Truncated Toeplitz Operators - what do they look like?

Elizabeth Strouse

Banach Algebras 2011, University of Waterloo, Canada

Realizations of the shift	
The famous shift operator is usually thought of either as:	
The lambae erms operator to accamy thought of cities acr	

The famous shift operator is usually thought of either as:

The operator

$$S(x_0, x_1, x_2, \cdots) = (0, x_0, x_1, \cdots)$$

on the space $\ell^2(\mathbb{N})$ of square summable sequences of complex numbers, with orthonormal basis $e_n = (0, 0, \dots, 0, 1, 0, \dots)$

The famous shift operator is usually thought of either as:

The operator

$$S(x_0, x_1, x_2, \cdots) = (0, x_0, x_1, \cdots)$$

on the space $\ell^2(\mathbb{N})$ of square summable sequences of complex numbers, with orthonormal basis $e_n = (0, 0, \dots, 0, 1, 0, \dots)$

or as:

The famous shift operator is usually thought of either as:

The operator

$$S(x_0, x_1, x_2, \cdots) = (0, x_0, x_1, \cdots)$$

on the space $\ell^2(\mathbb{N})$ of square summable sequences of complex numbers, with orthonormal basis $e_n = (0, 0, \dots, 0, 1, 0, \dots)$

or as:

•

$$Sf(z) = zf(z)$$

on the Hardy space H^2 of all functions in L^2 of the unit circle with negative Fourier coefficients equal to zero with orthonormal basis $e_n = z^n$.

The famous shift operator is usually thought of either as:

The operator

$$S(x_0, x_1, x_2, \cdots) = (0, x_0, x_1, \cdots)$$

on the space $\ell^2(\mathbb{N})$ of square summable sequences of complex numbers, with orthonormal basis $e_n = (0, 0, \dots, 0, 1, 0, \dots)$

or as:

•

$$Sf(z) = zf(z)$$

on the Hardy space H^2 of all functions in L^2 of the unit circle with negative Fourier coefficients equal to zero with orthonormal basis $e_n = z^n$.

• It is not too difficult, (and classical) to see that any isometry T on a Hilbert space \mathcal{H} such that $\bigcap_{n\geq 0} T^n(\mathcal{H}) = \{0\}$ (i.e. pure isometry) is unitarily equivalent to a shift on $\ell^2(\mathbb{N}, (T\mathcal{H})^\perp)$ (one sees that $W(k_0, k_1, \cdots) = \sum_{n=0}^{\infty} T^n k_n$ is a unitary operator implementing this equivalence).

The famous shift operator is usually thought of either as:

The operator

$$S(x_0, x_1, x_2, \cdots) = (0, x_0, x_1, \cdots)$$

on the space $\ell^2(\mathbb{N})$ of square summable sequences of complex numbers, with orthonormal basis $e_n = (0, 0, \dots, 0, 1, 0, \dots)$

or as:

•

$$Sf(z) = zf(z)$$

on the Hardy space H^2 of all functions in L^2 of the unit circle with negative Fourier coefficients equal to zero with orthonormal basis $e_n = z^n$.

- It is not too difficult, (and classical) to see that any isometry T on a Hilbert space \mathcal{H} such that $\bigcap_{n\geq 0} T^n(\mathcal{H}) = \{0\}$ (i.e. pure isometry) is unitarily equivalent to a shift on $\ell^2(\mathbb{N}, (T\mathcal{H})^\perp)$ (one sees that $W(k_0, k_1, \cdots) = \sum_{n=0}^{\infty} T^n k_n$ is a unitary operator implementing this equivalence).
- And, in fact, every isometry is (uniquely) the direct sum of a pure isometry and a unitary operator(see Fillmore AMM1974).

Next, we look for models for more general operators.

- Next, we look for models for more general operators.
- Notice that the matrix of the shift (on H^2 or on $\ell^2(\mathbb{N})$ with the ON bases given above) is a matrix with zeros everywhere except on the central 1 diagonal.

