# Approximately spectrum-preserving maps

A. R. Villena joint work with J. Alaminos and J. Extremera

Departamento de Análisis Matemático Universidad de Granada

Banach Algebras 2011 Waterloo, Ontario, Canada August 3 – 10, 2011

#### Part I

# Introducing the problem

# Kaplansky's problem

Identify the multiplicative linear maps among all linear maps, between complex Banach algebras *A* and *B*, in terms of spectra.

#### I. Kaplansky (1970)

Let A and B be complex Banach algebras and let  $\Phi \colon A \to B$  be a linear map with the property that

$$sp(\Phi(a)) \subset sp(a) \ (a \in A).$$

4/36

#### I. Kaplansky (1970)

Let A and B be complex Banach algebras and let  $\Phi \colon A \to B$  be a linear map with the property that

$$sp(\Phi(a)) \subset sp(a) \ (a \in A).$$

Is it true that  $\Phi$  is a Jordan homomorphism, i.e.

$$\Phi(a^2) = \Phi(a)^2 \ (a \in A) ?$$

4/36

#### I. Kaplansky (1970)

Let A and B be complex Banach algebras and let  $\Phi \colon A \to B$  be a linear map with the property that

$$\operatorname{sp}(\Phi(a))\subset\operatorname{sp}(a)\ (a\in A).$$

Is it true that  $\Phi$  is a Jordan homomorphism, i.e.

$$\Phi(a^2) = \Phi(a)^2 \ (a \in A) ?$$

#### B. Aupetit (2000)

Let A and B be semisimple complex Banach algebras and let  $\Phi: A \to B$  be a surjective linear map with the property that

$$sp(\Phi(a)) = sp(a) \ (a \in A).$$

Is it true that  $\Phi$  is a Jordan homomorphism?



### Operator algebras

#### Theorem (A. A. Jafarian and A. R. Sourour (1986))

Let X and Y be complex Banach spaces and let  $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$  be a surjective linear map with the property that

$$sp(\Phi(T)) = sp(T) \ (T \in \mathcal{B}(X)).$$

Then  $\Phi$  has the form  $\Phi(T) = STS^{-1}$   $(T \in \mathcal{B}(X))$  for some isomorphism  $S \colon X \to Y$  or  $\Phi(T) = RT^*R^{-1}$   $(T \in \mathcal{B}(Y))$  for some isomorphism  $R \colon X^* \to Y$ .

## A new pattern of thinking

Let  $\Phi \colon A \to B$  be a linear map between complex Banach algebras A and B and suppose that

## A new pattern of thinking

Let  $\Phi\colon A\to B$  be a linear map between complex Banach algebras A and B and suppose that

 $sp(\Phi(a))$  is near sp(a) for each  $a \in A$ .

6/36

## A new pattern of thinking

Let  $\Phi \colon A \to B$  be a linear map between complex Banach algebras A and B and suppose that

 $sp(\Phi(a))$  is near sp(a) for each  $a \in A$ .

Is Φ near a (Jordan) multiplicative map?

# Replacing the preserving condition

For a linear map  $\Phi: A \to B$ .

We suggest to translate property

# Replacing the preserving condition

For a linear map  $\Phi: A \to B$ .

We suggest to translate property

#### Aupetit preserving condition

$$sp(\Phi(a)) = sp(a) \ (a \in A),$$

into the property

# Replacing the preserving condition

For a linear map  $\Phi: A \to B$ .

We suggest to translate property

#### Aupetit preserving condition

$$sp(\Phi(a)) = sp(a) \ (a \in A),$$

into the property

#### $\varepsilon$ -approximate preserving condition

$$\operatorname{dist}_{\mathsf{H}} \big( \operatorname{sp}(\Phi(a)), \operatorname{sp}(a) \big) < \varepsilon \ (a \in A, \ \|a\| = 1),$$

for a given  $\varepsilon > 0$ .

### The problem

$$\sup_{\|a\|=1} {\rm dist_H}\Big({\rm sp}(\Phi(a)), {\rm sp}(a)\Big) \quad {\rm small}$$
 
$$\Downarrow$$
 
$${\rm dist}\Big(\Phi, {\rm Hom}(A,B) \cup {\rm AntiHom}(A,B)\Big) \quad {\rm small} \ ?$$

#### Part II

# Motivating results for Kaplansky's problem

9/36

#### Theorem (G. Frobenius (1897))

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$\det(\Phi(M)) = \det(M) \quad (M \in \mathbb{M}_n)$$

if and only if  $\Phi=W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W\in\mathbb{M}_n$  with det W=1.

