Weak amenability of commutative Beurling algebras

For Banach algebra 2011, Waterloo

Yong Zhang

Department of Mathematics University of Manitoba, Winnipeg, Canada

Outline

Preliminaries

Weak amenability of Beurling algebras

3 2-weak amenability of Beurling algebras

Beurling algebras

Let G be a locally compact group. A weight function on G is a positive valued continuous function ω on G that satisfies

$$\omega(st) \leq \omega(s)\omega(t) \quad (s, t \in G).$$

If ω is a weight on G, we consider

$$L^{1}(G,\omega)=\{f: f\omega\in L^{1}(G)\}.$$

With the convolution product and the norm

$$||f||_{\omega} = \int_{G} |f(t)|\omega(t)dt \quad (f \in L^{1}(G,\omega))$$

 $L^1(G,\omega)$ is a Banach algebra, called a Beurling algebra on G. When $\omega\equiv 1$ this is just the usual group algebra $L^1(G)$.

Derivation

Let $\mathcal A$ be a Banach algebra and X a Banach $\mathcal A$ -bimodule. A linear map $D\colon \mathcal A\to X$ is a derivation if it satisfies

$$D(ab) = a \cdot D(b) + D(a) \cdot b \quad (a, b \in A).$$

Given an $x \in X$, the map ad_x : $a \mapsto a \cdot x - x \cdot a$ ($a \in A$) is a continuous derivation, called an inner derivation.

If X is a Banach \mathcal{A} -bimodule, then X^* , the dual space of X is naturally a Banach \mathcal{A} -bimodule with the module actions given by

$$\langle x, a \cdot f \rangle = \langle x \cdot a, f \rangle, \ \langle x, f \cdot a \rangle = \langle a \cdot x, f \rangle \quad (a \in \mathcal{A}, f \in X^*, x \in X).$$

The Banach algebra \mathcal{A} itself is a Banach \mathcal{A} -bimodule with the module actions given by the product. So the nth dual $\mathcal{A}^{(n)}$ of \mathcal{A} is naturally a Banach \mathcal{A} -bimodule for each $n \in \mathbb{N}$.

Weak and *n*-weak amenability

- The Banach algebra \mathcal{A} is called weakly amenable if every continuous derivation $D: \mathcal{A} \to \mathcal{A}^*$ is inner.
- Given $n \in \mathbb{N}$, if every continuous derivation $D: A \to A^{(n)}$ is inner, then A is called n-weakly amenable.
- If \mathcal{A} is n-weakly amenable for all $n \in \mathbb{N}$, then \mathcal{A} is called permanently weakly amenable.

For example, all C*-algebras are permanently weakly amenable. So are all group algebras $L^1(G)$.

A commutative Banach algebra is permanently weakly amenable if and only if it is weakly amenable (**Dales-Ghahramani-Grønbæk**, **1998**).

We investigate the conditions for a commutative Beurling algebra to be weakly or 2-weakly amenable.

Some related spaces

• The dual space of $L^1(G, \omega)$ is

$$L^{\infty}(G, 1/\omega) =: \{f : f/\omega \in L^{\infty}(G)\}$$

with the norm given by

$$\|f\|_{\sup,1/\omega}= \operatorname{ess\,sup}_{t\in G} \left|rac{f(t)}{\omega(t)}
ight| \quad (f\in L^\infty(G,1/\omega)).$$

• The multiplier algebra of $L^1(G, \omega)$ is $M(G, \omega)$ consisting of all Radon measures μ such that

$$\|\mu\|_{\omega} = \int_{G} \omega(t) d|\mu|(t) < \infty,$$

where $|\mu|$ denotes the total variation measure of μ .

• $M(G, \omega)$ is also the dual space of

$$C_0(G,1/\omega) = \{ f \in L^{\infty}(G,1/\omega) : f/\omega \in C_0(G) \}$$

which is a closed $L^1(G, \omega)$ -submodule of $L^{\infty}(G, 1/\omega)$.

Outline

Preliminaries

Weak amenability of Beurling algebras

2-weak amenability of Beurling algebras

Weak amenability of $L^1(G, \omega)$

Weak amenability of $L^1(G, \omega)$ was first studied by W.G. Bade, P.C. Curtis ans H.G. Dales in 1987.

