Cuntz-Pimsner algebras for subproduct systems

Ami Viselter

University of Alberta

Banach Algebras 2011, University of Waterloo August 10

C*-correspondences

Let \mathcal{M} denote a C^* -algebra throughout.

Definition

A (right) Hilbert C^* -module E over \mathscr{M} is a C^* -correspondence if it is also a *left* \mathscr{M} -module, with multiplication on the left given by adjointable operators.

That is: there exists a *-homomorphism $\varphi : \mathcal{M} \to \mathcal{L}(E)$ such that $a \cdot \zeta$ is defined to be $\varphi(a)\zeta$ for $a \in \mathcal{M}$ and $\zeta \in E$.

Examples

- **1** $\mathcal{M} = \mathbb{C}$, $E = \mathcal{H}$ and $\varphi(\alpha)\zeta := \alpha\zeta$.
- ② $E = {}_{\alpha}\mathcal{M}$ where α is an endomorphism of \mathcal{M} , that is: $E = \mathcal{M}$ as sets and $\varphi(a)\zeta := \alpha(a)\zeta$.

The Toeplitz algebra

Definition

Let E denote a C^* -correspondence over \mathcal{M} .

The Fock space is the correspondence

$$\mathcal{F}_E := \bigoplus_{n \in \mathbb{Z}_+} E^{\otimes n} = \mathscr{M} \oplus E \oplus E^{\otimes 2} \oplus \dots.$$

• For $a \in \mathcal{M}$ and $\zeta \in E$, let $\varphi_{\infty}(a)$, $S(\zeta) \in \mathcal{L}(\mathcal{F}_E)$ be given by

$$\varphi_{\infty}(a): \eta \mapsto a \cdot \eta$$
 $S(\zeta): \eta \mapsto \zeta \otimes \eta$

 $(\eta \in X(m), m \in \mathbb{Z}_+).$ It is a simple calculation that $S(\xi)^*S(\zeta) = \varphi_\infty(\langle \xi, \zeta \rangle).$

• The *Toeplitz algebra* $\mathcal{T}(E)$ is the C^* -subalgebra of $\mathcal{L}(\mathcal{F}_E)$ generated by the operators $\varphi_{\infty}(\cdot)$, $S(\cdot)$.

The Cuntz-Pimsner algebra

Definition (Pimsner, 1995)

Let E denote a faithful C^* -correspondence over \mathcal{M} .

• The ideal $\mathcal{J} \unlhd \mathcal{M}$ is defined by

$$\mathcal{J}:=\varphi^{-1}\left(\mathcal{K}(E)\right).$$

• We have $\mathcal{K}(\mathcal{F}_E\mathcal{J}) \leq \mathcal{T}(E)$. More precisely,

$$\mathcal{T}(E) \cap \mathcal{K}(\mathcal{F}_E) = \mathcal{K}(\mathcal{F}_E \mathcal{J}).$$

The Cuntz-Pimsner algebra is

$$O(E) := \mathcal{T}(E)/\mathcal{K}(\mathcal{F}_E\mathcal{J}).$$

Universal property (1) + examples

Embed $\mathcal{K}(E) \hookrightarrow \mathcal{T}(E)$ by $\Psi : \zeta \otimes \eta^* \mapsto S(\zeta)S(\eta)^*$.

Theorem (Pimsner, 1995)

A C^* -representation π of $\mathcal{T}(E)$ factors through $O(E) \Leftrightarrow$ for all $a \in \mathcal{J}$ we have $\pi(\Psi(\varphi(a))) = \pi(\varphi_{\infty}(a))$.

Examples

- $\mathcal{M} = E = \mathbb{C} \leadsto \mathcal{T}(E)$ is the (classical) Toeplitz algebra, $O(E) = C(\mathbb{T})$.
- G is a finite graph of d vertices, E is the graph correspondence of G (with $\mathcal{M} = \mathbb{C}^d$) $\leadsto O(E)$ is the Cuntz-Krieger algebra of G.
- \mathcal{M} is a unital C^* -algebra, $\alpha \in \operatorname{Aut} \mathcal{M}$, $E := {}_{\alpha} \mathcal{M} \leadsto O(E) \cong \mathcal{M} \rtimes_{\alpha} \mathbb{Z}$.
- This could be generalized further to crossed products of Hilbert bimodules.