#### Theorem (J. Dieudonné (1949))

Let  $n \in \mathbb{N}$ . A bijective linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$M \in \mathbb{M}_n$$
,  $det(M) = 0 \Rightarrow det(\Phi(M)) = 0$ 

if and only if  $\Phi = W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W \in \mathbb{M}_n$ .

#### Theorem (M. Marcus and R. Purves (1959))

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$sp(\Phi(M)) = sp(M) \quad (M \in \mathbb{M}_n)$$

if and only if  $\Phi$  is either an automorphism or an anti-automorphism of the Banach algebra  $\mathbb{M}_n$ .

# Theorem (A. M. Gleason (1967), J. P. Kahane and W. Żelazko (1968))

Let A be a complex Banach algebra and let  $\varphi \colon A \to \mathbb{C}$  be a linear functional such that

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A).$$

Then  $\varphi$  is multiplicative.

# Theorem (A. M. Gleason (1967), J. P. Kahane and W. Żelazko (1968))

Let A be a complex Banach algebra and let  $\varphi \colon A \to \mathbb{C}$  be a linear functional such that

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A).$$

Then  $\varphi$  is multiplicative.

Kaplansky suggested to translate the property

#### Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A),$$

for a linear linear map  $\Phi \colon A \to B$ , into the property

# Theorem (A. M. Gleason (1967), J. P. Kahane and W. Żelazko (1968))

Let A be a complex Banach algebra and let  $\varphi \colon A \to \mathbb{C}$  be a linear functional such that

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A).$$

Then  $\varphi$  is multiplicative.

Kaplansky suggested to translate the property

#### Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A),$$

for a linear linear map  $\Phi: A \to B$ , into the property

#### Shrinking the spectrum

$$sp(\Phi(a)) \subset sp(a) \quad (a \in A).$$

#### Part III

# Motivating results for the approximate Kaplansky's problem

B. E. Johnson (1986) replaced

#### Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A),$$

with

B. E. Johnson (1986) replaced

#### Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A),$$

with

#### $\varepsilon$ -approximate condition

$$dist(\varphi(a), sp(a)) < \varepsilon \quad (a \in A, ||a|| = 1)$$

B. E. Johnson (1986) replaced

#### Gleason-Kahane-Żelazko condition

$$\varphi(a) \in \operatorname{sp}(a) \quad (a \in A),$$

with

#### $\varepsilon$ -approximate condition

$$dist(\varphi(a), sp(a)) < \varepsilon \quad (a \in A, ||a|| = 1)$$

#### Theorem (B. E. Johnson (1986))

Let A be a commutative Banach algebra. Then for each  $\varepsilon>0$  there is  $\delta>0$  such that if  $\varphi\colon A\to\mathbb{C}$  is a linear functional with

$$\operatorname{dist}(\varphi(a),\operatorname{sp}(a))<\delta\quad (a\in A,\ \|a\|=1),$$

then

$$\sup\{|\varphi(ab)-\varphi(a)\varphi(b)|:\ a,b\in A,\ \|a\|=\|b\|=1\}<\varepsilon.$$

# AMNM algebras

A Banach algebra A is **AMNM** if for each linear functional  $\varphi \colon A \to \mathbb{C}$ 

 $\mathsf{dist}(\varphi,\mathsf{Hom}(A,\mathbb{C}))$ 

$$\sup\{|\varphi(ab)-\varphi(a)\varphi(b)|\colon\ a,b\in A,\ \|a\|=\|b\|=1\}\quad \text{small}$$

small.

# AMNM algebras

A Banach algebra A is **AMNM** if for each linear functional  $\varphi \colon A \to \mathbb{C}$ 

$$\sup\{|\varphi(ab)-\varphi(a)\varphi(b)|\colon\ a,b\in A,\ \|a\|=\|b\|=1\}\quad \text{small}$$
 
$$\downarrow \downarrow$$
 
$$\operatorname{dist}(\varphi,\operatorname{Hom}(A,\mathbb{C}))\quad \text{small}.$$

#### Examples

- **1** B. E. Johnson (1986):  $C_0(\Omega)$ ,  $L^1(G)$   $\ell^1(\mathbb{Z}^+)$ ,  $L^1(]0, +\infty[)$ ,  $A(\mathbb{D})$ .
- 2 R. A. J. Howey (2003):  $C^n([0,1])$ .