- **①** (Bade-Curtis-Dales, 1987) For the additive group \mathbb{Z} of all integers and the weight $\omega_{\alpha}(x) = (1+|x|)^{\alpha}$ on \mathbb{Z} , the Beurling algebra $L^{1}(\mathbb{Z},\omega_{\alpha})$ is weakly amenable if and only if $0 \leq \alpha < \frac{1}{2}$.
- ② (**Grønbæk, 1989**) The Beurling algebra $L^1(\mathbb{Z},\omega)$ is weakly amenable if and only if

$$\liminf_{n\to\infty}\frac{\omega(n)\omega(-n)}{n}=0.$$

3 (Samei, 2008) Let G be a LCAG and ω a weight on G. If

$$\lim\inf\frac{\omega(t^n)\omega(t^{-n})}{n}=0$$

for all $t \in G$ then $L^1(G, \omega)$ is weakly amenable.

Weak amenability of $L^1(G, \omega)$

Theorem 1

Let G be a locally compact Abelian group and ω a weight on G. Then $L^1(G,\omega)$ is weakly amenable if and only if every nontrivial continuous group homomorphism $\phi\colon G\to (\mathbb{C},+)$ satisfies

$$\sup_{t \in G} \frac{|\phi(t)|}{\omega(t)\omega(t^{-1})} = \infty. \tag{1}$$

Proof.

" \Leftarrow ": If $L^1(G,\omega)$ is not weakly amenable, then there is a nonzero continuous derivation $D: L^1(G,\omega) \to L^\infty(G,1/\omega)$. Extend D to $M(G,\omega)$ and define $\Delta(t) = \delta_{t^{-1}} \cdot D(\delta_t)$ ($t \in G$). Then $\exists h \in L^1(G,\omega)$ such that $\phi(t) := \langle h, \Delta(t) \rangle$ is a nontrivial continuous group homomorphism from G into $(\mathbb{C},+)$ and

$$|\phi(t)| \le (||D|| ||h||_{\omega})\omega(t)\omega(t^{-1}) \quad (t \in G).$$

" \Rightarrow ": Let ϕ : $G \to (\mathbb{C}, +)$ be a continuous nontrivial group homomorphism such that for all $t \in G$

$$\sup_{t\in G}\frac{|\phi(t)|}{\omega(t)\omega(t^{-1})}\leq m<\infty.$$

Fix a compact neibourghood *B* of *e* in *G*. $\forall h \in L^1(G, \omega)$ define

$$D(h)(t) = \int_{B} \phi(t^{-1}\xi)h(t^{-1}\xi)d\xi \quad (t \in G).$$

Then $D: L^1(G,\omega) \to L^\infty(G,1/\omega)$ is indeed a nontrivial continuous derivation. Therefore $L^1(G,\omega)$ is not weakly amenable.

Special consequences

We first note that if $G=(\mathbb{Z},+)$ or $(\mathbb{R},+)$ then $\phi\colon G\to(\mathbb{C},+)$ is a continuous group homomorphism if and only if it takes the form $\phi(x)=xc_0$ for some $c_0\in\mathbb{C}$. So from Theorem 1 we immediately derive

Corollary 1

Let $G = (\mathbb{N}, +)$ or $(\mathbb{R}, +)$ and let ω be a weight on G. Then the following statements are equivalent.

- **1** The Beurling algebra $L^1(G, \omega)$ is weakly amenable.
- 3 $\liminf_{n\to\infty} \frac{\omega(n)\omega(-n)}{n} = 0.$
- **1** There is $t_0 \in G$ such that $t_0 \neq 0$ and $\liminf_{n \to \infty} \frac{\omega(nt_0)\omega(-nt_0)}{n} = 0$.

Corollary 2 (Samei)

Let G be a locally compact Abelian group and ω a weight on G. If for each $t \in G$

$$\inf_{n\in\mathbb{N}}\frac{\omega(t^n)\omega(t^{-n})}{n}=0,$$
(2)

then $L^1(G,\omega)$ is weakly amenable.

Proof.

If ϕ : $G \to \mathbb{C}$ is a group homomorphism such that $\phi(t_0) \neq 0$, we have

$$\sup_{t\in G}\frac{|\phi(t)|}{\omega(t)\omega(t^{-1})}\geq \sup_{n\in\mathbb{N}}\frac{|\phi(t_0^n)|}{\omega(t_0^n)\omega(t_0^{-n})}=|\phi(t_0)|\sup_{n\in\mathbb{N}}\frac{n}{\omega(t_0^n)\omega(t_0^{-n})}=\infty.$$

By Theorem 1, $L^1(G, \omega)$ is weakly amenable.