- Next, we look for models for more general operators.
- Notice that the matrix of the shift (on H^2 or on $\ell^2(\mathbb{N})$ with the ON bases given above) is a matrix with zeros everywhere except on the central 1 diagonal.
- A Toeplitz operator is an operator on $\ell^2(\mathbb{N})$ whose matrix in the canonical basis is of the form:

$$\begin{pmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots \\ a_1 & a_0 & a_{-1} & \cdots & \cdots \\ a_2 & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots \end{pmatrix}. \tag{1}$$

- Next, we look for models for more general operators.
- Notice that the matrix of the shift (on H^2 or on $\ell^2(\mathbb{N})$ with the ON bases given above) is a matrix with zeros everywhere except on the central 1 diagonal.
- A Toeplitz operator is an operator on $\ell^2(\mathbb{N})$ whose matrix in the canonical basis is of the form:

$$\begin{pmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots \\ a_1 & a_0 & a_{-1} & \cdots & \cdots \\ a_2 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix}. \tag{1}$$

• Or, interpreting $\ell^2(\mathbb{N})$ as H^2 we define a Toeplitz operator as an operator $T_f: H^2 \to H^2$ with $T_f(g) = P^{H^2}(fg)$ where P^{H^2} is orthogonal projection from $L^2(\mathbb{T}) \to H^2$.

- Next, we look for models for more general operators.
- Notice that the matrix of the shift (on H^2 or on $\ell^2(\mathbb{N})$ with the ON bases given above) is a matrix with zeros everywhere except on the central 1 diagonal.
- A Toeplitz operator is an operator on $\ell^2(\mathbb{N})$ whose matrix in the canonical basis is of the form:

$$\begin{pmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots \\ a_1 & a_0 & a_{-1} & \cdots & \cdots \\ a_2 & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots \end{pmatrix}. \tag{1}$$

- Or, interpreting $\ell^2(\mathbb{N})$ as H^2 we define a Toeplitz operator as an operator $T_f: H^2 \to H^2$ with $T_f(g) = P^{H^2}(fg)$ where P^{H^2} is orthogonal projection from $L^2(\mathbb{T}) \to H^2$.
- And one sees fairly easily that the matrix of T_f is actually

- Next, we look for models for more general operators.
- Notice that the matrix of the shift (on H^2 or on $\ell^2(\mathbb{N})$ with the ON bases given above) is a matrix with zeros everywhere except on the central 1 diagonal.
- A Toeplitz operator is an operator on $\ell^2(\mathbb{N})$ whose matrix in the canonical basis is of the form:

$$\begin{pmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots \\ a_1 & a_0 & a_{-1} & \cdots & \cdots \\ a_2 & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots \end{pmatrix}. \tag{1}$$

- Or, interpreting $\ell^2(\mathbb{N})$ as H^2 we define a Toeplitz operator as an operator $T_f: H^2 \to H^2$ with $T_f(g) = P^{H^2}(fg)$ where P^{H^2} is orthogonal projection from $L^2(\mathbb{T}) \to H^2$.
- And one sees fairly easily that the matrix of T_f is actually

$$\begin{pmatrix}
\hat{f}(0) & \hat{f}(-1) & \hat{f}(-2) & \cdots & \cdots \\
\hat{f}(1) & \hat{f}(0) & \hat{f}(-1) & \cdots & \cdots \\
\hat{f}(2) & \cdots & \cdots & \cdots
\end{pmatrix}.$$
(2)

• A function ϕ in H^2 is called an *inner function* if $|\phi(z)| = 1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)|=1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)|=1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero
- (ii) $\xi \Pi_{\alpha \in I} B_{\alpha}$ where $|\xi| = 1$, $\alpha \in \mathbb{D}$, product converges, $B_{\alpha} = \frac{z \alpha}{1 \overline{\alpha}z}$ (corresponding to zeros at α .)

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)| = 1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero
- (ii) $\xi \Pi_{\alpha \in I} B_{\alpha}$ where $|\xi| = 1$, $\alpha \in \mathbb{D}$, product converges, $B_{\alpha} = \frac{z \alpha}{1 \overline{\alpha}z}$ (corresponding to zeros at α .)
- (iii)The singular inner functions $exp(-\int \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu(e^{i\theta})$ where μ is a positive singular measure on the circle(corresponding to zeros at support(μ)).