Universal property (2) – gauge invariance

The Toeplitz algebra $\mathcal{T}(E)$ has a gauge action: for $\lambda \in \mathbb{T}$ there is $\alpha_{\lambda} \in \operatorname{Aut}(\mathcal{T}(E))$ with

$$\varphi_{\infty}(a) \mapsto \varphi_{\infty}(a) \qquad S(\zeta) \mapsto \lambda S(\zeta).$$

An ideal $I riangleq \mathcal{T}(E)$ is called *gauge invariant* if $\alpha_{\lambda}(I) = I$ for all λ . Recall that $O(E) = \mathcal{T}(E)/\mathcal{K}(\mathcal{F}_{E},\mathcal{T})$.

The gauge-invariant uniqueness theorem (Katsura, 2007)

The ideal $\mathcal{K}(\mathcal{F}_E\mathcal{J})$ is the <u>largest</u> among ideals \mathcal{I} of $\mathcal{T}(E)$ s.t.:

- I is gauge invariant.

Subproduct systems

Definition

A subproduct system is a family $X = (X(n))_{n \in \mathbb{Z}_+}$ of C^* -correspondences over the C^* -algebra $\mathscr{M} := X(0)$, such that

$$X(n+m)\subseteq X(n)\otimes X(m),$$

and moreover, X(n+m) is orthogonally complementable in $X(n) \otimes X(m)$, for all $n, m \in \mathbb{Z}_+$.

Product systems – the "trivial" example

E is an (essential) C^* -correspondence over \mathcal{M} and $X(n) = E^{\otimes n}$ for all $n \in \mathbb{Z}_+$.

Examples

SSP_d (the symmetric subproduct system), $d \in \mathbb{N}$

 $X(n) = (\mathbb{C}^d)^{(s)n}$ (the *n*-fold *symmetric* tensor product of \mathbb{C}^d) for all *n*.

SSP_{∞} (the infinite-dimensional symmetric subproduct system)

 $X(n) = (\ell_2)^{\otimes n}$. Here dim X(n) is infinite for all $n \in \mathbb{N}$.

$P \in M_d$, $P_{ij} \ge 0$ for all i, j, no all-zero columns

X(n) is the "support" *quiver* of the matrix P^n .

cp-semigroups

A subproduct system can be associated with any \emph{cp} -semigroup over $\mathbb{Z}_+.$

The Toeplitz algebra for subproduct systems

Let $X = (X(n))_{n \in \mathbb{Z}_+}$ be a subproduct system.

Definition (X-shifts)

Define

$$\mathcal{F}_X := \bigoplus_{n \in \mathbb{Z}_+} X(n) = \mathscr{M} \oplus X(1) \oplus X(2) \oplus X(3) \oplus \dots$$

- Setting E := X(1), we have $X(n) \subseteq E^{\otimes n}$.
- For $n \in \mathbb{Z}_+$ and $\zeta \in X(n)$, define $S_n^X(\zeta) \in \mathcal{L}(\mathcal{F}_X)$ by

$$(\forall m \in \mathbb{Z}_+, \eta \in X(m))$$
 $S_n^X(\zeta)\eta := \operatorname{Proj}_{X(n+m)}(\zeta \otimes \eta)$

Definition

The *Toeplitz algebra* $\mathcal{T}(X)$ of X is the C^* -subalgebra of $\mathcal{L}(\mathcal{F}_X)$ generated by $\{S_n^X(\zeta) : n \in \mathbb{Z}_+, \zeta \in X(n)\}$.

What about the Cuntz-Pimsner algebra?

The definition of the Toeplitz algebra for subproduct systems is natural.

But how should one define the Cuntz-Pimsner algebra for subproduct systems?

We will present a possible candidate, and try to justify it by demonstrating some of its virtues.

The Cuntz-Pimsner algebra for subproduct systems

Assume henceforth that X(n) is faithful for all n.

