η ,

D3 := σδ D/Γ+
σ−1

δ ,

D4 := ση D/Γ+
σ−1

η .

Recall that D1 = D/A +
(
cδ− + (1 − c)δ+ + tc′(δ− − δ+)

)
, and similarly for the others.

Suppose that δ− = η−. Notice that D1 −D2 = D3 −D4. We can make up a compact operator K
so that D1 −D2 = K for t ≤ 1. Notice also that D1 = D3 for t > 1, and D2 = D4 for t > 1. Set

D̃2 := D2 +K,

D̃4 := D4 +K.

Then we have

D1 =

{
D̃2, for t ≤ 1

D3, for t > 1;

D̃4 =

{
D3, for t ≤ 1;

D̃2, for t > 1.

The excision principles for indices (see Theorem B-1) tells us that

ind(D1) − ind(D̃2) = ind(D3) − ind(D̃4).

Since ind(D̃2) = ind(D2) and ind(D̃4) = ind(D4), we see that the index changes the same way
for ASD connections and time-independent connections. The proof is now complete. 2

Remark 6.4-2. Notice that we proved something better for time-independent Γ. Indeed the analysis
of ker(δ) is such that we know its dimension N(δ) is lower semicontinuous: for

δt := (δ−, λ− ε+ t) or δt := (δ− + ε− t, λ),
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and for small ε and t, and some a and b, we have that

N(δt) = a for t ≤ 0,

N(δt) = b for t > 0.

On R × T 3, the same is actually true for connections A when A decays exponentially to its limits.
Suppose

λ ∈ Spec(DΓ−) × Spec(DΓ+
),

δ is in the upper left open square adjacent to λ,

η is in the lower right open square adjacent to λ.

We have ker(λ) = ker(η).

Indeed, suppose now φ ∈ ker(λ). Then φ ∈ ker(δ) hence by Theorem 7.2-1, we expand φ for t > 0
as φ = e−λ+tψλ+

+ φ̄, with φ̄ ∈W 1,2
η+

([0,∞)×T 3). Since φ and φ̄ are both in W 1,2
λ+

, so is the term
e−λ+tψλ+

. This fact implies that ψλ+
= 0. Using a similar proof at −∞, we find φ ∈W 1,2

η .
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Chapter 7

Asymptotic behavior of harmonic
spinors

In this chapter, we study how L2-harmonic spinors on various spaces decay with time. For a 3-
manifold Y of scalar curvature sc, the Weitzenbock formula (see [Roe98, Prop 3.18, p. 48]) says

D/∗AD/A = ∇∗
A∇A + cl(F+

A ) +
sc

4
.

For an ASD connection A, we hence see that should sc ≥ 0, every positive harmonic spinor is
parallel for the connection A, hence has constant norm. This conclusion certainly prevents it from
being L2 on the manifold R × Y of infinite volume.

In view of theorem 6.3-2, any negative L2 harmonic spinor can be seen inW 1,2
δ for any δ in the open

square delimited by the grid GA (see Equation (6.2) and containing (0, 0). The elliptic bootstrapping
of Corollary 6.2-2 and the associated Sobolev embedding of W 3,2 in bounded C0 functions (see
[Heb99, Thm 3.4, p. 68]) tells us that if

ϕ ∈W 1,2
δ (R × Y ), and D/∗Aϕ = 0,

then
ϕ ≤ Cαe

αt

for all α shy of the first negative eigenvalue of DΓ+
on Y when t→ ∞ and shy of the first positive

eigenvalue of DΓ− on Y when t→ −∞.

While this result is nice, we can get a better knowledge of the asymptotic behavior. We first build
up the theory on half-cylinders, which we need, and then apply it to T 3 and S3 in place of Y .

7.1 Translation invariant operators on half-cylinders

For a more compact notation, we introduce the following shorthands:

Ya := {a} × Y

Ya+ := [a,∞) × Y

Y + := [0,∞) × Y
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We hope to construct the asymptotic expansion of harmonic spinors by comparing the W 1,2
δ -kernel

of D/∗ for varying δ. To compare then, we need finite dimensionality, or better, finite index. Before
studying what gives us those properties, let’s first eliminate options that won’t.

Given a Dirac operator D on Y , with no zero eigenvalue, we have

‖Dφ‖
L2(Y )

≥ C‖φ‖
W 1,2(Y )

.

On the full cylinder Y × R, this estimate was enough to ensure that

D/ : W 1,2(R × Y ) → L2(R × Y )

is an isomorphism. Working now on the half cylinder [a,∞) × Y , this estimate is not sufficient, as
we now check. Define the ψλ by the eigenvalue equation

Dψλ = λψλ.

Then all the eλtψλ with λ < 0 are in W 1,2([a,∞) × Y ) ∩ ker(D/). So much for Fredholmness.

Another option would be to consider the operator

D/ : W 1,2
tr=0([a,∞) × Y ) → L2([a,∞) × Y )

on the space of sections whose restriction to Ya is 0 The elliptic estimate (7.2) that we prove below
still holds, but as φ(a) = 0, we have

‖φ‖
W 1,2 ≤ ‖D/φ‖

L2 .

Hence D/ is injective and has close range. It is therefore semi-Fredholm but it isn’t Fredholm: its
adjoint is the usual D/∗ with no boundary condition and it has infinite dimensional kernel on a half-
space.

The space L2(Y ) splits according to the finite dimensional eigenspaces Wλ for D. Let

Π+
δ : L2(Y ) →

⊕

λ>δ

Wλ

Π−
δ : L2(Y ) →

⊕

λ<δ

Wλ

Πδ : L2(Y ) → Wδ

be the projections. To simplify notation we omit δ when it is 0 and set φ± := Π±(φ).

For every φ ∈ L2(Y ), let φλ be its Wλ component. Thus

φ =
∑

φλ.

Using this decomposition, we can define the space W
1

2
,2(Y ) using the norm

‖φ‖2

W
1
2

,2 =
∑

(1 + |λ|)‖φλ‖2

L2 . (7.1)

Because Y is compact, the space W
1

2
,2(Y ) defined by two different Dirac operators are equal, with

commensurate norms. The + and − part of L2, however, depend highly on D.
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Theorem 7.1-1. The operator

D// : W 1,2(Ya+) → L2(Ya+) ⊕ Π+W
1

2
,2(Ya)

φ 7→ (D/φ,Π+φ(a))

is an isomorphism.

Keep in mind that D has no kernel.

Proof: It all starts as in the full cylinder case:

‖D/φ‖2

L2 = ‖∂tφ‖2

L2 + ‖Dφ‖2

L2 +

∫ ∞

a
∂t〈φ,Dφ〉L2(Y )

≥ C‖φ‖2

W 1,2 − 〈φ(a), Dφ(a)〉L2(Y ).

Contrary to the full cylinder case, the boundary term here cannot be made to vanish and henceforth
helps control the W 1,2-norm of φ. For the decomposition φ =

∑
φλ, we have

‖φ‖2

W 1,2 ≤ C
(‖D/φ‖2

L2 + 〈φ(a), Dφ(a)〉L2(Y )

)

≤ C
(‖D/φ‖2

L2 +
∑

λ‖φλ(a)‖2

L2(Y )

)

≤ C
(‖D/φ‖2

L2 +
∑

λ>0

|λ|‖φλ(a)‖2

L2(Y )

)

≤ C
(‖D/φ‖2

L2 + ‖φ+(a)‖2

W
1
2

,2(Y )

)
. (7.2)

We just proved that ‖φ‖
W 1,2 ≤ C‖D//φ‖, henceD// is semi-Fredholm and injective.

Suppose that (ψ, η) is perpendicular to Im(D//). For all φ ∈W 1,2([a,∞) × Y ), we have

0 = 〈D/φ, ψ〉 + 〈η, φ+(a)〉
= 〈φ, D/∗ψ〉 − 〈φ(a), ψ(a)〉 + 〈η, φ+(a)〉
= 〈φ, D/∗ψ〉 − 〈φ−(a), ψ−(a)〉 + 〈η − ψ+(a), φ+(a)〉.

Going through all the φ with φ(a) = 0 in a first time, φ+(a) = 0 then, and finally φ−(a) = 0, we
prove

D/∗ψ = 0,

η = ψ+(a),

ψ−(a) = 0.

Thus we have −∂tψ + Dψ = 0, which means that ψ is a linear combination of the eλtψλ. The
condition ψ−(a) = 0 forces out all the negative λ, while the positive ones are forced out by the L2

condition. Hence ψ = 0 andD// is surjective. The proof is now complete. 2

While D/ : W 1,2([a,∞) × Y ) → L2([a,∞) × Y ) is not Fredholm, an easy corollary of Theorem
7.1-1 is that it is surjective. Hence

D/ : W 1,2([a,∞) × Y ) → L2([a,∞) × Y )
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is semi-Fredholm with
ind(D/) = ∞.

Weighted version

As in the full cylinder case, we can look at weighted version of D/ andD//. For computing the asymp-
totic expansion of harmonic spinors, we actually need to consider the dual D/∗ and its counterpart

D//
∗
: W 1,2(Ya+) → L2(Ya+) ⊕ Π−W

1

2
,2(Y )

φ 7→ (D/∗φ,Π−φ(a))

Staring at the diagrams

W 1,2
δ

D/∗

−−−−→ L2
δ

∼=

y
y∼=

W 1,2 −−−−→ L2

W 1,2
δ

D//
∗

−−−−→ L2
δ ⊕ Π−

δ W
1

2
,2(Y )

∼=

y
y∼=

W 1,2 −−−−−−→
(D/∗−δ,Π)

L2 ⊕ Π−
δ W

1

2
,2(Y )

shows that the top row D/∗ and D//∗ are respectively semi-Fredholm and Fredholm if and only if
δ 6∈ Spec(D). Moreover, when δ 6∈ Spec(D) they are surjective and an isomorphism respectively.

Independence of the norm

For any operator T : W 1,2(Y ) → L2(Y ), the operator

T̂ := ∂t + T

has a norm independent of the half-cylinder on which that norm is taken. In other words,

T̂ : W 1,2(Ya+) → L2(Ya+)

T̂ : W 1,2(Yb+) → L2(Yb+)

have the same operator norm. This fact is a manifestation of the translation invariance of T̂ . To
prove this claim, consider the following characterization of the norm:

‖T̂‖ = sup{‖T̂ f‖ : ‖f‖ = 1}.

Shifting a function in t by b − a doesn’t change its L2 or W 1,2 norm and shifts its value under T̂ .
So if fb−a(y, t) := f(y, t+ b− a), then

‖T̂‖
op,a

= sup{‖T̂ f‖
L2(Ya+)

: ‖f‖
W 1,2(Ya+)

= 1}
= sup{‖(T̂ f)b−a‖L2(Yb+)

: ‖f‖
W 1,2(Ya+)

= 1}
= sup{‖T̂ (fb−a)‖L2(Yb+)

: ‖f‖
W 1,2(Ya+)

= 1}
= ‖T̂‖

op,b
.
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7.2 The commutative diagram

In this section, we derive the asymptotic behavior of harmonic spinors in the case where the con-
nection A decays exponentially to its limit Γ, with decay rate β,

|A− Γ| ≤ Ce−βt.

This feat is be achieved by some diagram chase. We first introduce maps to compose our diagram.

Suppose η < δ and Spec(D) ∩ [η, δ] = {λ}. Then the map

I : Π−
η W

1

2
,2(Ya) ⊕Wλ → Π−

δ W
1

2
,2(Ya)

(φ, ψ) 7→ φ+ eaλψ

is obviously an isomorphism.

Similarly, the map

J : W 1,2
η (Ya+) ⊕Wλ →W 1,2

δ (Ya+)

(φ, ψ) 7→ φ+ eλtψ

is obviously an injection.

Consider now the map

K : W 1,2
η (Ya+) ⊕Wλ → L2

η(Ya+) ⊕ Π−
η W

1

2
,2(Ya) ⊕Wλ

(φ, ψ) 7→ (
D/A(φ+ eλtψ),Π−

η φ, ψ + e−aλΠλφ(a)
)
.

Let’s verify that this map is well-defined. As D/∗A(eλtψ) = D/∗Γ(eλtψ) + cl(A − Γ)eλtψ, we have∣∣D/∗A(eλtψ)
∣∣ ≤ Ce(λ−β)t|ψ|. Hence, if

λ− β < η, (7.3)

then D/∗A(eλtψ) ∈ L2
η(Ya+), and K is well-defined.

We put all these maps in a diagram

W 1,2
δ (Ya+)

D//
∗

−−−−→ L2
δ(Ya+) ⊕ Π−

δ W
1

2
,2(Ya)

J

x
xι⊕I

W 1,2
η (Ya+) ⊕Wλ −−−−→

K
L2

η(Ya+) ⊕ Π−
η W

1

2
,2(Ya) ⊕Wλ

(7.4)

which is commutative as

D//
∗
J(φ, ψ) =

(
D/∗A(φ+ eλtψ),Π−

δ φ(a) + eaλψ
)

=
(
D/∗A(φ+ eλtψ),Π−

η φ(a) + Πλφ(a) + eaλψ
)

=
(
D/∗A(φ+ eλtψ),Π−

η φ(a) + eaλ(ψ + e−aλΠλφ(a)
))

= (ι⊕ I)K(φ, ψ).

Now that we know that the diagram is commutative, we want to exploit the fact that its rows are
isomorphisms. While Theorem 7.1-1 assures us that D//∗ is an isomorphism, we still have to prove
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that K is one as well. Using the identification

D//
∗
: W 1,2

η (Ya+) ≡ L2
η(Ya+) ⊕ Π−

η W
1

2
,2(Ya),

we see that K has the form [
1 p
q 1

]

for the splitting W 1,2
η (Ya+)⊕Wλ of the domain and codomain. Hence K−1 is a compact operator,

and K is thus Fredholm of index 0. If K(x) = K(y), then D//∗J(x) = D//
∗
J(y) as the diagram

is commutative, hence x = y and K is injective. Being of index 0, it henceforth must be an
isomorphism.

Let’s now exploit this fantastic diagram. Suppose

φ ∈ ker(D/∗A) ∩W 1,2
δ (R × Y ).

Then for a big enough, the diagram (7.4) has rows which are isomorphism for δ close to the first
negative eigenvalue of DΓ+

and η past it, and satisfying condition (7.3). Theorem 6.3-2 guarantees
us that φ ∈W 1,2

δ (Ya+) for that particular δ.

We now chase around the diagram. Since I is an isomorphism, we know there exist (χ, ν) ∈
Π−

η W
1

2
,2(Ya) ⊕Wλ such that

ι⊕ I(0, χ, ν) =D//
∗
(φ).

But as K is an isomorphism, there is (φ̄, ψ̄) ∈W 1,2
η (Ya+) ⊕Wλ such that

K(φ̄, ψ̄) = (0, χ, ν).

By commutativity of the diagram, we have

D//
∗
J(φ̄, ψ̄) =D//

∗
(φ)

butD//∗ is an isomorphism hence φ = eλtψ̄ + φ̄ for t > a.

Of course, at this point the choice of a is artificial and we can choose a = 0. We hence proved the
following result.