#### This leads to translate

#### Johnson $\varepsilon$ -approximate condition

$$\operatorname{dist}(\varphi(a),\operatorname{sp}(a))$$

for a linear map  $\Phi: A \to B$ , into

#### This leads to translate

#### Johnson $\varepsilon$ -approximate condition

$$\operatorname{dist}(\varphi(a),\operatorname{sp}(a))$$

for a linear map  $\Phi: A \to B$ , into

#### $\varepsilon$ -approximate preserving condition

$$\operatorname{dist}_{\mathsf{H}}(\Phi(a),\operatorname{sp}(a))$$

#### What about approximate versions of the theorems by

- G. Frobenius,
- J. Dieudonné,
- M. Marcus and R. Purves ?

#### Theorem (G. Frobenius)

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$\det(\Phi(M)) = \det(M) \ (M \in \mathbb{M}_n)$$

if and only if  $\Phi = W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W \in \mathbb{M}_n$  with det W = 1.

#### Theorem (G. Frobenius)

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$\det\bigl(\Phi(\textbf{\textit{M}})\bigr)=\det(\textbf{\textit{M}})\ (\textbf{\textit{M}}\in\mathbb{M}_n)$$

if and only if  $\Phi = W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W \in \mathbb{M}_n$  with det W = 1.

#### Theorem

Let  $n \in \mathbb{N}$ . Then for each  $\varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  is a linear map with

$$\sup_{\|M\|=1} \Bigl| \det\bigl(\Phi(\textit{M})\bigr) - \det(\textit{M}) \Bigr| < \delta,$$

then

$$\mathsf{dist}\Big(\Phi,\mathsf{SL}_n\mathsf{Aut}(\mathbb{M}_n)\cup\mathsf{SL}_n\mathsf{AntiAut}(\mathbb{M}_n)\Big)<\varepsilon.$$

#### Theorem (G. Frobenius)

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$\det(\Phi(M)) = \det(M) \ (M \in \mathbb{M}_n)$$

if and only if  $\Phi = W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W \in \mathbb{M}_n$  with det W = 1.

#### Theorem

Let  $n \in \mathbb{N}$ . Then for each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  is a linear map with

$$\sup_{\|M\|=1} \Bigl| \det\bigl(\Phi(\textit{M})\bigr) - \det(\textit{M}) \Bigr| < \delta,$$

and  $\|\Phi\| < K$ , then

$$\mathsf{dist}\Big(\Phi,\mathsf{SL}_n\mathsf{Aut}(\mathbb{M}_n)\cup\mathsf{SL}_n\mathsf{AntiAut}(\mathbb{M}_n)\Big)<\varepsilon.$$

#### Theorem (J. Dieudonné)

Let  $n \in \mathbb{N}$ . A bijective linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$M \in \mathbb{M}_n$$
,  $det(M) = 0 \Rightarrow det(\Phi(M)) = 0$ 

if and only if  $\Phi = W\Psi$  for some automorphism or anti-automorphism  $\Psi$  of the Banach algebra  $\mathbb{M}_n$  and some invertible matrix  $W \in \mathbb{M}_n$ .

#### Theorem

Let  $n \in \mathbb{N}$ . Then for each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  is a bijective linear map with

$$\sup_{\det(\textit{M})=0, ||\textit{M}||=1} \left| \det \big(\Phi(\textit{M})\big) \right| < \delta,$$

and  $\|\Phi\| < K$ , then

$$\mathsf{dist} \Big( \Phi, \mathsf{GL}_n \mathsf{Aut}(\mathbb{M}_n) \cup \mathsf{GL}_n \mathsf{AntiAut}(\mathbb{M}_n) \Big) < \varepsilon.$$

### Theorem (M. Marcus and R. Purves)

Let  $n \in \mathbb{N}$ . A linear map  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  satisfies the property

$$\operatorname{sp}(\Phi(M)) = \operatorname{sp}(M) \ (M \in \mathbb{M}_n)$$

if and only if  $\Phi$  is either an automorphism or an anti-automorphism of the Banach algebra  $\mathbb{M}_n$ .