Write $Q_n \in \mathcal{L}(\mathcal{F}_X)$ for the projection on the direct summand X(n).

Theorem (V.)

The set

$$I := \left\{ S \in \mathcal{T}(X) : \lim_{n \to \infty} ||SQ_n|| = 0 \right\}$$

is a gauge-invariant ideal of $\mathcal{T}(X)$ (and in fact, $I = \langle I \cap \mathcal{T}_0(X) \rangle$, where $\mathcal{T}_0(X)$ is the 0th spectral subset of $\mathcal{T}(X)$ w.r.t. the gauge action).

Clearly $\mathcal{K}(\mathcal{F}_X\mathcal{J})\subseteq \mathcal{T}(X)\cap \mathcal{K}(\mathcal{F}_X)\subseteq I$.

Definition (V.)

The *Cuntz-Pimsner algebra* of *X* is defined as $O(X) := \mathcal{T}(X)/I$.

Proposition

If X is a product system, then $I = \mathcal{K}(\mathcal{F}_X \mathcal{J})$. Thus, O(X) = O(E).

Examples

- **1** $X = SSP_d \rightarrow I = \mathbb{K}$ and $O(X) = C(\partial B_d)$ (Arveson's construction)
- ② More generally: all fibers X(n) are finite-dimensional Hilbert spaces $\leadsto \mathcal{I} = \mathbb{K}$
- ③ $X = \text{SSP}_{\infty} \rightarrow O(X) = C(B)$, where B is the closed unit ball of ℓ_2 with the Tychonoff topology (by the way: $O_{\infty} = ?$)

 Question: is I simple in this case? (our guess: no)
- If $Q_n \in \mathcal{T}(X)$ for all n then $I = \langle Q_n : n \in \mathbb{Z}_+ \rangle$ Example: the subproduct system of $P \in M_d$ with $P_{ij} \geq 0$ for all i, j and no all-zero columns

Gauge-invariant uniqueness theorem? No!

Example

The Toeplitz algebra of SSP_2 does not admit a largest ideal which does not contain the unit I, and which is gauge invariant.

Idea of proof.

Suppose that such ideal $\mathcal{P} \unlhd \mathcal{T}(\mathrm{SSP}_2)$ exists.

- $\mathbf{0} \ \mathcal{P}$ is largest $\mathbf{K} \subseteq \mathcal{P}$
- **3** \mathcal{P}/\mathbb{K} has a clear structure as an ideal of $C(\partial B_2)$

Now it is easy to find a larger ideal with the desired properties.

An equivalent definition

- Consider the subspaces $\mathcal{L}(\bigoplus_{k=0}^{n} X(k))$ of $\mathcal{L}(\mathcal{F}_X)$
- Let \mathcal{B} be the *-algebra $\bigcup_{n=0}^{\infty} \mathcal{L}(\oplus_{k=0}^{n} X(k))$
- $\mathcal{T}(X)$ is contained in the multiplier algebra $M(\overline{\mathcal{B}})$
- Let $q: M(\overline{\mathcal{B}}) \to M(\overline{\mathcal{B}})/\overline{\mathcal{B}}$ be the quotient map.

Easy proposition

$$O(X) \cong q(\mathcal{T}(X))$$
. That is, $\ker q|_{\mathcal{T}(X)} = I$.

The proposition generalizes a result of Pimsner (1995). In fact, this was the original definition of the Cuntz-Pimsner algebra.

Morita equivalence

Definition (Muhly and Solel (2000))

Let E, F be C^* -correspondences over \mathscr{A}, \mathscr{B} . E is strongly Morita equivalent to F if \mathscr{A} is ME to \mathscr{B} via an equivalence bimodule M, and there exists an isomorphism $W: M \otimes F \to E \otimes M$. Notation: $E \overset{\mathrm{SME}}{\sim}_{M} F$.

If $E \overset{\text{SME}}{\sim}_{\mathsf{M}} F$, define isomorphisms $W_n : \mathsf{M} \otimes F^{\otimes n} \to E^{\otimes n} \otimes \mathsf{M}$ by $W_1 := W$ and $W_n := (I_E \otimes W_{n-1})(W \otimes I_{F^{\otimes (n-1)}})$.