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)| = 1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero
- (ii) $\xi \Pi_{\alpha \in I} B_{\alpha}$ where $|\xi| = 1$, $\alpha \in \mathbb{D}$, product converges, $B_{\alpha} = \frac{z \alpha}{1 \overline{\alpha}z}$ (corresponding to zeros at α .)
- (iii)The singular inner functions $exp(-\int \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu(e^{i\theta})$ where μ is a positive singular measure on the circle(corresponding to zeros at support(μ)).

Truncated Toeplitz operators

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)| = 1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero
- (ii) $\xi \Pi_{\alpha \in I} B_{\alpha}$ where $|\xi| = 1$, $\alpha \in \mathbb{D}$, product converges, $B_{\alpha} = \frac{z \alpha}{1 \overline{\alpha}z}$ (corresponding to zeros at α .)
- (iii)The singular inner functions $exp(-\int \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu(e^{i\theta})$ where μ is a positive singular measure on the circle(corresponding to zeros at support(μ)).

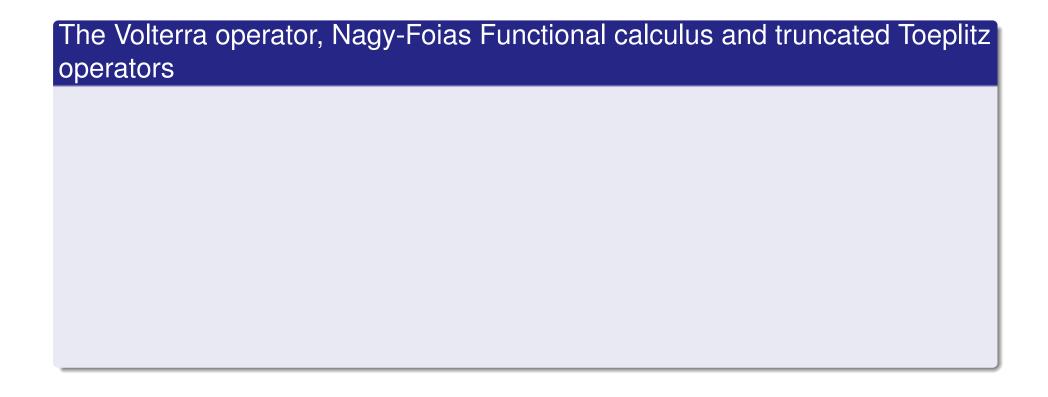
Truncated Toeplitz operators

• A subspace of K_{θ} of H^2 is called a *model space* if it is of the form $H^2 \ominus \theta H^2$. (the invariant subspaces for S^*)

- A function ϕ in H^2 is called an *inner function* if $|\phi(z)| = 1$ almost everywhere on the circle.(Invariant subspaces for S are θH^2 's). Examples:
- (i) z^n for $n \in \mathbb{N}$, corresponding to zeros at zero
- (ii) $\xi \Pi_{\alpha \in I} B_{\alpha}$ where $|\xi| = 1$, $\alpha \in \mathbb{D}$, product converges, $B_{\alpha} = \frac{z \alpha}{1 \overline{\alpha}z}$ (corresponding to zeros at α .)
- (iii)The singular inner functions $exp(-\int \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu(e^{i\theta})$ where μ is a positive singular measure on the circle(corresponding to zeros at support(μ)).

Truncated Toeplitz operators

- A subspace of K_{θ} of H^2 is called a *model space* if it is of the form $H^2 \ominus \theta H^2$. (the invariant subspaces for S^*)
- A truncated Toeplitz operator is an operator on K_{θ} defined by $A_{t}^{\theta}(g) = P^{K_{\theta}}(fg)$.



The Volterra operator, Nagy-Foias Functional calculus and truncated Toeplitz operators

• In 1965 Sarason showed that if the VOLTERRA operator $V: L^2[0,1] \to L^2[0,1]$ is defined by $Vf(x) = \int_0^x f(t)dt$ then $(V+1)^{-1}$ is unitarily equivalent to $\frac{1}{2}A_z^\theta + 1$ on K_θ where $\theta = e^{\frac{Z+1}{Z-1}}$ This can be used to show the unicellularity of the Volterra operator, or to prove the Titchmarsh convolution theorem.