### Theorem

Let  $n \in \mathbb{N}$ . Then for each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathbb{M}_n \to \mathbb{M}_n$  is a linear map with

$$\sup_{\|M\|=1} {\sf dist}_{\sf H} \Big( {\sf sp}\big(\Phi(\textit{M})\big), {\sf sp}(\textit{M}) \Big) < \delta,$$

and  $\|\Phi\| < K$ , then

$$\mathsf{dist} \Big( \Phi, \mathsf{Aut}(\mathbb{M}_n) \cup \mathsf{AntiAut}(\mathbb{M}_n) \Big) < \varepsilon.$$



Given  $K, \varepsilon > 0$  put

$$\mathcal{C} = \Big\{ \Phi \in \mathcal{B}(\mathbb{M}_n) \colon \ \|\Phi\| \leq \mathcal{K}, \ \mathsf{dist} \big( \Phi, \mathsf{Aut}(\mathbb{M}_n) \cup \mathsf{AntiAut}(\mathbb{M}_n) \big) \geq \varepsilon \Big\}$$

compact

Given  $K, \varepsilon > 0$  put

$$C = \Big\{ \Phi \in \mathcal{B}(\mathbb{M}_n) \colon \ \|\Phi\| \leq K, \ \mathsf{dist}\big(\Phi, \mathsf{Aut}(\mathbb{M}_n) \cup \mathsf{AntiAut}(\mathbb{M}_n)\big) \geq \varepsilon \Big\}$$

### compact

and for  $\delta > 0$ ,

$$G_{\delta} = igcup_{\|M\|=1} \Bigl\{ \Phi \in \mathcal{B}(\mathbb{M}_n) \colon \; \mathsf{dist}_\mathsf{H} igl(\mathsf{sp}(\Phi(M)), \mathsf{sp}(M)igr) > \delta \Bigr\}$$

open

Given  $K, \varepsilon > 0$  put

$$C = \Big\{ \Phi \in \mathcal{B}(\mathbb{M}_n) \colon \ \|\Phi\| \leq K, \ \mathsf{dist}\big(\Phi, \mathsf{Aut}(\mathbb{M}_n) \cup \mathsf{AntiAut}(\mathbb{M}_n)\big) \geq \varepsilon \Big\}$$

### compact

and for  $\delta > 0$ ,

$$G_{\delta} = \bigcup_{\|M\|=1} \Big\{ \Phi \in \mathcal{B}(\mathbb{M}_n) \colon \; \mathsf{dist}_\mathsf{H} ig( \Phi(M)), \mathsf{sp}(M) ig) > \delta \Big\}$$

#### open

$$C \subset \bigcup_{\delta>0} G_{\delta} \implies C \subset G_{\delta}$$
 for some  $\delta>0$  and this proves the theorem.

# The objective

Approximate version of Jafarian-Sourour Theorem

### Part IV

Approximately spectrum-preserving maps on operator algebras

Let X and Y be superreflexive Banach spaces. Then for each  $\varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$  is a surjective linear map with

$$\sup_{\|T\|=1} {\sf dist}_{\sf H} \Big( {\sf sp}\big(\Phi(T)\big), {\sf sp}(T) \Big) < \delta,$$

then

$$\underbrace{\sup\left\{\|\Phi(ST)-\Phi(S)\Phi(T)\|\colon\;S,T\in\mathcal{B}(X),\;\|S\|=\|T\|=1\right\}}_{\text{mult}(\Phi)}<\varepsilon$$

or

$$\underbrace{\sup\left\{\|\Phi(ST)-\Phi(T)\Phi(S)\|\colon\; S,T\in\mathcal{B}(X),\;\|S\|=\|T\|=1\right\}}_{\mathsf{amult}(\Phi)}<\varepsilon,$$

Let X and Y be superreflexive Banach spaces. Then for each  $k, K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$  is a surjective linear map with

$$\sup_{\|T\|=1} {\sf dist}_{\sf H} \Big( {\sf sp}\big(\Phi(T)\big), {\sf sp}(T) \Big) < \delta,$$

$$\kappa(\Phi) > k$$
, and  $\|\Phi\| < K$ , then

$$\underbrace{\sup\left\{\|\Phi(ST)-\Phi(S)\Phi(T)\|\colon\;S,T\in\mathcal{B}(X),\;\|S\|=\|T\|=1\right\}}_{\text{mult}(\Phi)}<\varepsilon$$

or

$$\underbrace{\sup\left\{\|\Phi(ST)-\Phi(T)\Phi(S)\|\colon\;S,\,T\in\mathcal{B}(X),\;\|S\|=\|T\|=1\right\}}_{\mathsf{amult}(\Phi)}<\varepsilon,$$

where  $\kappa(\Phi)$  is the surjectivity modulus of  $\Phi$ , which is defined by

$$\kappa(\Phi) = \sup \left\{ \varrho \ge 0 \colon \varrho \mathbb{B}_{\mathcal{B}(Y)} \subset \Phi(\mathbb{B}_{\mathcal{B}(X)}) \right\}.$$