Definition (V.)

Subproduct systems X, Y are strongly Morita equivalent if $X(1) \stackrel{\mathrm{SME}}{\sim}_{\mathsf{M}} Y(1)$ and

$$W_n(M \otimes Y(n)) = X(n) \otimes M$$

for all n.

Morita equivalence (cont.)

For a subproduct system X, the *tensor algebra* $\mathcal{T}_+(X)$ is the operator subalgebra of $\mathcal{T}(X)$ generated by all X-shifts.

The following generalizes a theorem of Muhly and Solel (2000) for *product systems*.

Theorem (V.)

If X is strongly Morita equivalent to Y, then:

- lacktriangledown $\mathcal{T}_+(X)$ is strongly Morita equivalent^a to $\mathcal{T}_+(Y)$
- **2** $\mathcal{T}(X)$ is Morita equivalent to $\mathcal{T}(Y)$
- **3** The Rieffel correspondence of $\mathcal{T}(X) \sim \mathcal{T}(Y)$ carries I(X) to I(Y). Therefore O(X) is Morita equivalent to O(Y).

This is another evidence that our definition of the Cuntz-Pimsner algebra for subproduct systems is "natural".

^aas operator algebras, a la Blecher, Muhly and Paulsen (2000)

Essential representations

Definition

A C^* -representation π of $\mathcal{T}(X)$ on \mathcal{H} is *essential* if for every n,

$$\overline{\operatorname{span}} \bigcup_{\zeta \in X(n)} \operatorname{Im} \pi \left(S_n(\zeta) \right) = \mathfrak{H}.$$

Remark

If *X* is a *product* system, then π is essential \Leftrightarrow it is fully coisometric.

Theorem (Hirshberg (2005), Skeide (2009))

Let E be a faithful and essential C*-correspondence. Then

$$\bigcap_{\substack{\pi \text{ is an essential} \\ \textit{representation of } \mathcal{T}(\mathsf{E})}} \ker \pi = \mathcal{K}(\mathcal{F}_\mathsf{E}\mathcal{J}).$$

Essential representations (cont.)

Open question

Is it true that under (mild) hypotheses we have

$$\bigcap_{\substack{\pi \text{ is an essential} \\ \text{representation of } \mathcal{T}(\textit{X})}} \ker \pi = \textit{I} \quad ?$$

We conjecture that it is.

What if "essential" is replaced by "fully coisometric"?

Proposition

Essential representations (cont.)

The conjecture (in its strict version) is true in many interesting cases. For instance:

- "Finite-dimensional" subproduct systems:
 - All fibers X(n) are finite-dimensional Hilbert spaces (e.g.: X = SSP_d, d ∈ IN)
 - The subproduct system of $P \in M_d$ with $P_{ij} \ge 0$ for all i,j and no all-zero columns
- ② But also SSP_{∞} .

More open questions

- Is there a "strong" universality characterization of O(X)?
- What is the ideal structure of O(X)? (The general case seems hopeless; what about specific families?)
- In the spirit of Cuntz (1977), Pimsner used an "extension of scalars" method to find a C^* -algebra that is naturally isomorphic to O(E), and for which there is a *semi-split* exact sequence with the Toeplitz algebra¹.

Could this be done in our context?

Is there a relation between O(X) and $C_{\text{env}}^*(\mathcal{T}_+(X))$? Different cases have very different answers:

$$C_{\operatorname{env}}^*(\mathcal{T}_+(E)) = O(E),$$

but

$$C_{\mathrm{env}}^*(\mathcal{T}_+(\mathrm{SSP}_d)) = \mathcal{T}(\mathrm{SSP}_d) \qquad (d \in \mathbb{N}).$$

We do not know what $C_{\mathrm{env}}^*(\mathcal{T}_+(\mathrm{SSP}_\infty))$ is.

¹Pimsner used this to obtain a KK-theoretical six-term exact sequence.

Thank you for listening!