The Volterra operator, Nagy-Foias Functional calculus and truncated Toeplitz operators

- In 1965 Sarason showed that if the VOLTERRA operator $V: L^2[0,1] \to L^2[0,1]$ is defined by $Vf(x) = \int_0^x f(t)dt$ then $(V+1)^{-1}$ is unitarily equivalent to $\frac{1}{2}A_Z^\theta + 1$ on K_θ where $\theta = e^{\frac{Z+1}{Z-1}}$ This can be used to show the unicellularity of the Volterra operator, or to prove the Titchmarsh convolution theorem.
- Around the same time Nagy and Foias used the operator A_z^{θ} in their functional calculus. In fact, contractions with defect number one and their commutants are unitarily equivalent to truncated Toeplitz operators.

•
$$K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$$

- $K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$
- $K_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_n}} = span\{k_{\lambda_1}, k_{\lambda_2}\cdots k_{\lambda_n}\}$ where the k_{λ_i} are the reproducing kernels for the points λ_i , i.e. $< f, k_{\lambda_i} >= f(\lambda_i), k_{\lambda_i} = (1, \lambda_i, \lambda_i^2, \cdots)$

- $K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$
- $K_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_n}} = span\{k_{\lambda_1}, k_{\lambda_2}\cdots k_{\lambda_n}\}$ where the k_{λ_i} are the reproducing kernels for the points λ_i , i.e. $< f, k_{\lambda_i} >= f(\lambda_i), k_{\lambda_i} = (1, \lambda_i, \lambda_i^2, \cdots)$
- $K_{B_{\lambda}^n} = span\{k_{\lambda}, k_{\lambda}^1, \dots k_{\lambda}^n\}$ where k_{λ}^i is the reproducing kernel for the ith derivative in λ_i i.e. $< f, k_{\lambda_i}^j >= f^{(j)}(\lambda_i), k_{\lambda_i} = (0, \dots 0, n!, (n-1)!\lambda_i, \dots)$

The finite dimensional model spaces are those associated with z^n or any finite Blaschke product.

- $K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$
- $K_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_n}} = span\{k_{\lambda_1}, k_{\lambda_2}\cdots k_{\lambda_n}\}$ where the k_{λ_i} are the reproducing kernels for the points λ_i , i.e. $< f, k_{\lambda_i} >= f(\lambda_i), k_{\lambda_i} = (1, \lambda_i, \lambda_i^2, \cdots)$
- $K_{B_{\lambda}^n} = span\{k_{\lambda}, k_{\lambda}^1, \dots k_{\lambda}^n\}$ where k_{λ}^i is the reproducing kernel for the ith derivative in λ_i i.e. $< f, k_{\lambda_i}^j >= f^{(j)}(\lambda_i), k_{\lambda_i} = (0, \dots 0, n!, (n-1)!\lambda_i, \dots)$

Form of the Truncated Toeplitz operators

By running thru the definitions one quickly sees that truncated Toeplitz operators on K_{z^n} are nothing other than traditional Toeplitz matrices.

The finite dimensional model spaces are those associated with z^n or any finite Blaschke product.

- $K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$
- $K_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_n}} = span\{k_{\lambda_1}, k_{\lambda_2}\cdots k_{\lambda_n}\}$ where the k_{λ_i} are the reproducing kernels for the points λ_i , i.e. $< f, k_{\lambda_i} >= f(\lambda_i), k_{\lambda_i} = (1, \lambda_i, \lambda_i^2, \cdots)$
- $K_{B_{\lambda}^n} = span\{k_{\lambda}, k_{\lambda}^1, \dots k_{\lambda}^n\}$ where k_{λ}^i is the reproducing kernel for the ith derivative in λ_i i.e. $< f, k_{\lambda_i}^j >= f^{(j)}(\lambda_i), k_{\lambda_i} = (0, \dots 0, n!, (n-1)!\lambda_i, \dots)$

Form of the Truncated Toeplitz operators

By running thru the definitions one quickly sees that truncated Toeplitz operators on K_{z^n} are nothing other than traditional Toeplitz matrices. And, of course, on $K_{B_n^n}$ they are essentially the same.

The finite dimensional model spaces are those associated with z^n or any finite Blaschke product.