### Question

$$min\{mult(\Phi), amult(\Phi)\}$$
 small  $\psi$ 

 $\mathsf{dist} \Big( \Phi, \mathsf{Hom} \big( \mathcal{B}(X), \mathcal{B}(Y) \big) \cup \mathsf{AntiHom} \big( \mathcal{B}(X), \mathcal{B}(Y) \big) \Big) \quad \mathsf{small} \ ?$ 

Let H be a separable Hilbert space. Then for each  $k, K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(H) \to \mathcal{B}(H)$  is a surjective linear map with

$$\sup_{\|T\|=1} {\sf dist}_{\sf H} \Big( {\sf sp}\big(\Phi(T)\big), {\sf sp}(T) \Big) < \delta,$$

$$\kappa(\Phi) > k$$
, and  $\|\Phi\| < K$ , then

$$\operatorname{dist}\!\left(\Phi,\operatorname{Aut}\!\left(\mathcal{B}(H)\right)\cup\operatorname{AntiAut}\!\left(\mathcal{B}(H)\right)\right)<\varepsilon.$$

## Part V

# Outline of the proofs

### First theorem

Assume towards a contradiction that the first theorem is false.

### First theorem

Assume towards a contradiction that the first theorem is false.

Then there exist  $\Phi_n \colon \mathcal{B}(X) \to \mathcal{B}(Y) \ (n \in \mathbb{N})$  such that

- $\sup_{\|T\|=1} \operatorname{dist}_{\mathsf{H}} \Big( \operatorname{sp} \big( \Phi_n(T) \big), \operatorname{sp}(T) \Big) \to 0,$
- $\inf_{n\in\mathbb{N}} \big\{ \mathrm{mult}(\Phi_n), \mathrm{amult}(\Phi_n) \big\} > 0.$

Let  $\mathcal{U}$  be a free ultrafilter on  $\mathbb{N}$ .

30 / 36

#### Let $\mathcal{U}$ be a free ultrafilter on $\mathbb{N}$ .

### Let us consider the map

$$\Phi = (\Phi_n)^{\mathcal{U}} \colon \underbrace{\mathcal{B}(X)^{\mathcal{U}}}_{\subset \mathcal{B}(X^{\mathcal{U}})} \longrightarrow \underbrace{\mathcal{B}(Y)^{\mathcal{U}}}_{\subset \mathcal{B}(Y^{\mathcal{U}})}, \quad \Phi(\mathbf{T}) = (\Phi_n(T_n))^{\mathcal{U}}.$$

#### Let $\mathcal{U}$ be a free ultrafilter on $\mathbb{N}$ .

### Let us consider the map

$$\Phi = (\Phi_n)^{\mathcal{U}} \colon \underbrace{\mathcal{B}(X)^{\mathcal{U}}}_{\subset \mathcal{B}(X^{\mathcal{U}})} \longrightarrow \underbrace{\mathcal{B}(Y)^{\mathcal{U}}}_{\subset \mathcal{B}(Y^{\mathcal{U}})}, \quad \Phi(\mathbf{T}) = (\Phi_n(T_n))^{\mathcal{U}}.$$

- Φ is surjective.
- **3** Both  $\mathcal{B}(X)^{\mathcal{U}}$  and  $\mathcal{B}(Y)^{\mathcal{U}}$  contain the finite-rank operators on  $X^{\mathcal{U}}$  and  $Y^{\mathcal{U}}$ , respectively.

 $\Phi$  is either a homomorphism or an anti-homomorphism.