Theorem 7.2-1. Suppose φ ∈ ker(D/∗A) ∩W 1,2
δ (R × Y ). Suppose λ − β < η < δ and that λ is

the only eigenvalue of D between η and δ: Spec(D) ∩ [η, δ] = {λ}. Then there exist ψ̄ ∈ Wλ and
φ̄ ∈W 1,2

η (Y +) such that
φ = eλtψ̄ + φ̄ for t > 0. (7.5)

Furthermore, φ̄ = O(eηt) as t→ ∞.

7.3 Asymptotic on R4

In the spirit of this chapter, we want to study R4 as a cylindrical manifold. Let’s then use the
conformal equivalence

R × S3 → R4 \ {0}
(t, x) 7→ etx.
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The respective metrics of those spaces are related by the formula

gR4\{0} = (e2t)gR×S3 or gR4\{0} = |x|2gR×S3 .

It then follows that dvolR4\{0} = |x|4dvolR×S3 , hence

‖φ‖
L2(R4\{0})

= ‖|x|2φ‖
L2(R×S3)

.

The spinor bundles of R × S3 and R4 \ {0} are isomorphic. Once we fix a spinor bundle to work
with, we can compare the Dirac operators given for the two metrics. The correct relation, as seen in
Appendix D, is

DR4\{0} = |x|−5/2DR×S3 |x|3/2.

Thus
DR4\{0}φ = 0 iff DR×S3(|x|3/2φ) = 0. (7.6)

Let p be the projection R × S3 → S3. Let S(S3) be the spinor bundle of S3. Set S+ and S− to be
p∗(S(S3)). The spinor bundle on R × S3 is S+ ⊕ S−.

The Clifford multiplication exchanges S+ and S−. For vectors tangent to S3, the Clifford multipli-
cation is already defined. The vector ∂/∂t acts as id : S+ → S− and −id : S− → S+.

In this decomposition, the Dirac operator splits nicely:

D±
R×S3 = ± ∂

∂t
+DS3 . (7.7)

We use now the knowledge of the eigenvalues of the DS3 on S3 obtained in Theorem 4.1-3 to
understand the asymptotic expansion of solutions φ to the equation

D−
R4\{0}φ = 0

under the constraint of being L2.

We have here a basis of the kernel of D−
R4\{0}. Indeed, if

DS3ψλ = λψλ

then, as suggested by Equation (7.7), we have

D−
R×S3

(
eλtψλ

)
= 0

and thus, because of the conformal relation 7.6, we have

D−
R4\{0}

(|x|λ−3/2ψλ

)
= 0.

Let’s now use the notation of Chapter 1. Hence A is an instanton connection on a bundle E over R4

and VE = L2(R4, S− ⊗E) ∩ ker(D−
A). Theorem 7.2-1 then tells us any φ ∈ VE has an asymptotic

behavior
φ = |x|−3ψ−3/2 +O(|x|−4).

Theorem 4.1-3 tells us the space of possible ψ−3/2 has dimension 2 dim(E). We build this space
using parallel sections of S+ ⊗E for the trivial connection on E. Let a ∈ Γ(S+ ⊗E) be parallel.
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Consider the section φa := ρ(ν)a/r3 of S− ⊗E. In coordinates, we have

φa =
4∑

i=1

xi

r4
ρ(∂i)a

and we compute

DR4\{0}φa =
∑

1≤i,j≤4

ρ(∂j)∂j
(xi

r4
)
ρ(∂i)a

=
∑

1≤i,j≤4

(δijr4 − 4xixjr
2

r8
)
ρ(∂j)ρ(∂i)a

= −(4r−4 − 4r−4)a

= 0.

But then, formula 4.2 implies that

Dr(φa) = −ρ(ν)∂φa

∂r
− 3

2r
ρ(ν)φa

= − 3

r4
a+

3

2r4
a

= −3

2
a/r4

= ρ(−ν)
(
−3

2
φ/r

)
.

Recall now that S+ and S− are actually pullbacks of the spinor bundle of S3. In this setting,
ρ(ν) : S− → S+ is −id, as explained in the beginning of this section. So restricting to r = 1, we
really find

DS3φ = −3

2
φ.

So far we proved that for any φ ∈ VE , we have

φ = |x|4ρ(x)a+O(|x|−4)

for a parallel section a of S+ ⊗E, parallel that is for the trivial connection on E. This result is not
exactly Equation (1.7), but leads to it. Indeed, the same analysis we did works for the Laplacian.
Hence parallel sections of S+ ⊗E for A or for the trivial connection are the same to leading order,
hence we have

φ = |x|4ρ(x)φ̂ +O(|x|−4)

for some φ̂ ∈WE , and we proved Equation (1.7).
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Chapter 8

Nahm Transform: Instantons to singular
monopoles

“It doesn’t matter what you write
as long as you write the truth.

Then we can figure out what it means.”
TOMASZ S. MROWKA

Following the heuristic of Chapter 2, we show in this chapter that the Nahm transform

N(E,A) = (V,B,Φ)

of a SU(2)-instanton (E,A) on R × T 3 is a singular monopole (V,B,Φ) over over T 3.

As we found out in Chapter 5, once in a temporal gauge, the connection A has limiting flat connec-
tions over the cross-section T 3 at +∞ and −∞, say

lim
t→±∞

A = Γ±.

The flat connection Γ± gives a splitting Lw± ⊕ L−w± of the restriction of E to T 3 at the infinities,
for some w± ∈ T 3. Let W denote the set

W := {w+,−w+, w−,−w−}.

As before, we denote Az the connection on E ⊗ Lz . We consider the Dirac operator

D/∗Az
: L2 → L2.

Outside of W , Theorem 6.1-5 guarantees that D/∗Az
is Fredholm. Since ker(D/Az) = 0 as FAz is

ASD, we have a bundle V over T 3 \W whose fiber at z is

Vz := ker(D/∗Az
) ∩ L2.

By a gauge transformation, we can make the connection Pdz independent of the R factor. We can
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thus see it as

a connection B on T 3 \W,
a Higgs field Φ ∈ Γ(T 3 \W,EndV ).

The main result of this present thesis is the following theorem.

Theorem 8.0-1. Outside of a set W consisting of at most four points, the family of vector spaces V
described above defines a vector bundle of rank

1

8π2

∫
|FA|2,

and the couple (B,Φ) satisfies the Bogomolny equation

∇BΦ = ∗FB .

For w ∈ W and z close enough to w, unless we are in the Scenario 2 of page 91, there are maps
Φ⊥ and Φy such that

Φ =
−i

2|z −w|Φ
⊥ + Φy,

and Φ⊥ is the L2-orthogonal projection on the orthogonal complement of a naturally defined sub-
bundle Vy of V .

The last part of the theorem is made clearer by the introduction of some notation in Section 8.2. The
assumption that we are not in the Scenario 2 of page 91 can most probably be dropped.

Proof: The rank of V is computed in Section 8.1.

The limit term lim∂ of Equation (2.2) is

lim∂ = 〈νΩGφ, dzψ〉T 3

∣∣∣
∞

−∞
.

For z 6∈W , both Gφ and dzψ decay exponentially by Equation (7.5) hence

lim∂ = 0,

and the connection Pdz on R× (T 3 \W ) is ASD. Thus, as explained in Chapter 2, the pair (B,Φ)
satisfies outside of W the appropriate dimensional reduction of the ASD equation, which is in this
case the Bogomolny Equation (A.3):

∇BΦ = ∗FB .

The last part of the theorem is the content of Section 8.3 and rest on the splitting of Section 8.2. 2

8.1 An L
2-index theorem for R × T

3

The following theorem is reminiscent of the similar result for R4.

Theorem 8.1-1. For a SU(2)-instanton (E,A) on R × T 3, the index of the Dirac operator

D/A : W 1,2(R × T 3) → L2(R × T 3)
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when A has nonzero limits at ±∞ is given by the formula

ind(D/A) = − 1

8π2

∫
|FA|2.

Proof: As seen earlier, the fact that A has nonzero limits guarantees that the operator D/A is Fred-
holm on W 1,2. Moreover, A decays exponentially to its limits.

Recall now that ind(D/A) = ind(D/aR
) for all R > 0. We now compute ind(D/aR

) using the relative
index theorem. It could be that Γ− 6= Γ+, but this case is easily converted to a situation where
Γ− = Γ+, as we now see.

Choose a path Γs in the space of flat connections on T 3 starting at Γ+ and ending at Γ−, and
avoiding the trivial connection. Hence 0 6∈ Spec(DΓs) for all s. To define the family of connections
as

R, replace Γ+ by Γs in the definition of aR given by Equation (6.3).

The family D/as
R

of Fredholm operator depends continuously on s. Hence

ind(D/A) = ind(D/aR
) = ind(D/a0

R
) = ind(D/a1

R
).

Note now that the connection a1
R equals Γ− outside [−R− 1, R+1]×T 3. Hence the relative index

theorem tells us
ind(D/a1

R
) − ind(D/Γ−) = ind(D̃/a1

R
) − ind(D̃/Γ−

), (8.1)

where the tilded operators are extensions to some compact manifold of the restriction of the opera-
tors D/a1

R
and D/Γ− to [−R− 1, R + 1] × T 3.

Lemma 6.1-1 and Theorem 3.4-1 tell us that ind(D/Γ−) = 0. Hence the left-hand-side of Equation
(8.1) is equal to ind(D/A).

To compute the right-hand-side, we embed [−R − 1, R + 1] × T 3 in some flat T 4. The spinor
bundles S+ and S− on [−R − 1, R + 1] × T 3 agree very nicely with those of T 4. We extend both
a1

R and Γ− by the trivial bundle with connection Γ−.

The Atiyah-Singer index theorem (see [Roe98, Thm 12.27, p.164] or [LM89, Thm III.12.10, p.
256]) tells us that

ind(D̃/Γ−
) =

{
ch(Γ−) · Â(T 4)

}
[T 4]

ind(D̃/a1
R
) =

{
ch(a1

R) · Â(T 4)
}
[T 4]

=
(c21

2
− c2

)
[T 4].

Since a1
R is in SU(2), we have c1 = 0, while

c2[T
4] =

1

8π2

∫

T 4

|Fa1
R
|2.

Note that on the complement of [−R−1, R+1]×T 3 in T 4, the connection a1
R equals Γ− hence is flat

there. Furthermore, on [−R,R]×T 3, we have a1
R = A. On [R,R+1]×T 3 and [−R−1,−R]×T 3,

the curvature Fa1
R

involves cut off functions, their derivatives and (A − Γ−) terms. Since A tends
to Γ− exponentially fast, we therefore have constant C and β such that

∣∣∣ind(D/A) +
1

8π2

∫

[−R,R]×T 3

|FA|2
∣∣∣ ≤ Ce−βR.
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As R→ ∞, we have the wanted result. 2

Now suppose (E,A) is a SU(2)-instanton on R × T 3. As mentioned before,

lim
t→±∞

= Γ±.

The flat connection Γ± gives a splitting Lw± ⊕ L−w± , for some w± ∈ Λ∗, of the bundle E at ±∞
respectively.

We twist the connection A by the flat connection parameterized by z ∈ T 3. Hence

Spec(Γ+ ⊗ Lz) = ±2π|Λ∗ − z + w+| ∪ ±2π|Λ∗ − z − w+|,
Spec(Γ− ⊗ Lz) = ±2π|Λ∗ − z + w−| ∪ ±2π|Λ∗ − z − w−|.

Thus D/Az is Fredholm as long as z ± w+ 6∈ Λ∗ and z ± w− 6∈ Λ∗. Moreover, when it is Fredholm,
the elements of its L2-kernel decay exponentially.

8.2 A Geometric Splitting and Exact Sequences

In this section, we analyse a splitting of V in a neighborhood of a point w ∈ W where the solution
(B,φ) to Bogomolny equation is singular. This point w is associated to the limit Γ = Γ+ of A at,
say, +∞, in the sense that Γ splits E as Lw ⊕ L−w on T 3.

Suppose the connection A decays at most with rate β, as in |A − Γ+| ≤ Ce−βt for t > 0 and
|A− Γ−| ≤ Ceβt for t < 0. Set

ε :=
1

4
min

(
β,dist

(
w,Λ∗ +W \ {w})

)
,

and define the six weights

pε := (−ε, ε) ε := (0, ε) εq := (ε, ε)

xε := (−ε,−ε) ε := (0,−ε) εy := (ε,−ε)

displayed here in a way which is reminiscent of their position in R2.

Consider the ball B3(w) of radius 2ε around w. As z varies in B3(w), and depending on whether
Γ+ = Γ− or not, there are two or one walls to cross to pass from 0 to pε and from εy to 0. In a
picture, we have

2π|z|

−2π|z|

2π|z|−2π|z|
pε

0

εy

Γ+ = Γ−

2π|z|

−2π|z|

pε

0

εy

Γ+ 6= Γ−

As z varies in B3(w), those walls move around without ever touching εy and pε . Hence for L2
εy and

L2
pε , the operators D/Az , D/

∗
Az

and D/∗Az
D/Az are Fredholm for all z ∈ B3(w).
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Hence for z ∈ B3(w), the six vector spaces

pV z := ker(D/∗Az
) ∩ L2

pε ,
pKz := ker(D/Az) ∩ L2

pε , Hz := ker(∇∗
Az

∇Az) ∩ L2
pε ,

Vyz := ker(D/∗Az
) ∩ L2

εy , Kyz := ker(D/Az) ∩ L2
εy, Kz := ker(D/Az) ∩ L2

are kernels of Fredholm operators. By contrast, the space Vz, already defined as ker(D/∗Az
) ∩ L2, is

not the kernel of a Fredholm operator at w.

Notice that none of those vector space form a priori a bundle over B3(w) as the dimensions could
jump at random. However, for L2

pε and L2
εy , the operators D/Az , D/∗Az

, and ∇∗
Az

∇Az are Fredholm
operators for all z ∈ B3(w). The various indices are therefore constant and we have that, for
example,

dimVyz − dim pKz is constant on B3(w).

We have the following obvious results:

Vy ⊂ V ⊂ pV , Ky ⊂ K ⊂ pK,

D/H ⊂ pV , pK ⊂ H,
Ky = K = {0}.

It was remarked on page 73 that Vyw = Vw. The following few lemmas describe in more detail the
relationship between the various spaces.

We saw in Section 3.4 that the smallest eigenvalues of DΓz are ±2π|z − w|. For simplicity, we set

λ := 2π|z − w|,

and define
Wλ := λ eigenspace of DΓz on T 3.

The family Wλ defines a bundle over the sphere |z − w| = λ/2π around w. Its rank is given by

rkWλ =





1, if λ 6= 0 and 2w 6∈ Λ∗;

2, if λ 6= 0 and 2w ∈ Λ∗, or λ = 0 and 2w 6∈ Λ∗;

4, if λ = 0 and 2w ∈ Λ∗.

(8.2)

As suggested by Theorem 7.2-1, this Wλ plays an important role in understanding the relations
between the various spaces just introduced.

For any instanton connection A′ on R × T 3, set

V (δ) := ker(D/∗A′) ∩ L2
δ ,

K(δ) := ker(D/A′) ∩ L2
δ ,

and let [δ] denote the open square in R2 \ GA′ containing δ.