- $K_{z^n} = span\{1, z, z^2, \cdots z^{n-1}\}.$
- $K_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_n}} = span\{k_{\lambda_1}, k_{\lambda_2}\cdots k_{\lambda_n}\}$ where the k_{λ_i} are the reproducing kernels for the points λ_i , i.e. $< f, k_{\lambda_i} >= f(\lambda_i), k_{\lambda_i} = (1, \lambda_i, \lambda_i^2, \cdots)$
- $K_{B_{\lambda}^n} = span\{k_{\lambda}, k_{\lambda}^1, \dots k_{\lambda}^n\}$ where k_{λ}^i is the reproducing kernel for the ith derivative in λ_i i.e. $< f, k_{\lambda_i}^j >= f^{(j)}(\lambda_i), k_{\lambda_i} = (0, \dots 0, n!, (n-1)!\lambda_i, \dots)$

Form of the Truncated Toeplitz operators

By running thru the definitions one quickly sees that truncated Toeplitz operators on K_{z^n} are nothing other than traditional Toeplitz matrices. And, of course, on $K_{B_n^n}$ they are essentially the same.

But, putting in more points makes a difference!

Similarity and Unitary equivalence

Toeplitz Matrices spectrum, similarity class

Similarity and Unitary equivalence

Toeplitz Matrices spectrum, similarity class

• It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.

Toeplitz Matrices spectrum, similarity class

- It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.
- But G. Heinig showed in 2001 (LAA) that NOT every matrix is similar to a Toeplitz.

Toeplitz Matrices spectrum, similarity class

- It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.
- But G. Heinig showed in 2001 (LAA) that NOT every matrix is similar to a Toeplitz. (In fact, if $d_k = dim(ker(T \lambda I)^{k+1} dim(ker(T \lambda I)^k) = number$ of Jordan blocks of size > k Toeplitz give all d_0 's but not even d_1 's.)

Toeplitz Matrices spectrum, similarity class

- It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.
- But G. Heinig showed in 2001 (LAA) that NOT every matrix is similar to a Toeplitz. (In fact, if $d_k = dim(ker(T \lambda I)^{k+1} dim(ker(T \lambda I)^k) = number$ of Jordan blocks of size > k Toeplitz give all d_0 's but not even d_1 's.)

Truncated Toeplitz case

 CGRW showed in 2010 that EVERY matrix is similar to a (coanalytic) truncated Toeplitz operator!

Toeplitz Matrices spectrum, similarity class

- It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.
- But G. Heinig showed in 2001 (LAA) that NOT every matrix is similar to a Toeplitz. (In fact, if $d_k = dim(ker(T \lambda I)^{k+1} dim(ker(T \lambda I)^k) = number$ of Jordan blocks of size > k Toeplitz give all d_0 's but not even d_1 's.)

Truncated Toeplitz case

• CGRW showed in 2010 that EVERY matrix is similar to a (coanalytic) truncated Toeplitz operator! For general Jordan blocks, they use that $S_{d_1} \oplus S_{d_2} \cdots S_{d_{\lambda_r}}$ (direct sum of shifts) is similar to $A_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_r}}$ on $K_{B_{\lambda_1}^{d_1}B_{\lambda_2}^{d_2}\cdots B_{\lambda_r}}^{d_r}$

Toeplitz Matrices spectrum, similarity class

- It is classical that Toeplitz matrices solve the *inverse eigenvalue problem*, i.e. that to any finite set $\Lambda = \{\lambda_1, \lambda_2, \dots \lambda_n\}$ of complex numbers, there exists a Toeplitz matrix T such that $\sigma(T) = \Lambda$.
- But G. Heinig showed in 2001 (LAA) that NOT every matrix is similar to a Toeplitz. (In fact, if $d_k = dim(ker(T \lambda I)^{k+1} dim(ker(T \lambda I)^k) = number$ of Jordan blocks of size > k Toeplitz give all d_0 's but not even d_1 's.)