Let H and R be two locally compact Abelian groups. We consider the product group $H \times R = \{(s,t) : s \in H, t \in R\}$. Let ω be a weight on $H \times R$. Then $\omega_H(s) = \omega(s,e_R)$ and $\omega_R(t) = \omega(e_H,t)$ are weights on H and R respectively, where $e_H(e_R)$ is the identity of H (resp. R). We denote $\Omega(s,t) := \omega(s,t)\omega(s^{-1},t^{-1})$ ($s \in H$, $t \in R$).

Corollary 3

If both $L^1(H, \omega_H)$ and $L^1(R, \omega_R)$ are weakly amenable then so is $L^1(H \times R, \omega)$. Conversely, the algebra $L^1(H \times R, \omega)$ is not weakly amenable if any of the following conditions holds:

- L¹ (H, ω_H) is not weakly amenable and $\sup_{(s,t)\in H\times R} \frac{\Omega(s,e_R)}{\Omega(s,t)} < \infty$.
- ② $L^1(R, \omega_R)$ is not weakly amenable and $\sup_{(s,t)\in H\times R} \frac{\Omega(e_H,t)}{\Omega(s,t)} < \infty$.

Proof.

Straightforward calculation.

Corollary 4

Let G_1 and G_2 be two locally compact Abelian groups and let ω_1 and ω_2 be weights on them, respectively. Then the tensor product $L^1(G_1,\omega_1)\hat{\otimes}L^1(G_2,\omega_2)$ is weakly amenable if and only if both $L^1(G_1,\omega_1)$ and $L^1(G_2,\omega_2)$ are weakly amenable.

Proof.

 $L^1(G_1, \omega_1) \hat{\otimes} L^1(G_2, \omega_2) \cong L^1(G_1 \times G_2, \omega_1 \times \omega_2)$. The result follows from Corollary 3.

Outline

Preliminaries

Weak amenability of Beurling algebras

2-weak amenability of Beurling algebras

2-weak amenability of $L^1(G, \omega)$

- ([Choi-Ghahramani-Z 2009, Losert 2010]) $L^1(G)$ is always 2-weakly amenable.
- ([Dales-Lau 2005]) For $G=\mathbb{Z}$ or \mathbb{R} , and the weight $\omega_{\alpha}(t)=(1+|t|)^{\alpha}$, the Beurling algebra $L^{1}(G,\omega_{\alpha})$ is 2-weakly amenable if $0\leq \alpha<1$; and it is not 2-weakly amenable if $\alpha\geq 1$.
- (**ibid.**) If G is Abelian and ω satisfies

$$\lim_{t \to \infty} \sup_{s \in K} |\omega(st)/\omega(t) - 1| = 0$$
 (3)

for each compact set $K \subset G$ and

$$\liminf_{n \to \infty} \omega(t^n)/n = 0 \text{ for all } t \in G \tag{4}$$

then $L^1(G, \omega)$ is 2-weakly amenable.

• ([Ghahramani-Zabandan 2004, Samei 2008]) The above is still true if the condition (3) is replaced by

$$\widehat{\omega}(s) = \limsup_{t \to \infty} \omega(ts)/\omega(t)$$

being bounded on G.

The precise definition of $\widehat{\omega}$ is as follows.

$$\widehat{\omega}(t) = \limsup_{s \to \infty} \frac{\omega(ts)}{\omega(s)} := \inf_{K} \sup_{s \in G \setminus K} \frac{\omega(ts)}{\omega(s)},$$

where the infimum is taken over all compact subsets K of G.

Theorem 2

Let G be an locally compact Abelian group and ω a weight on G. If there is a constant m>0 such that

$$\liminf_{n\to\infty}\frac{\omega(t^n)\widehat{\omega}(t^{-n})}{n}\leq m\quad (t\in G),$$

then $L^1(G, \omega)$ is 2-weakly amenable.

I will skip the proof of Theorem 2 but give an example to show that our result is indeed more general.

Example

Let $\beta \geq 0$. Consider the additive group \mathbb{Z}^2 and the weight

$$\omega(s,t)=(1+|s+t|)^{\beta}.$$

Then $\widehat{\omega} = \omega$ which is unbounded if $\beta > 0$. However, it is readily seen that $\lim \frac{\omega(ns,nt)\widehat{\omega}(-ns,-nt)}{n} = 0$ when $2\beta < 1$. So $\ell^1(\mathbb{Z}^2,\omega)$ is 2-weakly amenable if $\beta < 1/2$ due to Theorem 2.

Thank You.