Lemma 8.2-1 (one wall). Suppose δ, η ∈ R2 \ GA′ are weights for which [δ] and [η] are adjacent
and separated by the wall {µ} × R or R × {µ}. Then the sequence

0 −→ V (δ) −→ V (η)
lim(e−µt·)−−−−−−→ Wµ

(
lim(eµt·)

)∗
−−−−−−−→ K(−δ)∗ −→ K(−η)∗ −→ 0, (8.3)
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where the limits are both evaluated at +∞ when [η] is above [δ] and at −∞ when [η] is to the left
of [δ], is exact.

Proof: Theorem 7.2-1 ensures that the limits give functions α and β∗ which are well defined, and
that

0 −→ V (δ) −→ V (η) −→Wµ and 0 −→ K(−η) −→ K(−δ) −→Wµ

are exact.

It only remains to prove that Sequence (8.3) is exact at Wµ. Suppose φ ∈ V (η) and ψ ∈ K(−η).
Then

0 = 〈D/∗A′φ, ψ〉 − 〈φ, D/A′ψ〉
= lim

t→∞
〈φ, νψ〉 − lim

t→−∞
〈φ, νψ〉

= lim
t→∞

〈e−µtφ, νeµtψ〉 − lim
t→−∞

〈e−µtφ, νeµtψ〉.

One of those limits is β∗α(φ)(ψ) while the other one vanishes as we now see. Suppose [η] is above
[δ], and suppose {µ′}×R is the wall to their right. Then φ = O(eµ′t) as t→ −∞ by Theorem 7.2-1.
But for some µ′′ < µ′, the wall {−µ′′} × R is exactly to the right of [−η] hence ψ = O(e−µ′′t) as
t→ −∞. But then

β∗α(φ)(ψ) = lim
t→−∞

O(e(µ
′−µ′′)t) = 0,

hence Im(α) ker(β∗). A similar argument establish the same fact when [η] is to the left of [δ].

The sequence is then exact if dim Im(α) = dimker(β∗). We have two short exact sequences:

0 −→ V (δ) −→ V (η) −→ Im(α) −→ 0, and

0 −→Wµ/ ker(β∗) −→ K(−δ)∗ −→ K(−η)∗ −→ 0.

Using those short exact sequences and notation from Equations (6.10), we have

dim Im(α) − dimker(β∗) = N∗(η) −N∗(δ) − dimWµ +N(−δ) −N(−η)
= ind∗(η) − ind∗(δ) − dimWµ.

The Wall Crossing Theorem 6.4-1 forces the last line to be 0. The proof is thus complete. 2

Lemma 8.2-2. Suppose Γ+ 6= Γ−. Then the sequences

0 −→ Vz −→ pV z −→Wλ −→ 0, for λ 6= 0, (8.4)

0 −→ Vyz −→ Vz −→W−λ −→ pKz −→ 0, for λ 6= 0, (8.5)

0 −→ Vw −→ pV w −→W0 −→ pKw −→ 0, (8.6)

are exact.

Proof: Apply Lemma 8.2-1 to the choice of weights {pε , 0} and {0, εy} for the connection A′ = Az ,
and remember that Ky = K = {0}. 2

Building up on that knowledge, we work out in Appendix C a technology used to deal with the two
walls involved in passing from V to pV in the case Γ+ = Γ−. The result of the beautiful abstract
non-sense taking place there is summarized in the following lemma, which should be compared to
Lemma 8.2-2.
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Lemma 8.2-3. Suppose Γ+ = Γ−. Then the sequences

0 −→ Vz −→ pV z −→Wλ ⊕W−λ −→ 0, for λ 6= 0, (8.7)

0 −→ Vyz −→ Vz −→ Wλ ⊕W−λ −→ pKz −→ 0, for λ 6= 0, (8.8)

0 −→ Vw −→ pV w −→W0 ⊕W0 −→ pKw −→ 0, (8.9)

are exact.

Proof: See Appendix C. 2

An analysis for ∇∗
Az

∇Az parallel to the one of Chapter 6 for D/Az brings a very similar wall crossing
formula

ind(∇∗
Az

∇Az , pε) − ind(∇∗
Az

∇Az , εy) =

{
2 dimW0, for Γ+ 6= Γ−;

4 dimW0, for Γ+ = Γ−.

However, since ∇∗
Az

∇Az is self-adjoint, ind(∇∗
Az

∇Az , pε) = −ind(∇∗
Az

∇Az , εy), whence

rkH =

{
dimW0, for Γ+ 6= Γ−;

2 dimW0, for Γ+ = Γ−.

Using Equation (8.2), we can even say

rkH =





2, for Γ+ 6= Γ− and 2w 6∈ Λ∗;

4, for Γ+ 6= Γ− and 2w ∈ Λ∗, or Γ+ = Γ− and 2w 6∈ Λ∗;

8, for Γ+ = Γ− and 2w ∈ Λ∗.

For z 6= w, an analysis parallel to the one of Chapter 7 gives injective maps

0 −→ Hz −→Wλ ⊕W−λ −→ 0, for z 6= w and when Γ+ 6= Γ−, (8.10)

0 −→ Hw −→W0 −→ 0, when Γ+ 6= Γ−, (8.11)

0 −→ Hz −→ (
Wλ ⊕W−λ

)2 −→ 0, for z 6= w and when Γ+ = Γ−, (8.12)

0 −→ Hw −→W0 ⊕W0 −→ 0, when Γ+ = Γ−, (8.13)

which are surjective for dimensional reasons.

Bringing all of those sequences together allows us to conclude the following.

Theorem 8.2-4. On B3(w), we have

pV = Vy ⊕ D/H.

Proof: Denote W ′
λ the space

W ′
λ :=

{
Wλ ⊕W−λ, if Γ+ = Γ−;

Wλ, if Γ+ 6= Γ−.

Let p : W ′
λ ⊕W ′

−λ →W ′
λ denote the map p(a, b) = 2λb.
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For λ 6= 0, we use the Snake Lemma on the diagram

0 −−−−→ H −−−−→ W ′
λ ⊕W ′

−λ −−−−→ 0
y D/

y
yp

0 −−−−→ V −−−−→ pV −−−−→ W ′
λ −−−−→ 0

coming from Sequences (8.4), (8.7), (8.10), and (8.12), to produce an exact sequence

ker(0)−→ ker(D/)−→ ker(p) −→coker(0)−→coker(D/)−→coker(p)

0 −→ pKz −→ W ′
−λ−→ Vz −→coker(D/)−→ 0 (8.14)

Note that the map V → coker(D/) being surjective forces pV to be spanned by V and D/H.

Sequences (8.5) and (8.8) imply

dimVz = dimVyz + dimW ′
λ − dim pKz

while sequences (8.4) and (8.7) imply

dim pV z = dimVz + dimW ′
λ.

Thus
dim pV z = dimVyz + 2dimW ′

λ − dim pKz = dimVyz + dim D/H.
Since Lemma 6.3-1 guarantees that 〈D/H, Vy〉 = {0}, we have V ∩ D/H perpendicular to Vy for the
L2 inner product. Hence D/H ∩ Vy = {0}, and pV z = Vyz ⊕ D/H.

It remains to prove the theorem for z = w. We already know Vyw = Vw and D/Hw ⊂ pV w. We also
know from Sequences (8.6) (8.9) that

dim pV w = dimVw + dimW ′
0 − dim pKw

= dimVyw + dim D/Hw.

We therefore only have to prove that the intersection Vw ∩ D/AwHw is {0} to complete the proof.

The asymptotic behavior of φ ∈ Hw is

φ =

{
tφ+

0 + φ+
1 + o(1), as t→ ∞;

tφ−0 + φ−1 + o(1), as t→ −∞;

for some φ±0 , φ
±
1 ∈W0. If Γ+ 6= Γ−, we must have φ−0 = φ−1 = 0, as w is associated to Γ+.

The asymptotic behavior of D/Awφ is

D/Awφ =

{
φ+

0 + o(1), as t→ ∞;

φ−0 + o(1), as t→ −∞.

Suppose D/Awφ ∈ L2. Then

‖D/Awφ‖
2

L2 = 〈D/∗Aw
D/Awφ, φ〉 + lim

t→∞
〈D/Awφ, νφ〉 + lim

t→−∞
〈D/Awφ, νφ〉

= 〈φ+
0 , φ

+
1 〉 + lim

t→∞
t|φ+

0 |2 − 〈φ−0 , φ−1 〉 − lim
t→−∞

t|φ−0 |2.
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For ‖D/Awφ‖L2 to be finite, we must get rid of the limits, thus forcing φ±
0 = 0 and consequently we

have D/Awφ = 0. The proof is now complete. 2

For a continuous family of Fredholm operators, like D/Az on L2
pε parameterized on B3(w), the

dimension of the kernel can only drop in a small neighborhood of a given point, it cannot increase.
However, not any random behavior is acceptable.

Lemma 8.2-5 (also found in [Kat95, p. 241]). Let T : X → Y be Fredholm and S : X → Y a
bounded operator. Then the operator T + tS is Fredholm and dimker(T + tS) is constant for small
|t| > 0.

Before spelling out the proof of this lemma, which we obviously use with T = D/Aw , X =
W 1,2

pε , Y = L2
pε , and S = cl(e) for some direction e ∈ R3, let’s note that three scenarios are

possible.

1. dim pKz is constant on a neighborhood around w, say B3(w);

2. dim pKz is constant for z ∈ B3(w) \ {w}, but is smaller than dim pKw;

3. dim pKw+λe 6= dim pKw+λ′e′ for small λ, λ′ > 0 and some e 6= e′.

We close this section with the proof of Lemma 8.2-5.

Proof: The proof is a simplified proof of the one provided by Kato in [Kat95, p. 241] for more
general T and S.

Define the sequences Mn ⊂ X and Rn ⊂ Y by

M0 := X, R0 := Y,

Mn := S−1Rn, Rn+1 := TMn.

All the Mn and Rn are imbricated as

M0 ⊃M1 ⊃M2 ⊃ · · · and R0 ⊃ R1 ⊃ R2 ⊃ · · · .

That the Mn are closed is a trivial fact once it is established that the Rn are closed. But define
X̃ := X/ ker(T ) and M̃n to be the set of corresponding ker(T )-cosets. Then for the map T̃ defined
as T̃ (x + ker(T )) = T (x), we have TMn = T̃ M̃n. Since T̃ is injective and Fredholm, and since
M̃n is closed in X̃ , then Rn+1 = T̃ M̃n is closed as well.

Define now
X ′ :=

⋂

n

Mn and Y ′ :=
⋂

n

Rn,

and let T ′, S′ be the restriction to X ′.

If x ∈ X ′, then x ∈ Mn for all n hence T ′x = Tx ∈ TMn = Rn+1 for all n, and by definition
Sx ∈ Rn. So both T ′ and S′ are bounded operators X ′ → Y ′.

We now prove Im(T ′) = Y ′. Suppose y ∈ Y ′, then y ∈ Rn = TMn−1 for all n, hence
T−1y ∩ Mn−1 6= ∅. Since T is Fredholm, T−1y is closed and finite dimensional. We hence
have a descending sequence T−1y ∩Mn ⊃ T−1y ∩Mn+1 ⊃ · · · of finite dimensional nonempty
affine spaces, which must then be stationary after a finite number of steps. The limit, which is then
nonempty, must be T−1y ∩X ′, hence y ∈ Im(T ′), and T ′ is surjective.
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Notice that trivially, ker(T ′ + tS′) ⊂ ker(T + tS). But more interestingly, those kernels are equal
for t 6= 0. Indeed, take x ∈ ker(T + tS). We know x ∈ X = M0, and prove by induction that
x ∈Mn for all n, hence proving that x ∈ ker(T ′ + tS′). The induction step is proved by staring at
the definitions: being in the kernel forces S(−tx) = Tx ∈ Rn+1 if x ∈Mn; but then −tx ∈Mn+1

and for t 6= 0, we then have x ∈Mn+1. We thus established that

ker(T ′ + tS′) = ker(T + tS) for t 6= 0.

Obviously, for t small enough, T ′ + tS′ is Fredholm and surjective, hence for small enough |t| > 0,

dimker(T + tS) = dimker(T ′ + tS′) = ind(T ′ + tS′)

is constant. 2

8.3 Asymptotic of the Higgs field

We know study the behavior of the Higgs field Φ as z approaches of a point in w ∈W .

We know w is associated to the limit Γ of A at ∞ or −∞, in the sense that Γ splits E as Lw ⊕L−w.
Without loss of generality, we suppose

Γ+ = Γ.

We can break up the analysis depending on which scenario happens; see page 91.

When Γ+ 6= Γ−, and for 2π|z − w| < ε, notice that

pV z = L2
pε ∩ ker(D/∗Az

) = L2
ε ∩ ker(D/∗Az

) = L2
εq ∩ ker(D/∗Az

), and

Vyz = L2
xε ∩ ker(D/∗Az

) = L2
ε ∩ ker(D/A∗

z
) = L2

εy ∩ ker(D/∗Az
).

When Γ+ = Γ−, those spaces are a priori all different.

Theorem 8.3-1. Suppose dim pKz is constant in a neighborhood of w. On a closed ball B3(w)
around w, there exists families of operators Φ⊥ and Φy, bounded independently of z , such that

Φ = − −i
2|z − w|Φ

⊥ + Φy. (8.15)

Furthermore, Φ⊥ is the L2-orthogonal projection on D/AzHz ∩ Vz .

Proof: When dim pKz is constant on B3(w), so is dimVyz . Hence Vy is a bundle on B3(w), say of
rank l. Obviously, Vy supports many different norms, and amongst those are the L2 and L2

εy norms,
which must be equivalent since Vy is finite rank on a compact space.

Hence, for φ ∈ Vyz , observe that

‖tφ‖
L2 ≤ Cε‖φ‖εy

≤ C‖φ‖
L2 .

Denote P y the L2-orthogonal projection of V on Vy. We just proved that

Φ ◦ P y is bounded independently of z ∈ B3(w).

It is part of the map Φy announced in the statement of the theorem.
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As suggested above, let Φ⊥ denote the L2-orthogonal projection on D/AzHz ∩ Vz . Then

Φ = −2πiPmt = ΦP y − 2πi
(
P y + Φ⊥

)
mtΦ

⊥

= ΦP y + 2πiP ymtΦ
⊥ − 2πiΦ⊥mtΦ

⊥.

As it turns out, P ymtΦ
⊥ is also bounded independently of z ∈ B3(w). Indeed, suppose we have an

L2-orthonormal frame φ1, . . . , φl of Vy in some open subset of B3(w), then

‖P ymtΦ
⊥(φ)‖

L2 =
∥∥∥

l∑

j=1

〈φj , tΦ
⊥(φ)〉φj

∥∥∥
L2

=
∥∥∥

l∑

j=1

〈tφj ,Φ
⊥(φ)〉φj

∥∥∥
L2

≤
l∑

j=1

C‖φj‖2

L2‖Φ⊥(φ)‖
L2

≤ C‖φ‖
L2 .

It remains only to analyze Φ⊥mtΦ
⊥.

Pick a vector e ∈ R3 of length 1. Let

Ray = {w +
λ

2π
e} ⊂ B3(w)

be a ray inside B3(w) emerging from w. As the notation suggests, we parameterize this ray by
λ = 2π|z −w|. Pick a family φz ∈ D/AzHz for z ∈ Ray, with

φz ∈ Vz for λ > 0,

‖φz‖L2
pε

= 1. (8.16)

But then,
‖φz‖L2 → ∞ as λ→ 0.