### Φ is either a homomorphism or an anti-homomorphism.

$$0<\underset{\mathcal{U}}{lim}\,min\big\{mult(\Phi_n),amult(\Phi_n)\big\}=$$

$$\text{min}\left\{ \underset{\mathcal{U}}{\text{lim}}\, \text{mult}(\Phi_n), \underset{\mathcal{U}}{\text{lim}}\, \text{amult}(\Phi_n) \right\} = \text{min}\big\{ \text{mult}(\Phi), \text{amult}(\Phi) \big\} = 0.$$

#### a contradiction!

### Second theorem

### The **AMNM** problem

$$\Phi \in \mathcal{B}(A,B), \ \min\{ \mathrm{mult}(\Phi), \mathrm{amult}(\Phi) \} \ \ \mathrm{small}$$
 
$$\downarrow \downarrow$$
 
$$\mathrm{dist}\Big( \Phi, \mathrm{Hom}(A,B) \cup \mathrm{AntiHom}(A,B) \Big) \ \ \mathrm{small}?.$$

### Second theorem

### The **AMNM** problem

$$\Phi \in \mathcal{B}(A,B), \ \min\{ \mathrm{mult}(\Phi), \mathrm{amult}(\Phi) \} \ \ \mathrm{small}$$
 
$$\Downarrow$$
 
$$\mathrm{dist}\Big( \Phi, \mathrm{Hom}(A,B) \cup \mathrm{AntiHom}(A,B) \Big) \ \ \mathrm{small}?.$$

### Examples (B. E. Johnson, 1988)

- The Banach algebras A and B are finite-dimensional.
- The Banach algebra A is finite-dimensional and semisimple.
- The Banach algebra *A* is amenable and *B* is a two-sided ideal of a dual Banach algebra *C*. This applies to the pairs:
  - $(L^1(G_1), M(G_2))$  and  $(L^1(G_1), L^1(G_2))$  for each amenable group  $G_1$  and each locally compact group  $G_2$ ,
  - $(\mathcal{K}(H_1), \mathcal{B}(H_2))$  and  $(\mathcal{K}(H_1), \mathcal{K}(H_2))$  for all Hilbert spaces  $H_1$  and  $H_2$ .
- $(\mathcal{B}(H), \mathcal{B}(H))$  for each separable Hilbert space H.

### Part VI

# A converse result

# Replacing the spectra: the pseudospectra

### $\varepsilon$ –pseudospectrum of $T \in \mathcal{B}(X)$

$$\operatorname{sp}_{\varepsilon}(T) = \left\{ z \in \mathbb{C} \colon \left\| (T - z\mathbf{1})^{-1} \right\| > \varepsilon^{-1} \right\} \quad (\varepsilon > 0)$$

Let X and Y be superreflexive Banach spaces. Then the following assertions hold.

• For each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$  is a bijective linear map with

$$\min\{\operatorname{mult}(\Phi),\operatorname{amult}(\Phi)\}<\delta$$

and  $\|\Phi\|, \|\Phi^{-1}\| < K$ , then

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(X), \|T\| = 1).$$

**②** For each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(X) \to \mathcal{B}(Y)$  is a bijective linear map with

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\delta}(T) \ (T \in \mathcal{B}(X), ||T|| = 1)$$

and 
$$\|\Phi\|, \|\Phi^{-1}\| < K$$
, then

 $\min\{ \operatorname{mult}(\Phi), \operatorname{amult}(\Phi) \} < \varepsilon.$ 



Let H be a separable Hilbert space. Then the following assertions hold.

• For each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(H) \to \mathcal{B}(H)$  is a continuous linear map with  $\|\Phi\| < K$  and

$$\mathsf{dist}\Big(\Phi,\mathsf{Aut}\big(\mathcal{B}(\textit{\textbf{H}})\big)\cup\mathsf{AntiAut}\big(\mathcal{B}(\textit{\textbf{H}})\big)\Big)<\delta,$$

then

$$\operatorname{sp}(\Phi(T)) \subset \operatorname{sp}_{\varepsilon}(T) \ (T \in \mathcal{B}(H), ||T|| = 1).$$

② For each  $K, \varepsilon > 0$  there is  $\delta > 0$  such that if  $\Phi \colon \mathcal{B}(H) \to \mathcal{B}(H)$  is a bijective linear map with

$$\operatorname{\mathsf{sp}} \big( \Phi(T) \big) \subset \operatorname{\mathsf{sp}}_\delta(T) \ (T \in \mathcal{B}(H), \|T\| = 1)$$

and  $\|\Phi\|, \|\Phi^{-1}\| < K$ , then

$$\mathsf{dist} ig( \Phi, \mathsf{Aut} ig( \mathcal{B}(\mathcal{H}) ig) \cup \mathsf{AntiAut} ig( \mathcal{B}(\mathcal{H}) ig) ig) < \varepsilon.$$