To prove this claim, suppose it is not true. Then there is a subsequence φzj ⇀ φ̃w weakly in L2.
Hence 〈φzj , f〉 → 〈φ̃w, f〉 for all f ∈ L2, in particular for all f ∈ L2

εy = (L2
pε )

∗, whence φzj ⇀ φ̃w

weakly in L2
pε . Since φz → φw in L2

pε , we have φ̃w = φw, which is impossible as φ̃w is in L2 while
φw is not.

Theorem 6.1-3 guarantees that the operator D/∗Γw
is an isomorphism W 1,2

xε → L2
xε, and W 1,2

εq → L2
εq,

hence there exist a constant C such that

‖u‖
W 1,2

xε
≤ C‖D/∗Γw

u‖
L2

xε
, for u ∈W 1,2

xε , (8.17)

‖u‖
W 1,2

εq

≤ C‖D/∗Γw
u‖

L2
εq

, for u ∈W 1,2
εq . (8.18)

Because φz ∈ Vz for λ > 0, Theorem 7.2-1 tells us that for t > 0, we can write φz = e−λtψ−λ + gz

for some eigenvector ψ−λ of eigenvalue −λ of DΓz and some gz ∈W 1,2
−ε ([0,∞) × T 3).

When Γ− = Γ+, we also have interest in understanding the asymptotic behavior at −∞. Theorem

93



7.2-1 tells us that for t < 0, we can write φz = eλtψλ + jz for some eigenvector ψλ of eigenvalue
λ of DΓz and some jz ∈W 1,2

ε ((−∞, 0] × T 3).

While gz and jz appear to be defined only for t > 0 and t < 0 respectively, let’s define them globally
on R × T 3 by gz = φz − e−λtψ−λ and jz = φz − eλtψλ.

Notice that
D/∗Γz

gz = D/∗Γz
φz = (D/∗Γz

− D/∗Az
)φz = cl(Γ −A)φz, (8.19)

and similarly
D/∗Γz

jz = D/∗Γz
φz = (D/∗Γz

− D/∗Az
)φz = cl(Γ −A)φz, (8.20)

Remember that we decided that w is associated to Γ = Γ+. Hence for t > 0, we know that
|A− Γ| ≤ Ce−βt. For t < 0, we have

|A− Γ| ≤ |A− Γ−| + |Γ− − Γ|
≤ Ceβt + C ′.

Hence overall, there is a constant such that |cl(A−Γ)| ≤ Cσ(0,β), and this estimate can be improved
to |cl(A − Γ)| ≤ Cσ(−β,β) when Γ− = Γ+. Hence cl(A − Γ) gives a bounded map L2

pε → L2
xε in

all cases and L2
pε → L2

εq when Γ− = Γ+. Thus Equation (8.19) yields

‖D/∗Γz
gz‖L2

xε
≤ C‖φz‖L2

pε
, (8.21)

and for the special case Γ− = Γ+, Equation (8.20) yields

‖D/∗Γz
jz‖L2

εq

≤ C‖φz‖L2
pε
. (8.22)

From Equations (8.17), and (8.21), we derive

‖gz‖W 1,2
xε

≤ C‖D/∗Γw
gz‖L2

xε

= C‖D/∗Γz
gz + λcl(e)gz‖L2

xε

≤ C‖φz‖L2
pε

+ Cλ‖gz‖L2
xε
,

hence for λ small enough, we can rearrange and obtain

‖gz‖W 1,2
xε

is bounded independently of small z, (8.23)

while from Equations (8.18) and (8.22), we similarly obtain

‖jz‖W 1,2
εq

is bounded independently of small z. (8.24)

This last fact is also true for Γ− 6= Γ+, for in that case jz = φz and its L2
pε -norm is equivalent to the

L2
εq-norm, as both as defined on pV over B3(w).

While it is agreeable to work with a smooth splitting, nothing prevents us from considering the
function

hλ =

{
eλtψλ, for t < 0,

e−λtψ−λ, for t > 0,
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and the associate splitting
φz = hλ + rz,

for which, obviously,

rz =

{
jz, for t < 0,

gz, for t > 0.
(8.25)

From the bounds of Equations (8.23) and (8.24), we have that

‖rz‖L2
εy

is bounded independently of small z. (8.26)

Consider the families

φ̄z := φz/‖φz‖L2 ,

h̄λ := hλ/‖φz‖L2 ,

r̄z := rz/‖φz‖L2 .

The bound (8.26), and the fact that ‖φz‖L2 → ∞ imply that

‖r̄z‖L2
εy

→ 0 as λ→ 0.

A fortiori, ‖r̄z‖L2 → 0.

The triangle inequality guarantees
∣∣‖h̄λ‖L2 − ‖r̄z‖L2

∣∣ ≤ ‖φ̄z‖L2 ≤ ‖h̄λ‖L2 + ‖r̄z‖L2 .

Since ‖φ̄z‖L2 = 1, and ‖r̄z‖L2 → 0, we must have

‖h̄λ‖L2 → 1 as λ→ 0.

Let’s now come back to our main worry. We study

〈tφ̄z, φ̄z〉 = 〈th̄λ, h̄λ〉 + 2〈h̄λ, tr̄z〉 + 〈tr̄z, r̄z〉.

The last two terms are bounded by a multiple of ‖tr̄z‖L2 . But

‖tr̄z‖L2 ≤ C‖r̄z‖L2
εy

= C‖r̃z‖L2
εy

/‖φλ‖L2 ,

hence it is going to 0.

As for the first term, we have

〈th̄λ, h̄λ〉 =
1

‖φλ‖2

L2

(∫ ∞

0
te−2λt|ψ−λ|2 +

∫ 0

−∞
te2λt|ψλ|2

)

=
1

2λ

1

‖φλ‖2

L2

(∫ ∞

0
e−2λt|ψ−λ|2 +

∫ 0

−∞
e2λt|ψλ|2

)

=
1

2λ
‖h̄λ‖2

L2 ,
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hence
〈tφ̄λ, φ̄λ〉 =

1

2λ
+ o(1) as λ→ 0.

Suppose now φ̄1
z and φ̄2

z are two such families, but so that

〈φ̄1
z, φ̄

2
z〉L2 = 0.

Then

〈tφ̄1
z, φ̄

2
z〉 = 〈th̄1

λ, h̄
2
λ〉 + 〈h̄1

λ, tr̄
2
z〉 + 〈tr̄1

z , h̄
2
λ〉 + 〈tr̄1

z , r̄
2
z〉

=
1

2λ
〈h̄1

λ, h̄
2
λ〉 + o(1),

and of course 〈h̄1
λ, h̄

2
λ〉 → 0, hence the result. 2

One of the crucial feature of this proof is our ability to find a uniform bound for mt on Vy. Such
a bound exist in the case where dim pKz is constant precisely because this constant rank condi-
tion implies that Vy is a bundle over B3(w), allowing us to say that the L2-norm and L2

εy-norm are
equivalent.

We can take the trace of (B,Φ) to obtain an abelian monopole (a, ϕ) on B3(w) \ {w}. The Bogo-
molny equation reduces to

dϕ = ∗d a,
and thus ∆ϕ = 0. Since ϕ is harmonic, not every possible behavior as z → w is acceptable. For
one thing, there is a unique set of homogeneous harmonic polynomials pm and qm of degree m
which give a decomposition of ϕ on B3(w) \ {w} as a Laurent series

ϕ =
∞∑

m=0

pm(z − w) +
∞∑

m=0

qm(z −w)

|z − w|2m+1
;

see [ABR01, Thm 10.1, p. 209].

Whether or not the rank is constant, we can find for any sequence of points approaching w a subse-
quence of points zj → w for which the decomposition of Equation 8.15 is valid. We then have

lim
j→∞

2|zj − w|ϕzj = idim D/Azj
Hzj = i(rkH− dim pKzj ).

By the Laurent series decomposition given above, this number must be the same in any way we
approach w, hence dim pKz must be constant on B3(w) \ {w}, thus eliminating Scenario 3 of
page 91.

Scenario 2 remains to be dealt with.

8.4 Preliminary work: Green’s operator on S± ⊗ Lz

This section consists of preliminary work on the study of the behavior of the connection B at the
singular points. Because of the formula B = Pdz = (1 − D/AzGAz D/∗Az

)dz , getting an explicit
formula for GAz would greatly help in understanding the asymptotic behavior of B at singular
points. As a first step into achieving that goal, we compute the Green’s operator for the Laplacian
on S± ⊗ Lz on R × T 3.
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Define the operator

Tλ : L2(R) → L2(R)

g 7→ 1

λ

∫ ∞

−∞
e−λ|t−s|g(s)ds

Let φν be a basis of the eigenspaces of the Laplacian on the spinor bundle of T 3. Then every section
φ decomposes as

φ =
∑

ν∈Z3

gν(t)φν . (8.27)

Here multiplicities are hidden but keep them in mind.

Lemma 8.4-1. For all z ∈ T̂ 3, we have

GLz(φ) =
1

2

∑

ν∈Z3

T2π|ν−z|(gν)φν .

Proof: First notice that

Tλg =
1

λ

(∫ t

−∞
e−λteλsg(s)ds+

∫ ∞

t
eλte−λsg(s)ds

)
,

hence ∂t(Tλg) = g(T )/λ− (
∫ t
−∞) + (

∫∞
t ) − g(t)/λ, and

∂2
t (Tλg) = −g(t) + λ(

∫ t

−∞
) + λ(

∫ ∞

t
) − g(t)/λ

= −2g + λ2Tλg.

Remember now that on S± ⊗ Lz on R × T 3, the Laplacian splits as

∆Lz = −∂2
t + ∆T 3,Lz

.

Recall also that for ν ∈ Z3, we have ∆T 3φν = (2π|ν|)2φν and ∆T 3,Lz
φν = (2π|ν−z|)2φν . Hence

for the proposed G, we have

∆LzGLzφ =
1

2

∑

ν∈Z3

(
−∂2

t T2π|ν−z|(gν)φν + (2π|ν − z|)2gνφν

)

=
1

2

∑

ν∈Z3

(
2gν − (2π|ν − z|)2gν + (2π|ν − z|)2gν

)
φν

= φ.

The proof is now complete. 2

It appears very important then to understand Tλ carefully. Let mλ : R → R be the multiplication by
λ. We have the following identities.

Lemma 8.4-2. For different values of λ, η > 0, we have

Tλ =
η2

λ2
m∗

λ/ηTηm
∗
η/λ, (8.28)
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and in particular

Tλ =
1

λ2
m∗

λT1m
∗
λ−1 .

Proof: We just compute

Tλ(g) =
1

λ

∫ ∞

−∞
e−λ|t−s|g(s)ds

=
1

λ

∫ ∞

−∞
e
−η|λ

η
t−λ

η
s|
g
(λs/η
λ/η

)d
(
λs/η

)

λ/η

=
η2

λ2
Tη(g ◦mη/λ) ◦mλ/η ,

whence the conclusion. The proof is now complete. 2

Lemma 8.4-3. Viewed as operators L2(R) → L2(R), the operators m∗
λ and Tλ have norm

‖m∗
λf‖ =

1√
λ
‖f‖, ∀f,

‖Tλ‖ =
1

λ2
‖T1‖.

Furthermore for z close to 0, the Green’s operator has norm

‖GLz‖ =
‖T1‖
2|z|2

as an operator L2 → L2.

Proof: First notice

||m∗
λf ||2 =

∫
|f(λt)2|dt =

∫
|f(s)|2ds/λ =

1

λ
||f ||2.

Then we compare. On one hand

||Tλg|| =
1

λ2
||m∗

λT1(m
∗
λ−1g)||

=
1

λ2

1√
λ
||T1(m

∗
λ−1g)||

≤ 1

λ2

1√
λ
||T1|| ||m∗

λ−1g||

=
1

λ2
||T1|| ||g||,

hence
||Tλ|| ≤

1

λ2
||T1||. (8.29)

On the other hand, we find in a similar fashion that

||T1|| ≤ λ2||Tλ||. (8.30)

From Inequalities (8.29) and (8.30), we obtain the desired result for Tλ.
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To find the norm of GLz , we use the decomposition given by Equation (8.27). We have

||GLz (φ)||2 =
1

4

∑
||T2π|ν−z|(gν)||2

≤ 1

4

∑ 1

(2π)4|ν − z|4 ||T1||2 ||gν ||2

≤ ||T1||2
4

sup
( 1

(2π)4|ν − z|4
)
||φ||2,

hence for z close to 0,

||GLz || ≤
||T1||

8π2|z|2 .

To prove equality, note that for φ = g0φ0, with g0 ∈ L2, and ||g0|| = 1, we have

GLz (φ) =
1

2
T2π|z|(g0)φ0.

But then

||Gz|| = sup
||φ||=1

||Gz(φ)||

≥ sup
||g0||=1

||Gz(g0φ0)||

=
1

2
sup

||g0||=1
||T2π|z|(g0)||

=
1

8π2|z|2 ||T1||.

The proof is now complete. 2

Lemma 8.4-4. We have
GLz =

Lz

|z|2 + Mz,

with the L2 → L2 operator norms of Lz and Mz bounded independently of z for dist(z,Z3) < 1/2.

Proof: Let p0 be the projection φ 7→ g0φ0 and p1 = 1 − p0. Set

Lz(φ) := |z|2Gzp0(φ),

Mz(φ) = Gzp1(φ).

Obviously, GLz = Lz/|z|2 + Mz . It remains to show that Lz and Mz are uniformly bounded for z
close to Λ∗. For Mz and dist(z,Z3) < 1/2, we have

‖GLzp1(φ)‖2
=

1

4

∑

ν 6=0

‖T2π|ν−z|(gν)‖2

≤ ‖T1‖2

4
sup
ν 6=0

1

(2π|ν − z|)4 ‖φ‖
2

≤ 4

π2
‖T1‖2‖φ‖2

,
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proving the claim for Mz .

Obviously,

GLzp0(φ) =
1

8π2|z|2m
∗
2π|z|T1(m

∗
(2π|z|)−1g0)φ0,

hence the claims for Lz follows from Lemma 8.4-3. The proof is now complete. 2

While ‖Lz‖op
is constant and not 0, the family of operators Lz in a very weak sense converges to 0.

Lemma 8.4-5. Let g ∈ C∞
c . we have that

Lz(g) → 0 in L2 norm as λ→ 0.

Proof: Suppose the support of g is [m,M ]. Then

‖Lz(g)‖2
= (2π|z|)2

∫ ∞

−∞

∣∣∣
∫ ∞

−∞
e−2π|z|·|t−s|g(s)ds

∣∣∣
2
dt

≤ (2π|z|)2
∫ ∞

−∞
(M −m)2 max(g)2e−4π|z|dist(t,supp(g))

= 2π|z|((M −m)max(g)
)2
.

The result follows. 2
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Appendix A

Reduction of ASD equation to lower
dimension

The curvature of the connection A = A1dx
1 + · · ·A4dx

4 is given by

F = dA+A ∧A
=
∑

i,j

∂jAidx
j ∧ dxi +

∑

i,j

AiAjdx
i ∧ dxj

=
∑

i<j

Fijdx
i ∧ dxj

with Fij = ∂iAj − ∂jAi + [Ai, Aj ].

To convert to the standard self-dual ε1, ε2, ε3, and anti-self-dual ε̄1, ε̄2, ε̄3 basis of
∧2, we collect

terms. For example

F12dx
12 + F34dx

34 =
(F12 + F34

2

)
dx12 +

(F12 − F34

2

)
dx12

+
(F12 + F34

2

)
dx34 +

(F34 − F12

2

)
dx34

=
(F12 + F34

2

)
ε1 +

(F12 − F34

2

)
ε̄1.

We keep collecting terms, and get

F =
(F12 + F34

2

)
ε1 +

(F12 − F34

2

)
ε̄1 +

(F13 − F24

2

)
ε2

+
(F13 + F24

2

)
ε̄2 +

(F14 + F23

2

)
ε3 +

(F14 − F23

2

)
ε̄3.

So the ASD equations are

F12 + F34 = 0,

F13 − F24 = 0, (A.1)

F14 + F23 = 0.

We now peel off dimensions one at a time.
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Dimension 3: the Bogomolny equation

Let the Ai be independent of x1, and set Φ := A1. Then the Equations (A.1) reduce to

−∂2Φ + [Φ, A2] + F34 = 0,

−∂3Φ + [Φ, A3] − F24 = 0,

−∂4Φ + [Φ, A4] + F23 = 0.

(A.2)

Set B := A2dx
2 +A3dx

3 +A4dx
4. It is a connection on the (x2, x3, x4)-space. On that space, the

Hodge star works as follows:

∗dx2 = dx3 ∧ dx4,

∗dx3 = −dx2 ∧ dx4,

∗dx4 = dx2 ∧ dx3, and

∗2 = 1 on
∧1.

Furthermore, the connection B extends to endomorphisms by the formula

∇BΦ = dΦ + [B,Φ].

Hence the Equations (A.2) can be written as a single equation as

∇BΦ = ∗FB , (A.3)

the Bogomolny equation.

Dimension 2: the Hitchin equations

Let the Ai be independent of x3 and x4, and set φ1 := A3, φ2 := A4. The the Equations (A.1)
reduce to

F12 + [φ1, φ2] = 0,

∂1φ1 + [A1, φ1] − ∂2φ2 − [A2, φ2] = 0,

∂1φ2 + [A1, φ2] + ∂2φ1 + [A2, φ1] = 0.

In other words, set B := A1dx
1 +A2dx

2, and we have

F12 = −[φ1, φ2],

∇1
Bφ1 = ∇2

Bφ2,

∇2
Bφ1 = −∇1

Bφ2.

(A.4)

Since all orientable 2-manifolds are complex, let dz = dx1 + idx2, and

Φ :=
1

2
(φ1 + iφ2)dz.

Should the connection A be on a bundle E, then Φ is a section of
∧1,0End(E) and is called a Higgs
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field. On 1-forms, we consider the graded commutator

[Φ,Φ∗] = ΦΦ∗ + Φ∗Φ

=
1

2
(φ1 + iφ2)(φ1 − iφ2)dz ∧ dz̄ +

1

2
(φ1 − iφ2)(φ1 + iφ2)dz̄ ∧ dz

= − i

2
[φ1, φ2]dz ∧ dz̄

= −[φ1, φ2]dx
1 ∧ dx2.

Hence
FB = [Φ,Φ∗].

Consider the operator ∂̄B = 1
2(∇1

B + i∇2
B)dz̄, and we have

∂̄BΦ =
(
∂̄Bφ1 + i(∂̄Bφ2)

)
dz̄ ∧ dz

=
1

2
(∇1

Bφ1 + i∇2
Bφ1 + i∇1

Bφ2 −∇2
Bφ2)dz̄ ∧ dz

= 0.

Hence the Equations (A.4) can be written as two equations

FB = 1
4 [Φ,Φ∗],

∂̄BΦ = 0,
(A.5)

which we call the Hichin equations.

Dimension 1: The Nahm Equations

Let the Ai be independent of x2, x3, x4, and set

t := x1,

B := A1dt,

T1 := A2, T2 := A3, T3 := A4.

Then the Equations (A.1) reduce to

∇t
BTσ(1) + [Tσ(2), Tσ(3)] = 0, (A.6)

for all even permutation σ.

We call those equations the Nahm equations. These equations first appeared in [Nah83].
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Appendix B

Excision principle for the index of
Fredholm operators

Let

D1 : L2(X1) → L2(X1)

D2 : L2(X2) → L2(X2)

be unbounded Fredholm operators, defined locally.

Let X1 = A1 ∪B1, and X2 = A2 ∪B2, with compact intersections

A1 ∩B1 = A2 ∩B2,

and suppose D1 = D2 on that intersection.

We construct X̃1 = A1 ∪B2 and X̃2 = A2 ∪B1. Let

D̃1 : L2(X̃1) → L2(X̃1)

D̃2 : L2(X̃2) → L2(X̃2)

be unbounded Fredholm operators, defined locally, such that

D̃1 =

{
D1, on A1;

D2, on B2;

D̃2 =

{
D2, on A2;

D1, on B1.

Theorem B-1. Under the hypothesis just described, we have

ind(D1) + ind(D2) = ind(D̃1) + ind(D̃2).

Proof: Choose square roots of partitions of unity

φ2
1 + ψ2

1 = 1 φ2
2 + ψ2

2 = 1
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subordinate to (A1, B1) and (A2, B2). Choose them so that

φ1 = φ2 and ψ1 = ψ2 on A1 ∩B1 = A2 ∩B2. (B.1)

We define maps

Φ: L2(X1) ⊕ L2(X2) → L2(X̃1) ⊕ L2(X̃2)

Ψ: L2(X̃1) ⊕ L2(X̃2) → L2(X1) ⊕ L2(X2)

which in matrix form are written as

Φ =

[
φ1 ψ2

−ψ1 φ2

]
and Ψ =

[
φ1 −ψ1

ψ2 φ2

]
.

Notice that outside of Ai ∩ Bi, we clearly have ψ1φ1 = ψ2φ2. Equation (B.1) shows that this
equality is also true in the intersection. Hence

ΦΨ =

[
φ2

1 + ψ2
2 −ψ1φ1 + ψ2φ2

−ψ1φ1 + ψ2φ2 ψ2
1 + φ2

2

]
=

[
1

1

]
,

and Φ and Ψ are inverse of each other. They are in fact isometries. Indeed, we have

‖Φ(f1, f2)‖2
=

∫

X̃1

|φ1f1 + ψ2f2|2 +

∫

X̃2

|φ2f2 − ψ1f1|2

=

∫

X̃1

φ2
1|f1|2 +

∫

X̃1

ψ2
2 |f2|2 + 2

∫

X̃1

φ1ψ2〈f1, f2〉

+

∫

X̃2

φ2
2|f2|2 +

∫

X̃2

ψ2
1 |f1|2 − 2

∫

X̃2

φ2ψ1〈f2, f1〉

=

∫

X1

|f1|2 +

∫

X2

|f2|2 = ‖(f1, f2)‖2
.

Consider now D = D1 ⊕D2 and D̃ = D̃1 ⊕ D̃2. Then

ind(D) = ind(D1) + ind(D2) and ind(D̃) = ind(D̃1) + ind(D̃2).

We pull back D̃ to L2(X1) ⊕ L2(X2) and compare it to D. Should the difference ΨD̃Φ − D be
compact, the theorem would be proved. We proceed:

ΨD̃Φ =

[
φ1 −ψ1

ψ2 φ2

] [
D̃1

D̃2

] [
φ1 ψ2

−ψ1 φ2

]

=

[
φ1D̃1φ1 + ψ1D̃2ψ1 φ1D̃1ψ2 − ψ1D̃2φ2

ψ2D̃1φ1 − φ2D̃2ψ1 ψ2D̃1ψ2 + φ2D̃2φ2

]

=

[
φ1D1φ1 + ψ1D2ψ1 φ1D1ψ2 − ψ1D2φ2

ψ2D1φ1 − φ2D2ψ1 ψ2D1ψ2 + φ2D2φ2

]

= D +K.

Since each entry of K is supported on the product (A1 ∩ B1) × (A2 ∩ B2), which is compact, the
operator K is compact and the proof is now complete. 2
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Appendix C

An abstract non-sense lemma

Suppose we are given four exact sequences α, β, γ, δ interlaced in the braided diagram

0 - X1
α2

- V1
δ3

- X2
- 0

A
α 1

-

-

B
δ 2

-β
1

-

C
γ 4

-α
3

-

D

-δ
4

-

0 -

-

Y1
γ2

-

δ 1
-

γ
1 -

V2
β3

-

γ 3
-

β
2 -

Y2
-

β 4
-

α
4 -

0

-

(C.1)

and such that all triangles and squares commute.

Lemma C-1. The sequence

0 −→ A
ε1−→ B

ε2−→ V1 ⊕ V2
ε3−→ C

ε4−→ D −→ 0

coming out of Diagram (C.1), with the obvious choice of maps

ε1 = β1α1 = δ1γ1 ε2 =

[
δ2
β2

]
ε3 =

[
α3 −γ3

]
ε4 = β4α4 = δ4γ4,

is exact.

Before proving this lemma, let’s observe how it is used in the main text of this thesis on page 88.
Lemma 8.2-2 tells us that for the weights δ, η situated in adjacent open squares of R2 \ GA′ , and
separated by the wall {µ} × R or R × {λ}, we have an exact sequence

0 −→ V (δ) −→ V (η) −→ Wµ −→ K(−δ)∗ −→ K(−η)∗ −→ 0. (C.2)

Suppose now we have the following choice of weights:

µ

−µ
δy

δq

xδ

pδ
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Denote ι any inclusion map, and L±
µ the maps

L+
µ (φ) = lim

t→∞
eµtφ, and L−

µ = lim
t→−∞

eµtφ.

Then sequences akin to Sequence (C.2) fit in a diagram

0 - V (δq)
L+

−µ
- Wµ

L+
µ

∗

- K(−xδ)
∗ - 0

V (δy)

ι

-

-

V (pδ)
L
+
−

µ

-ι
-

K(−δy)∗
ι

-
L +
µ ∗

-

K(−pδ)∗

-ι
-

0 -

-

V (xδ)
L−

µ

-

ι -

ι -

W−µ
L−
−µ

∗
-

L
−
−

µ

∗
-

L −
µ

-

K(−δq)∗ -

ι -

ι -

0

-

similar to Diagram (C.1).

Suppose φV (pδ), and ψ ∈ K(−δy). Then

0 = 〈D/A′φ, ψ〉 − 〈φ, D/A′ψ〉
= 〈ψ, νψ〉|∞−∞

= lim
t→∞

〈e−µtφ, νeµtψ〉 − lim
t→−∞

〈eµtφ, νe−µtψ〉

=
(
L+

µ
∗
L+
−µ(φ) − L−

−µ
∗
L−

µ (φ)
)
(ψ),

hence the middle square commutes. It is quite obvious that all the other squares and triangles
commute. The application of Lemma C-1 gives an exact sequence

0 −→ V (δy) −→ V (pδ) −→Wµ ⊕W−µ −→ K(−δy)∗ −→ K(−pδ)∗ −→ 0.

In particular, the sets of weights

λ

−λ

λ−λ
pε ε

pε 0

at z 6= w
Γ+ = Γ−

λ

−λ

λ−λ

εp0

εyε

at z 6= w
Γ+ = Γ−

λ

−λ

εy

εq

xε

pε

at z = w
Γ+ = Γ−

yield for A′ = Az the exact sequences

0 −→ Vz −→ pV z −→Wλ ⊕W−λ −→ Kz
∗ −→ Kyz

∗ −→ 0, for λ 6= 0,

0 −→ Vyz −→ Vz −→ Wλ ⊕W−λ −→ pKz
∗ −→ Kz

∗ −→ 0, for λ 6= 0,

0 −→ Vw −→ pV w −→W0 ⊕W0 −→ pKw
∗ −→ Kw

∗ −→ 0.

We can now proceed to the postponed proof of Lemma C-1.
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Proof: There is nothing deep in this proof: it is only a diagram chase. It is included here for
completeness.

The sequence is obviously exact at A and D since any composition of injective maps is surjective,
and any composition of injective maps is surjective.

The compositions

ε2ε1 =

[
δ2
β2

]
ε1 =

[
δ2δ1γ1

β2β1α1

]
= 0,

ε3ε2 =
[
α3 −γ3

] [δ2
β2

]
= α3δ2 − γ3β2 = 0, and

ε4ε3 =
[
ε4α3 −ε4γ3

]
=
[
β4α4α3 −δ4γ4γ3

]
= 0

ensure that Im(εj) ker(εj). We now prove the other inclusions.

To simplify notation, every element denoted by a small letter belongs to the space denoted by the
corresponding capital letter. For example, b ∈ B, x1 ∈ X1, c1 ∈ C .

Suppose b ∈ ker(ε2). Then δ2(b) = β2(b) = 0 hence β1(x1) = b = δ1(y1). But then α2(x1) =
δ2β1(x1) = 0 hence x1 = α1(a), and thus b = β1α1(a) and ker(ε2) ⊂ Im(ε1) and the sequence is
exact at B.

Suppose (v1, v2) ker(ε3), or equivalently α3(v1) − γ3(v2) = 0. Then

0 = α4
(
α3(v1) − γ3(v2)

)
= −β3(v2),

0 = γ4
(
α3(v1) − γ3(v2)

)
= −δ3(v1).

But then, because the β and δ sequences are exact, we have v2 = β2(b2) and v1 = δ2(b1). As
γ3β2(b1) = α3δ2(b1) = α3(v1) = 0, we have β2(b1) ∈ ker(γ3) = Im(γ2) hence β2(b1) = γ2(y1).
Similarly, δ2(b2) = α2(x1). But then

ε2
(
b1 − δ1(y1) + b2 − β1(x1)

)
=

[
δ2(b1) − δ2δ1(y1) + δ2(b2) − δ2β1(x1)
β2(b1) − β2δ1(y1) + β2(b2) − β2β1(x1)

]

=

[
v1 − 0 + α2(x1) − δ2β1(x1)
γ2(y1) − β2δ1(y1) + v2 − 0

]

=

[
v1
v2

]
.

Hence ker(ε3) ⊂ Im(ε2) and the sequence is exact at V1 ⊕ V2.

Suppose ε4(c) = 0. Then δ4γ4(c) = 0 but ker(δ4) = Im(δ3) hence γ4(c) = δ3(v1) = γ4α3(v1)
and thus α3(v1) − c ∈ ker(γ4) = Im(γ3). Hence α3(v1) − c = γ3(v2) and then c = ε3(v1, v2).
Hence ker(ε4) ⊂ Im(ε3) and the sequence is exact at D.

The proof is now complete. 2
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Appendix D

Dirac operators and conformal change
of metric

Consider a spin manifold M of dimension n. The Dirac operators D and D ′ associated to the
conformally related metrics g and g ′ = e2fg on M are, once a spinor bundle is chosen, linked by
the formula

D′ = e−
n+1

2
f ◦D ◦ en−1

2
f . (D.1)

In 1986, Bourguignon in [Bou86, p. 339, Prop. 10] had the above formula and claimed that Hitchin
in [Hit74] had it wrong in 1974. Then, Lawson and Michelsohn, in their wonderful book [LM89, p.
134], had a n− 1 on the left hand side instead of a n+ 1. Finally, in 1990, in their inspiring book,
Donaldson and Kronheimer, in the case n = 4, had a factor of −1/2 on the left hand side instead
of a −5/2; see [DK90, p. 102]. The formula was however only used in [DK90] and [LM89] to see
how the kernels of D and D′ are related, so no harm was done.

A proof of the Formula

We now prove the formula D.1. Let’s denote the spinor bundles for g and g ′ by S and S′. Let
µ : Spin(n) → Aut(∆) be the spin representation. Then

S = PSpin(M, g) ×µ ∆, and

S′ = PSpin(M, g′) ×µ ∆.

We assume that they are the “same” spin structure. Hence S and S ′ are isomorphic as vector bundles
but not as Clifford bundles.

The bundles S and S ′ come equipped with extra structure. The Clifford multiplication for g is
a map ρ : TM → Aut(S) satisfying ρ(v)2 = −g(v, v). Define a new Clifford multiplication
ρ′ : TM → Aut(S) for g′ by the formula ρ′ = efρ. It is still skew-adjoint.

Let ei be an orthonormal frame for g over an open set U and ωij be the Levi-Civita connection
matrix for that frame. Over U , the spin connection (see [LM89, p. 110]) is d+ Ω with

Ω(V ) =
1

4

∑

i,j

ωij(V )ρ(ej)ρ(ei).
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Set e′j = e−fej . The e′j form an orthonormal frame for g′. Note that ρ′(e′j) = ρ(ej).

As shown in [LM89, p. 133–134], we have

∇′
XY = ∇XY + (Xf)Y + (Y f)X − g(X,Y )grad (f), and (D.2)

ω′
ij(V ) = ωij(V ) + (ejf)g(V, ei) − (eif)g(V, ej).

Duplicating the definition of Ω, we set

Ω′(V ) :=
1

4

∑

i,j

(
ωij(V )ρ(ej)ρ(ei) + (ejf)g(V, ei)ρ(ej)ρ(ei) − (eif)g(V, ej)ρ(ej)ρ(ei)

)
.

This expression simplifies to

Ω′(V ) = Ω(V ) +
1

4
ρ(grad (f))ρ(V ) − 1

4
ρ(V )ρ(grad (f))

= Ω(V ) − 1

2
ρ(V )ρ(grad (f)) − 1

2
g(V, grad (f)). (D.3)

Let’s now check that the connection ∇′ induced by Ω′ is compatible with the Levi-Civita connection
of (M, g′).

Notice first that

∇X
(
ρ′(Y )s

)
= ∇X

(
efρ(Y )s

)

= (Xf)ρ′(Y )s+ ef∇X
(
ρ(Y )s

)
.

Since S is a Clifford bundle for (M, g), we have

∇X

(
ρ′(Y )s

)
= ρ′

(
(Xf)Y

)
s+ ρ′(∇XY )s+ ρ′(Y )∇Xs. (D.4)

Notice now that

ρ(X)ρ(grad (f))ρ′(Y )s = −ρ(X)ρ′(Y )ρ(grad (f)) − 2efρ(X)(Y f)s

=
(
ρ′(Y )ρ(X) + 2efg(X,Y )

)
ρ(grad (f))s− 2ρ′

(
(Y f)X

)
s,

so that

−1

2
ρ(X)ρ(grad (f))ρ′(Y )s = −1

2
ρ′(Y )ρ(X)ρ(grad (f))s+ ρ′

(
(Y f)X − g(X,Y )grad (f)

)
s. (D.5)

Putting all these computations together, we find

∇′
X

(
ρ′(Y )s

) D.3
= ∇X

(
ρ′(Y )s

)− 1

2
ρ(X)ρ(grad (f))s− 1

2
(Xf)ρ′(Y )s

D.4
= ρ′

(∇XY + (Xf)Y
)
s+ ρ′(Y )∇Xs−

1

2
ρ(X)ρ(grad (f))s− 1

2
(Xf)ρ′(Y )s

D.2,D.5
= ρ′(∇′

XY )s+ ρ′(y)
(∇Xs−

1

2
ρ(X)ρ(grad (f))s− 1

2
(Xf)s

)

D.3
= ρ′(∇′

XY )s+ ρ′(Y )∇′
Xs.
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We also need to check that the connection ∇′ is compatible with the hermitian metric on S. Notice
first that

〈ρ(V )ρ(grad (f))s1, s2〉 + 〈s1, ρ(V )ρ(grad (f))s2〉
= 〈s1, ρ(grad (f))ρ(V )s2〉 + 〈s1, ρ(V )ρ(grad (f))s2〉 = −2(V f)〈s1, s2〉.

Thus, we have

〈∇′
V s1, s2〉 + 〈s1,∇′

V s2〉 = 〈∇V s1, s2〉 + 〈s1,∇V s2〉

− 1

2

(〈ρ(V )ρ(grad (f))s1, s2〉 + 〈s1, ρ(V )ρ(grad (f))s2〉
)

− 1

2

(〈(V f)s1, s2〉 + 〈s1, (V f)s2〉
)

= 〈∇V s1, s2〉 + 〈s1,∇V s2〉 + (V f)〈s1, s2〉 − (V f)〈s1, s2〉

= V 〈s1, s2〉,

since ∇ is compatible with 〈 , 〉.
We are now finished proving that S with the connection ∇′ and the Clifford multiplication ρ′ is
really a Clifford bundle for (M, g′).

Let V := HomCl(S
′, S). We have that as Clifford bundles for (M, g ′), the bundle S and S ′ ⊗ V

are isomorphic.

By Schur’s lemma, the bundle V is a smooth complex line bundle. Since S and S ′ are isomorphic
as smooth complex vector bundles, V is trivial. But more than that, the connection on V is trivial
as we now show.

Let ρ′ also denote the Clifford multiplication on S ′ and Ω′ denote the spin connection on S ′. Such
an abuse of notation is harmless if we are careful. We have again

Ω′(V ) =
1

4

∑

i,j

ω′
ij(V )ρ′(e′j)ρ

′(e′i).

Let f be a section of V and s a section of S ′. Then since f commutes with Clifford multiplication,
we have

(∇f)(s) = ∇(f(s)
)− f

(∇s)

= d
(
f(s)

)
+ Ω′ · f(s) − f(ds) − f(Ω′ · s)

= df(s),

and thus our claim is proved.

So we can really work with the bundle S when studying the relationship between D and D ′. Let’s
do that.

We have
D′φ = e−f

(
Dφ+

n− 1

2
ρ(grad (f))φ

)
.
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Indeed,

D′φ =
∑

ρ′(e′i)∇′
e′i
φ

= e−f
∑

ρ(ei)∇′
ei
φ

= e−f
(
Dφ− 1

2

∑
ρ(ei)ρ(ei)ρ(grad (f))φ− 1

2

∑
ρ(ei)g(ei, grad (f))φ

)

= e−f
(
Dφ+

n

2
ρ(grad (f))φ− 1

2
ρ(grad (f))φ

)

= e−f
(
Dφ+

n− 1

2
ρ(grad (f))φ

)
.

But then,

D
(
e

n−1

2
fφ
)

= e
n−1

2
f
(
Dφ+

n− 1

2
ρ(grad (f))φ

)

= e
n−1

2
fefD′φ,

whence D′φ = e−
n+1

2
fD
(
e

n−1

2
fφ
)
, as wanted.

A confirmation

The proof just presented should at least convince us that there exists such a formula. To confirm that
the factors are correct, suppose that D and D ′ are linked by formula D.1 and that D is self-adjoint
for the L2 inner product on (M, g). We want to prove now that D ′ is self-adjoint on (M, g′). Recall
that dvol′ = enfdvol. Thus,

〈D′φ, ψ〉′ =

∫
〈D′φ, ψ〉 dvol′

=

∫
〈e−(n+1)f/2De(n−1)f/2φ, ψ〉enf dvol

= 〈De(n−1)f/2φ, e(n−1)f/2ψ〉
= 〈e(n−1)f/2φ,De(n−1)f/2ψ〉
= 〈φ,D′ψ〉′.

That is it.

In fact, this computation and the triviality of V show that any formula which has one of the factors
must also have the other up to a constant.
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Appendix E

Weighted Sobolev spaces on Rn,
Bartnik’s presentation

In this appendix, we visit and work through a part of Robert Bartnik’s paper “The Mass of an
Asymptotically Flat Manifold,” [Bar86]. The part we are concerned with deals with weighted
Sobolev spaces on Rn for n ≥ 3, and Fredholmness of certain 2nd order elliptic partial differ-
ential operators. This appendix is an companion to Bartnik’s writing, merely adding proofs that
were lacking.

Weighted Sobolev Spaces

Set
σ(x) := (1 + |x|2)1/2.

The space Lp
δ is the space of measurable functions in Lp

loc which are finite in the ‖ ‖
p,δ

-norm:

‖u‖
p,δ

=





(∫
Rn σ−δp−n(x)|u(x)|p dx

)1/p
, 1 ≥ p <∞;

ess supRnσ−δ|u|, p = ∞.

When p <∞, the usual Lp space arise as Lp
−n/p. In fact, we have an even stronger proposition.

Proposition E-1. The following map is an isometry:

Lp → Lp
δ

f 7→ σδ+n/pf.

The space W k,p
δ is then defined as the space of functions in Lp

δ with weak derivatives in the appro-
priate weighted Lp space. The norm is

‖u‖
k,p,δ

=
∑

l≤k

‖Dlu‖
p,δ−l

.

These spaces are nicely set-up for the interesting theorems to be in some sense independent of n, as
will become apparent later with the various inequalities and embeddings.
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For one thing, we have that

‖σa‖
∞,δ

= ess sup σa−δ =

{
1, if a ≤ δ;

∞, otherwise.

Similarly, we have, for 1 ≤ p <∞,

‖σa‖p

p,δ
=

∫

Rn
σ(a−δ)p−n

= ωn

∫ ∞

0
σ(r)(a−δ)p−nrn−1 dr.

The integral on the last line is finite if and only if its [1,∞) part is finite. It is the case if and only if
a < δ. In fact, we have the following stronger proposition.

Proposition E-2. We have
σa ∈W k,∞

δ ⇐⇒ a ≤ δ,

and for 1 ≤ p <∞, we have
σa ∈W k,p

δ ⇐⇒ a < δ.

Proof: We already proved the case k = 0. Notice now that

∂

∂xi

(
σa) = aσa−2xi

and similarly, these exist homogeneous polynomials pα of degree |α| such that

∂

∂xα

(
σa) = σa−2|α|pα.

Thus ∥∥∥
∂σa

∂xα

∥∥∥
p,k,δ−|α|

≤ C‖σa−|α|‖
p,δ−|α|

.

This inequality imply that σa ∈ Lp
δ implies σa ∈W k,p

δ . 2

Many different choices for weight function σ could have been considered. Apparently some work
has been done with exponential weights instead of the “polynomial” weight that we use here.

We define similarly the norm ‖ ‖′k,p,δ and the spaces L′p
δ and W ′k,p

δ of functions on Rn \ {0} by
changing the weight function to r(x) := |x|.
In these modified Sobolev spaces, scaling becomes homogeneous. Indeed, set

uR(x) := u(Rx);

then
‖uR‖′k,p = Rδ‖u‖′k,p,δ.

Of course any norm without a weight refers to a usual Sobolev norm.

Set AR = B2R \ BR and ER = Rn \ BR. We use an obvious notation for restriction over subset
of Rn. Then the norm u 7→ ‖u‖

p,δ;AR
is equivalent to the norm u 7→ R−δ‖uR‖p;A1

, and Bartnik
writes

‖u‖
p,δ;AR

≈ R−δ‖uR‖p;A1
,
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with constants not depending on R but depending on δ. This equivalence allows us to rescale and
apply local estimates to prove part of the following theorem.

Theorem E-3. We have the following inequalities:

If p ≤ q and δ2 < δ1 then ‖u‖
p,δ1

≤ c‖u‖
q,δ2

. (E.1)

If 1/p = 1/q + 1/r and δ = δ1 + δ2 then ‖uv‖
p,δ

≤ ‖u‖
q,δ1

‖v‖
r,δ2

. (E.2)

For any ε > 0, there exists C(ε) s.t. ‖u‖
1,p,δ

≤ ε‖u‖
2,p,δ

+ C(ε)‖u‖
0,p,δ

. (E.3)

Proof: To prove Inequality (E.2), we write, using Proposition E-1,

‖uv‖
p,δ

= ‖σ−δ−n/puv‖
p

= ‖σ−δ1−n/quσ−δ2−n/rv‖
p
.

Using the usual Hölder inequality, we obtain the result.

In the conditions under which we wish Inequality (E.1) to be true, there exists r such that 1/p =
1/q + 1/r. Thus, we can again use Proposition E-1 and the usual Hölder inequality to get

‖u‖
p,δ1

= ‖σ−δ1−n/pu‖
p

= ‖(σ−n/rσδ2−δ1)(σ−δ2−n/qu)‖
p

≤ ‖σδ2−δ1‖
r,0
‖u‖

q,δ2

Since δ2 < δ1, we know by Proposition E-2 that σδ2−δ1 ∈ Lr
0 hence Inequality (E.1) is true.

We now rescale and apply local estimates to prove Inequality (E.3). We know that there exists
constants C1, C2 not depending on R such that

‖u‖
1,p,δ;AR

≤ C1R
−δ‖uR‖1,p;A1

, and

R−δ‖uR‖2,p;A1
≤ C2‖u‖2,p,δ;AR

.

Set ε′ = ε/C1C2. We know from the local interpolation inequality that for some C(ε′),

‖uR‖1,p;A1
≤ ε′‖uR‖2,p;A1

+ C‖uR‖0,p;A1
.

Thus

‖u‖
1,p,δ;AR

≤ C1R
−δ‖uR‖1,p;A1

≤ C1R
−δε′‖uR‖2,p;A1

+R−δC‖uR‖0,p;A1

≤ ε‖u‖
2,p,δ;AR

+ C‖u‖
0,p,δ;AR

.

Now, we need to patch all these interpolations together. Recall first that for all p > 0, we have

(a+ b)p ≤ 2p−1(ap + bp).

Set D0 := B1 and, for i > 0, set Di = A2i−1 . The Di are disjoint and cover Rn. Set ui = u|Di .
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The fact that
‖u‖

1,p,δ
≤ ε‖u‖

2,p,δ
+C(ε)‖u‖

0,p,δ

follows from the computation

‖u‖p

1,p,δ
=
∑

‖ui‖p

1,p,δ;Di

≤
∑(

ε‖ui‖2,p,δ;Di
+C‖ui‖0,p,δ;Di

)p

≤ 2p−1εp‖u‖p

2,p,δ
+ C‖u‖p

0,p,δ
.

The proof for p = ∞ goes along the same lines. 2

The inequalities are great and useful, and, apart from the first one, are generalizations of what we
have for usual Sobolev spaces.

Before studying the generalization of other classical powerful estimates, the Sobolev embedding
theorems, we must generalize yet another type of space, the Hölder spaces. Define first, for x ∈ Rn,
the punctured ball B(x) to be the set of all y such that 0 < 4|x − y| < σ(x). For 0 < α ≤ 1, the
weighted Hölder norm is defined by the equation

‖u‖
C0,α

δ

= sup
x∈Rn

(
σ−δ(x)|u(x)|

)
+ sup

x∈Rn

(
σ−δ+α(x) sup

y∈B(x)

|u(x) − u(y)|
|x− y|α

)
.

Note that if ‖u‖
C0,α

δ

is finite, then u is continuous. Indeed, close to x0, we have

|u(x0) − u(y)| ≤ Cσ(x0)
−α+δ |x0 − y|α.

We may now proceed.

Theorem E-4. Suppose u ∈W k,p
δ . We have the following inequalities:

If n− kp > 0 and p ≤ q ≤ np/(n− kp) then ‖u‖
np/(n−kp),δ

≤ C‖u‖
k,q,δ

. (E.4)

If n− kp < 0 then ‖u‖
∞,δ

≤ C‖u‖
k,p,δ

(E.5)

and |u(x)| = o(rδ) as r → ∞. (E.6)

If n− kp < 0 and 0 < α ≤ min(1, k − n/p) then ‖u‖
C0,α

δ

≤ C‖u‖
k,p,δ

(E.7)

and ‖u‖
C0,α

δ
(AR)

= o(1) as R→ ∞. (E.8)

Proof: Suppose first that n− kp > 0. Then set p∗ := np/(n− kp) <∞. We have

‖u‖
p∗,δ;AR

≤ CR−δ‖uR‖p∗;A1

≤ CR−δ‖uR‖k,q;A1
(by the usual Sobolev inequality)

≤ C‖u‖
k,q,δ;AR

.
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Writing u =
∑
ui as in the proof of Theorem E-3, we obtain

‖u‖
p∗,δ

=
(∑ ‖ui‖p∗

p∗,δ

)1/p∗

≤ C
(∑ ‖ui‖p∗

k,q,δ

)1/p∗

≤ C
(∑ ‖ui‖q

k,q,δ

)1/q

= C‖u‖
k,q,δ

.

Inequality (E.4) is now proved.

Maybe it is worthwhile noting down the proof of the last inequality of this proof. In fact, it is
sufficient to prove that (1 + xp∗)1/p∗ ≤ (1 + xq)1/q for x ≥ 0. The function

f(x) =
(1 + xp∗)q

(1 + xq)p
∗

has derivative

xp∗−1p∗q(1 + xp∗)q−1(1 + xq)p
∗ − p∗qxq−1(1 + xp∗)q(1 + xq)p

∗−1

(1 + xq)2p∗
.

Once we remove the common factors, which are anyway strictly positive, we have

xp∗−1(1 + xq) − xq−1(1 + xp∗) = xp∗−1 − xq−1 ≥ 0

since q ≤ p∗. Thus f always increases. But obviously, it takes the value 1 at infinity.

The same scaling argument and application of the usual Sobolev inequality apply to prove Inequality
(E.5). Of course, u ∈W k,p

δ imply then that

|r(x)−δu(x)| ≤ C‖u‖
∞,δ;A|x|

≤ C‖u‖
k,p,δ;A|x|

which converges to 0. Thus the asymptotic behavior of Equation (E.6) is now proved.

To prove Inequality (E.7), we would like use the decomposition u =
∑
ui. That cannot work

however. Yet something of the sort works.

As before, we have that
‖u‖

C0,α
δ

(AR)
≈ R−δ‖uR‖C0,α

δ
(A1)

with constants not depending on R. But the usual theorem can be used and we have

‖u‖
C0,α

δ
(AR)

≤ CR−δ‖uR‖C0,α
δ

(A1)

≤ CR−δ‖uR‖k,p;A1

≤ C‖u‖
k,p,δ;AR

.

Since ‖ ‖
k,p;B1

is equivalent to ‖ ‖
k,p,δ;B1

, we have

‖u‖
C0,α

δ
(Di)

≤ C‖u‖
k,p,δ;Di

,
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with the constant C not depending on i.

Now the condition y ∈ B(x) in the inner supremum becomes really essential. Indeed, we can see
that if x ∈ Di then B(x) is contained in Di−1 ∪Di ∪Di+1. Because of that, we can actually bound
the C0,α

δ -norm of a function by norms of restrictions.

Let’s write a(x, y) for σ(x)−δ+α|u(x) − u(y)|/|x − y|α. Thus,

‖u‖
C0,α

δ

= ‖u‖
∞,δ

+ sup
x

sup
y∈B(x)

a(x, y).

Let x ∈ Di. We split the “ball” B(x) in three parts.

Suppose first that y ∈ Di−1 ∩ B(x). There is a point z ∈ [x, y] ∩Di−1 ∩Di. As for any point in
Di, we have the relationship 4−1σ(z) ≤ σ(x) ≤ 4σ(z). Thus

a(x, y) ≤ a(x, z) + 4|−δ+α|a(z, y)

≤ sup
z∈B(x)∩Di

a(x, z) + 4|−δ+α| sup
y∈B(x)∩Di−1

a(z, y).

But B(x) ∩Di−1 ⊂ B(z) ∩Di−1. Thus

a(x, y) ≤ ‖u‖
C0,α

δ
(Di)

+ 4|−δ+α|‖u‖
C0,α

δ
(Di−1)

.

Similarly, we have for y ∈ Di+1 ∩B(x) that

a(x, y) ≤ ‖u‖
C0,α

δ
(Di)

+ 4|−δ+α|‖u‖
C0,α

δ
(Di+1)

,

and for y ∈ Di ∩B(x) that a(x, y) ≤ ‖u‖
C0,α

δ
(Di)

.

Hence, for x ∈ Di,

sup
y∈B(x)

a(x, y) ≤ max(1, 4|−δ+α|)
(‖u‖

C0,α
δ

(Di−1)
+ ‖u‖

C0,α
δ

(Di)
+ ‖u‖

C0,α
δ

(Di+1)

)

≤ C
∑

‖u‖
C0,α

δ
(Di)

.

whence ‖u‖
C0,α

δ

≤ C
∑ ‖u‖

C0,α
δ

(Di)
.

But then,

‖u‖
C0,α

δ

≤ C
∑

‖u‖
C0,α

δ
(Di)

≤ C
∑

‖u‖
k,p,δ;Di

≤ C‖u‖
k,p,δ

,

proving Equation (E.7).

Estimate (E.8) is a consequence of Inequality (E.7) for the domain AR, and of the finiteness of p,
which implies that ‖u‖

k,p,δ;AR
tends to 0. 2
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Fredholm theory for second order operators asymptotic to ∆

Of course, we introduce this big machinery in order to do some Fredholm theory for certain par-
tial differential operators on Rn. We consider in Bartnik’s paper second order operator which are
“asymptotic” to the Laplacian in the following sense.

Definition: The operator u→ Pu defined by

Pu =
∑

i,j

aij(x)∂2
i,ju+

∑

i

bi(x)∂iu+ c(x)u

is asymptotic to ∆ at rate τ ≥ 0 if there exist n < q <∞ and constants C1, λ such that

λ|ξ|2 ≤
∑

i,j

aijξiξj ≤ λ−1|ξ|2, and

‖aij − δij‖1,q,−τ
+ ‖bi‖

0,q,−1−τ
+ ‖c‖

0,q,−2−τ
≤ C1.

Let’s note that Bartnik uses the norm L
q/2
−2−τ -norm for c instead of the Lq

−2−τ -norm like we do.

We should first check what are natural domain and codomain for such operators.

Theorem E-5. If P is asymptotic to ∆, then

P : W 2,p
δ → W 0,p

δ−2

is bounded for 1 ≤ p ≤ q and every δ ∈ R.

Proof: We show that each piece is bounded. In the first place, we have

‖aij∂2
iju‖0,p,δ−2

≤ ‖(aij − δij)∂
2
iju‖0,p,δ−2

+ ‖δij∂2
iju‖0,p,δ−2

≤ (‖aij − δij‖∞,0
+ 1)‖∂2

iju‖0,p,δ−2

≤ C(‖aij − δij‖∞,−τ
+ 1)‖u‖

2,p,δ

≤ C(‖aij − δij‖1,q,−τ
+ 1)‖u‖

2,p,δ

≤ C‖u‖
2,p,δ

.

When p = q, we have

‖bi∂iu‖0,p,δ−2
≤ ‖bi‖

p,−1
‖∂iu‖∞,δ−1

≤ C‖bi‖
q,−1−τ

‖∂iu‖1,p,δ−1

≤ C‖u‖
2,p,δ

.

Suppose now that p < q and let 1/p = 1/r + 1/q. Note that r − p = rp/q thus the inequality
n < q = rp/(r − p) implies nr/(n + r) < p. Of course, we have p < r. Thus the Sobolev
embedding theorem says

‖∂iu‖r,δ−1+τ
≤ C‖∂iu‖r,δ−1

≤ ‖∂iu‖1,p,δ−1
≤ C‖u‖

2,p,δ
, and

‖u‖
r,δ+τ

≤ C‖u‖
r,δ

≤ C‖u‖
1,p,δ

≤ C‖u‖
2,p,δ

.
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Note that these inequalities are true even for τ = 0. We can now complete the proof by seeing that

‖bi∂iu‖0,p,δ−2
≤ ‖bi‖

q,−1−τ
‖∂iu‖r,δ−1+τ

≤ C‖u‖
2,p,δ

,

and ‖cu‖
0,p,δ−2

≤ ‖c‖
0,q,−2−τ

‖u‖
0,r,δ+τ

≤ C‖u‖
2,p,δ

. 2

Since P is asymptotic to ∆ and is continuous, it is natural to hope and daringly expect that even
though we are not on a compact set, some elliptic estimate is anyhow available for P .

Proposition E-6 ([Bar86, Prop 1.6]). Suppose P is asymptotic to ∆, and 1 < p ≤ q, and δ ∈ R.
There is a constant C = C(n, p, q, δ, C1, λ) such that if u ∈ Lp

δ and Pu ∈ Lp
δ−2 then u ∈ W 2,p

δ

and
‖u‖

2,p,δ
≤ C

(‖Pu‖
0,p,δ−2

+ ‖u‖
0,p,δ

)
(E.9)

Proof: Let’s define
PR = aij

R∂ij +RbiR∂i +R2cR,

and note that PRuR = R2(Pu)R.

Here we need to use the usual Lp estimates for A1. We have, see [GT83, p. 235, Thm 9.11], that
for a fattened domain Ã1, we have

‖uR‖2,p;A1
≤ C

(‖uR‖p;Ã1
+ ‖PRuR‖p;Ã1

)
.

Going through the proof of [GT83, p. 235, Thm 9.11], we see that the constant in this inequality
depends in particular on

‖aij
R − δij‖∞;Ã1

≤ C‖aij − δij‖∞,0
≤ C‖aij − δij‖C0,α

−τ
≤ C(C1).

It turns out that this dependance is independent of R.

It also depends on
‖RbiR‖∞;Ã1

≤ C‖bi‖
∞,−1

≤ C‖bi‖
0,q,−1−τ

,

which is bounded independently of R as well.

The constant also depends on c, but this term is harder to bound. Reading the proof, we reach a
point where we want to reduce the number of derivative on uR to use some interpolation estimate.
We have

‖D2uR‖p
≤ C‖aij

R∂ij‖p
≤ C

(‖PRuR‖p
+ ‖RbiR∂uuR‖p

+ ‖R2cRu‖p

)
,

and the last term must be bounded somehow. We already did the needed work while proving the
continuity of P : our proof that multiplication by c is bounded W 2,p → Lp actually works for
W 1,p → Lp. Thus the constant in the Lp estimate depends on

‖R2cR‖q;Ã1
≤ C‖c‖

q,−2
≤ C‖c‖

q,−2−τ

which is bounded independently of R.
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But then, we have

‖u‖
2,p,δ;AR

≤ CR−δ‖uR‖2,p;Ã1

≤ CR−δ(‖uR‖p;Ã1
+ ‖PRuR‖p;Ã1

)

= CR−δ(‖uR‖p;Ã1
+R2‖(Pu)R‖p;Ã1

)

≤ C
(‖u‖

p,δ;ÃR
+ ‖Pu‖

p,δ−2;ÃR

)
.

The trick we have done so often now with the domains Di completes the proof. 2

We are interested in the “Fredholmness” of P . But the estimate given to us in the previous proposi-
tion is not sufficient: we need some compactness of the right-hand-side term.

To understand the Fredholmness of P , we first deal with the Laplacian. The orders of growth of
harmonic functions in Rn \ B1 are Z \ {−1, . . . , 3 − n} and are called exceptional values.

For nonexceptional weighing parameter δ, we have a very strong Fredholmness result given by the
next theorem. Before reaching it, we extract a lemma from a paper of Nirenberg and Walker.

Lemma E-7 ([NW73, lemma 2.1]). Fix p ∈ (1,∞), and set p′ = p/(p − 1). Let a, b ∈ R be such
that a+ b > 0. Set

K ′(x, y) = |x|−a|x− y|a+b−n|y|−b for x 6= y

and for u ∈ Lp define

K ′u(x) =

∫
K ′(x, y)u(y)dy.

Then there is a constant c = c(n, p, a, b) such that

‖K ′u‖
p
≤ c‖u‖

p

if and only if a < n/p and b < n/p′.

Proof: See [NW73, p. 273] for the proof that the conditions on a and b are necessary.

We can assume that a and b are nonnegative. Indeed, at least one of then is, say b. Suppose a < 0.
Then the inequality

|x|
|x− y| ≤ 1 +

|y|
|x− y|

implies that

K ′(x, y) ≤ |x− y|b−n|y|−b(1 +
|y|

|x− y|
)−a

≤ C|x− y|b−n|y|−b + C|x− y|a+b−n|y|−a−b.

For nonnegative a and b satisfying a < n/p and b < n/p′, the inequality |x|n ≥ ∏ |xi| yields

K ′(x, y) ≤
n∏

i=1

|xi|−a/n|xi − yi|(a+b)/n−1|yi|−b/n.

The problem is thus reduced to one dimensional.

Now for the one-dimensional result, [NW73] cite a lemma whose origin is really unclear.

Suppose that K(x, y) is nonnegative and homogeneous of degree −1 for x ≥ 0 and y ≥ 0, and that
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the (necessarily identical) quantities
∫ ∞

0
K(x, 1)x−1/p′dx and

∫ ∞

0
K(1, y)x−1/pdy

are equal to some number C <∞. Then the integral operator

Ku(x) =

∫ ∞

0
K(x, y)u(y)dy

is bounded on Lp((0,∞)) with norm not greater than C .

Before proving this result, let’s see that K ′ satisfies the hypotheses. It is obviously positive and of
the correct homogeneity. Now let Is(α, β) :=

∫ s
0 r

α(1−r)βdr. Set α = −1/p′−a and β = a+b−1.
We then have

∫ ∞

0
K ′(x, 1)x−1/p′dx =

∫ ∞

0
rα|r − 1|βdr

=

∫ 1

0
rα(1 − r)βdr +

∫ ∞

1
rα(r − 1)βdr

= I1(α, β) + I1(β, α)

= I1/2(α, β) + I1/2(β, α) + I1/2(−α− β, β) + I1/2(β,−α− β),

as
∫ 1
1/2 r

α(1 − r)βdr =
∫ 1/2
0 (1 − s)αsβds.

But on [0, 1/2], we have 1/2 < 1 − r < 1 hence I1/2(α, β) is comparable to
∫ 1/2
0 rαdr which

converges if and only if α > −1. Thus
∫∞
0 K ′(x, 1)x−1/p′dx converges iff α, β > −1 and α+β <

1. Certainly, b < 1/p′ and a < 1/p imply all these requirements.

To prove the general result for K , we use the homogeneity of K to turn the problem into a con-
volution problem. Let M be the multiplicative group R>0. Let LP

M denote the Lp-space for the
Haar measure dx/x on M. Note that multiplication by x1/p is an isometry Lp → Lp

M. Further-
more, since the L1

M-norm of K(x, 1)x1/p is finite, convolution with that function is continuous
Lp
M → Lp

M. Thus,

‖Ku‖p

Lp =

∫ (∫
K(x, y)u(y)dy

)p
dx

=

∫ (∫
K(x/y, 1)u(y)

dy

y

)p
dx

=

∫ (
x−1/p

∫
K(x/y, 1)(x/y)1/p y1/pu(y)

dy

y

)p
dx

= ‖x−1/p(K(·, 1)(·)1/p) ∗ (y1/pu)
)‖p

Lp

= ‖K(·, 1)(·)1/p) ∗ (y1/pu)‖p

Lp
M

≤ Cp‖y1/pu‖p

Lp
M

= Cp‖u‖p

Lp ,

and the claim is proved. 2

We define
k−(δ) = max{k exceptional, k < δ}
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and then move on to the theorem.

Theorem E-8 ([Bar86, Thm 1.7]). Suppose δ is nonexceptional, 1 < p <∞ and s ∈ N. Then

∆: W ′s+2,p
δ →W ′s,p

δ−2

is an isomorphism and there is a constant C = C(n, p, δ, s) such that

‖u‖′s+2,p,δ ≤ C‖∆u‖′s,p,δ−2.

Proof: Set k = k−(δ). Let µ = (x · y)/|x||y| and P λ
j denote the ultraspherical function arising in

the Taylor expansion of |x− y|2−n with respect to |y|/|x| when |y| < |x|:

|x− y|−2λ = |x|−2λ
∞∑

0

P λ
j (µ)(|y|/|x|)j . (E.10)

Set λ = (n− 2)/2.

We first show that the inverse of ∆: W ′2,p
δ →W ′0,p

δ−2 has kernel K(x, y):

cnK(x, y) =





|x− y|2−n, if 2 − n < δ < 0;

|x− y|2−n − |y|2−n∑k
0 P

λ
j (µ)(|x|/|y|)j , if k ≥ 0;

|x− y|2−n − |x|2−n∑2−n−k
0 P λ

j (µ)(|y|/|x|)j , if k < 2 − n.

We will refer to these three cases and the three corresponding definitions of K(x, y) as K1, K2
and K3. We now go through a series of step that lead to the proof that K(x, y) defines a bounded
operator from W ′0,p

δ−2 to W ′0,p
δ .

Note first that in the cases K2 and K3, we have k < δ < k + 1, and that in the case K1, we have
k = 2 − n.

We have the estimates

|K(x, y)| ≤ c(n, k)|x− y|2−n

{
(|x|/|y|)k+1, if |x| < |y|/2;
(|x|/|y|)n+k−2, if |x| ≥ |y|/2.

(E.11)

We need here n ≥ 3. Then the estimates for K1 are trivial. Indeed, k + 1 ≤ 0 thus |x| < |y|/2
imply 1 < 23−n(|x|/|y|)k+1 and n+ k− 2 = 0 thus |x| ≥ |y|/2 imply 1 ≤ 2n+k−2(|x|/|y|)n+k−2.

Let’s first prove Estimate (E.11) for K2 in the case |x|/|y| < 1/2. We have in that case that
|x − y| ≤ 3|y|/2, hence |x − y|2 − n ≥ c(n)|y|2−n. Since we are exactly in the case where the
expansion of Equation (E.10) converges (swapping y and x), we have

|K(x, y)| =
∣∣∣|y|−2λ

∞∑

k+1

P λ
j (µ)(|x|/|y|)j

∣∣∣

≤ |y|2−n(|x|/|y|)k+1
∑

j≥0

max
µ∈B1

(|P λ
j+k+1(µ)|)2−j

≤ c(n, k)|x − y|2−n(|x|/|y|)k+1,

as wanted.

We prove the case |x| > |y|/2 for K2 term by term. As n + k − 2 ≥ 1, it must be that
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(|x|/|y|)n+k−2 ≥ 22−k−n thus |x − y|2−n ≤ c(n, k)|x − y|2−n(|x|/|y|)n+k+2. For j ≤ k, we
have

∣∣∣|y|2−nP λ
j (µ)

(|x|/|y|)j
∣∣∣ ≤

(
max
i≤k

max
µ∈B1

|P λ
i (µ)|

) |x|j
|y|j+n−2

, and

|x|j
|y|j+n−2

≤ 2
|x|j+1

|y|j+1+n−2
≤ 2k−j |x|k

|y|n+k−2
.

These inequalities, along with the fact that |x− y| ≤ 3|x|/2 implies

1 ≤ c(n)|x− y|2−n|x|n−2,

can be used to prove the second estimate for K2.

Now let K1 be the operator kernel |x− y|2−n(|x|/|y|)α . Set a = δ+n/p−α and b = −b−n/p+
2 + α. Then a+ b = 2 and Lemma E-7 shows that

K ′
1(x, y) = |x|−δ−n/pK1(x, y)|y|δ−2+n/p

defines a bounded operator Lp → Lp when a < n/p and b < n/p′, that is when δ < α and
δ > 2 − n+ α.

Since the composition

L′p
δ−2

|y|−δ+2−n/p

−−−−−−−−→ Lp K′
1−−−−→ Lp |x|δ+n/p

−−−−−→ L′p
δ

is precisely K1, then K1 is continuous when α+ 2 − n < δ < α.

We use simultaneously α = k + 1 and α = n+ k − 2 along with Estimate (E.11) to see that K is
bounded when k < δ < k+1, which correspond to the cases K2 and K3. The case K1 is dealt with
in a slightly different fashion, without the use of Estimate (E.11): we just use α = 0.

Now that we know that K is bounded L′p
δ−2 → L′p

δ , we use K to show the surjectivity of ∆. First
recall that

∆x|x− y|2−n = ∆y|x− y|2−n = δ(x− y).

Furthermore, the right-hand-side terms in K2 and K3 are harmonic in Rn \ {0}. Thus

∆xK = ∆yK = δ(x− y) in D′(Rn \ {0}).

HenceK(∆u) = u for all u ∈ C∞
c (Rn\{0}). Since C∞

c (Rn\{0}) is dense inW ′k,p
δ , the continuity

of K implies
‖u‖′p,δ ≤ C‖∆u‖′p,δ−2.

Using Estimate (E.9), we find

‖u‖′2,p,δ ≤ C
(‖∆u‖′p,δ−2 + ‖u‖′p,δ

)

≤ C‖∆u‖′δ−2,

as wanted for the case s = 0. This ∆ is injective and has closed range. Since it is surjective on
C∞

c (Rn \ {0}), it must be surjective by density. 2

With this result in our pocket, we are close to seeing the Fredholmness of P . The more powerful
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elliptic estimate presented in the next theorem is the tool we need.

Theorem E-9 ([Bar86, Thm 1.10]). Suppose P is asymptotic to ∆ and δ ∈ R is nonexceptional.
For 1 < p ≤ q, the map P : W 2,p

δ →W 0,p
δ−2 has finite-dimensional kernel and closed range and, for

u ∈W 2,p
δ , we have constants C and R depending only on P, δ, n, p, q such that

‖u‖
2,p,δ

≤ C
(‖Pu‖

0,p,δ−2
+ ‖u‖

Lp(BR)

)
.

Proof: Let ‖ ‖
op

denote the operator norm for bounded linear functions W 2,p
δ → W 0,p

δ−2 and ‖ ‖
op,R

denote the same norm but restricted to functions with support in ER = Rn \BR.

Suppose supp(u) ⊂ ER, then

‖(P − ∆)u‖
0,p,δ−2

≤
(

sup
|x|>R

{|aij(x) − δij |} + C‖b‖
0,q,−1;ER

+ C‖c‖
0,q,−2;ER

)
‖u‖

2,p,δ
.

Since P is asymptotic to ∆, we thus have

‖P − ∆‖
op,R

= o(1) as R→ ∞.

Let χ ∈ C∞
c (B2) be such that o ≤ χ ≤ 1 with χ = 1 in B1. Set χR(x) = χ(x/R). Given u, write

u0 = χRu and u∞ = (1 − χR)u. Thus u = u0 + u∞.

We have

‖u∞‖
2,p,δ

≤ C‖∆u∞‖
0,p,δ−2

≤ C
(
‖Pu∞‖

0,p,δ−2
+ ‖P − ∆‖

op,R
‖u∞‖

2,p,δ

)

and we estimate

‖Pu∞‖
0,p,δ−2

≤ ‖Pu‖
0,p,δ−2

+ ‖Pu0‖0,p,δ−2

≤ ‖Pu‖
0,p,δ−2

+ ‖χRPu‖0,p,δ−2
+ ‖[P, χR]u‖

0,p,δ−2

≤ C‖Pu‖
0,p,δ−2

+C‖u‖
1,p,δ−1;AR

.

By throwing in a factor of R in C , this last norm can be considered with weight δ. Since ‖P −
∆‖

op,R
= o(1), for R sufficiently large we have

‖u∞‖
2,p,δ

≤ C
(‖Pu‖

0,p,δ−2
+ ‖u‖

1,p,δ;AR

)
.

We have the exact same estimate for u0.

But then

‖u‖
2,p,δ

≤ ‖u0‖2,p,δ
+ ‖u∞‖

2,p,δ

≤ C
(‖Pu‖

0,p,δ−2
+ ‖u‖

1,p,δ;AR

)
.

Using the Interpolation Inequality (E.3), we get the wanted estimate.

Now suppose {uk} ∈ kerP satisfy ‖uk‖2,p,δ
= 1. By Rellich we may assume that {uk} converges
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in Lp(BR). Thus
‖uj − uk‖2,p,δ

→ 0 as min(j, k) → ∞

and {uk} is Cauchy hence convergent in W 2,p
δ . Hence kerP is finite dimensional.

Since dimkerP <∞, there is a closed subspace Z such that W 2,p
δ = Z + kerP and

‖u‖
2,p,δ

≤ C‖Pu‖
0,p,δ−2

for all u ∈ Z.

Indeed, should there be no such bound, we could find a sequence {ui} ∈ Z with ‖ui‖2,p,δ
= 1 but

Pui → 0. But then using the estimate proved earlier and the Rellich lemma on BR, there would
be a subsequence of the ui which is Cauchy. By closedness, the limit u = limui is in Z . But then
Pu = 0 and ‖u‖

2,p,δ
= 1: contradiction!

The fact that P has closed range follows directly. 2

We are interested in the dimension of the kernel of P .

Theorem E-10. The number dimker(P : W 2,p
δ →W 0,p

δ−2) is independent of p for 1 < p ≤ q.

Proof: We split the range 1 < p ≤ q into three zones:

zone 1: n < p ≤ q,

zone 2: n/2 < p ≤ n, and

zone 3: 1 < p ≤ n/2.

Suppose that Pu = 0 and u ∈W 2,p
δ .

Suppose first that p is in zone 1. As n/p < 1, we have 0 < 1 − n/p ≤ 1. Take any α with
0 < α ≤ 1 − n/p. Then u ∈W 2,p

δ implies ‖u‖
C0,α

δ

≤ C‖u‖
1,p,δ

hence u is continuous.

Also, since n − p < 0, we have |u(x)| = o(rδ) as r → ∞. In conjunction with the continuity
of u, this asymptotic behavior indicates that u ∈ Ls

δ for every s. Hence u ∈ W 2,s
δ for every s by

Proposition E-6.

Suppose now that p is in zone 2. Then n− 2p < 0 and 2 − n/p ≤ 1. Thus, again,

‖u‖
C0,α

δ

≤ C‖u‖
2,p,δ

and u is continuous, and
|u(x)| = o(rδ) as r → ∞.

Again, we have u ∈W 2,s
δ for every s.

Suppose now that p is in zone 3. Then n− p ≥ n/2. Thus p < 2p ≤ np/(n− p) and

‖u‖
np/(n−p),δ

≤ C‖u‖
1,p,δ

.

Since Pu = 0, we have by Proposition E-6 that u ∈ W
2,np/(n−p)
δ . Iterating this reasoning a finite

number of time, we push p out of zone 3 and once in zone 1 or 2, we know that u ∈W 2,s
δ for every

s. 2

Note that the role of q is absolutely artificial here. The only reason we need it is to be able to use
Proposition E-6.
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Because of this last theorem, it is natural to define

N(P, δ) := dimker(P : W 2,p
δ →W 0,p

δ−2).

While there is more in Bartnik’s paper that could be done, we end by studying a Theorem quite
similar to Theorem 7.2-1 of this thesis.

Theorem E-11 ([Bar86, Thm 1.17]). Suppose P ∼ ∆ at rate τ > 0. Suppose δ is nonexceptional
and that u ∈ W 2,q

δ satisfies Pu = 0 in ER. Then there is an exceptional value k ≤ k−(δ) and
hk ∈ C∞(Rn) such that hk is harmonic and homogeneous of degree k in ER and

u− hk = o(rk−τ ) as r → ∞.

Proof: Set F := ∆u. Since Pu = 0 in ER, we have that F := (δij − aij)∂2
iju − bi∂iu − cu in

|x| > R; thus F ∈W 0,q
δ−2τ .

We can take ε < τ/2 small enough so that δ − τ + ε and δ − τ + 2ε are nonexceptional. Then
F ∈ W 0,q

δ−2−τ implies that F ∈ W 0,q
δ−2−τ+ε. But ∆: W 2,q

δ−τ+ε → W 0,q
δ−2−τ+ε is Fredholm. So

let β1, . . . , βn be a basis of ker(∆∗) ⊂ (W 0,q
δ−2−τ+ε)

∗. An element f is in Im(∆) if and only if
β1(f) = · · · = βn(f) = 0.

Notice that (W 0,q
δ−2−τ+ε)

∗ = (Lq
δ−2−τ+ε)

∗ = Lq′

−δ+2+τ−ε−n by integration against each other. So
the βi are functions.

We want to modify F in BR so that it becomes an element of Im(∆). We are thus looking for f
with f = 0 in ER such that

βi(f) = βi(F ), for i = 1, . . . , n.

Restrict βi to BR. Since Lq′

−δ+2+τ−ε−n(BR) = Lq
δ−2−τ+ε(BR)∗, there are fi ∈ Lq

δ−2−τ+ε(BR)
with

βi(fj) = δij .

Extend fi to Rn by 0 on ER. Then fi ∈ Lq
δ−2−τ+ε. The function

F − β1(F )f1 − · · · − βn(F )fn

is killed by all the βi thus it is in the image of ∆.

Thus, there exists a v in W 2,q
δ−τ+ε such that

∆(u− v) = 0, for |x| > R.

The classical expansion for harmonic functions now shows that

u− v = hk +O(rk−1)

for some k ≤ k−(δ) and hk harmonic and of degree k in ER. The decay estimate for v is improved
by iteration: u− hk ∈W 2,q

δ−τ+ε implies F ∈W 0,q
δ−2−2τ+ε 2
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