Truncated Toeplitz case

- CGRW showed in 2010 that EVERY matrix is similar to a (coanalytic) truncated Toeplitz operator! For general Jordan blocks, they use that $S_{d_1} \oplus S_{d_2} \cdots S_{d_{\lambda_r}}$ (direct sum of shifts) is similar to $A_{B_{\lambda_1}B_{\lambda_2}\cdots B_{\lambda_r}}$ on $K_{B_{\lambda_1}^{d_1}B_{\lambda_2}^{d_2}\cdots B_{\lambda_r}^{d_r}}$
- However, the best to be hoped for is that every *complex symmetric matrix* or operator be unitarily equivalent to a truncated Toeplitz.

Definitions Examples
Examples

Definitions

• If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.

Definitions

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

Definitions

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

Examples

• Complex symmetric matrices use the conjugation $Cv = \overline{v}$ on \mathbb{C}^n .

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

- Complex symmetric matrices use the conjugation $Cv = \overline{v}$ on \mathbb{C}^n .
- The Volterra operator uses the conjugation $Cf(x) = \overline{f(1-x)}$ on $L^2[0,1]$.

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

- Complex symmetric matrices use the conjugation $Cv = \overline{v}$ on \mathbb{C}^n .
- The Volterra operator uses the conjugation $Cf(x) = \overline{f(1-x)}$ on $L^2[0,1]$.
- And truncated Toeplitz operators on K_{θ} use the conjugation $C_{\theta}(f) = \overline{fz}\theta$.

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

- Complex symmetric matrices use the conjugation $Cv = \overline{v}$ on \mathbb{C}^n .
- The Volterra operator uses the conjugation $Cf(x) = \overline{f(1-x)}$ on $L^2[0,1]$.
- And truncated Toeplitz operators on K_{θ} use the conjugation $C_{\theta}(f) = \overline{fz}\theta$.
- Examples of complex symmetric operators include not only these, but also all operators of rank one, all 2×2 matrices (but not at all the 3×3) all normal matrices, all inflations of Toeplitz matrices T (an inflation of T is $T \otimes I_n$ with $n \in \mathbb{N} \cup \{\infty\}$)

- If \mathcal{H} is a complex Hilbert space, an operator $C: \mathcal{H} \to \mathcal{H}$ is said to be a conjugation if and only if C is an isometry with $C^2 = I$.
- An operator $T: \mathcal{H} \to \mathcal{H}$ is said to be complex symmetric if and only if there exists a conjugation C such that $T = CT^*C$.

- Complex symmetric matrices use the conjugation $Cv = \overline{v}$ on \mathbb{C}^n .
- The Volterra operator uses the conjugation $Cf(x) = \overline{f(1-x)}$ on $L^2[0,1]$.
- And truncated Toeplitz operators on K_{θ} use the conjugation $C_{\theta}(f) = \overline{fz}\theta$.
- Examples of complex symmetric operators include not only these, but also all operators of rank one, all 2×2 matrices (but not at all the 3×3) all normal matrices, all inflations of Toeplitz matrices T (an inflation of T is $T \otimes I_n$ with $n \in \mathbb{N} \cup \{\infty\}$)
- Which leads us to the question of whether inflations of Toeplitz matrices are unitarily equivalent to a truncated Toeplitz. (Asked by CGRW).

• We recall that the tensor product of two Hilbert spaces X and X' is defined by setting

$$< x \otimes x', y \otimes y' > = < x, y > < x', y' >$$

for $x, y \in X$; $x', y' \in X'$ to obtain an inner product on the algebraic tensor product and then completing.

• We recall that the tensor product of two Hilbert spaces X and X' is defined by setting

$$< x \otimes x', y \otimes y' > = < x, y > < x', y' >$$

for $x, y \in X$; $x', y' \in X'$ to obtain an inner product on the algebraic tensor product and then completing.

• We also recall, that, if (e_i) is a basis for X and (e'_i) a basis for X' then $(e_i \otimes e'_j)$ is a basis for $X \otimes X'$ and that, if $\dim(X) = n$, then we can think of $X \otimes X'$ as n copies of X.

• We recall that the tensor product of two Hilbert spaces X and X' is defined by setting

$$< x \otimes x', y \otimes y' > = < x, y > < x', y' >$$

for $x, y \in X$; $x', y' \in X'$ to obtain an inner product on the algebraic tensor product and then completing.

- We also recall, that, if (e_i) is a basis for X and (e'_i) a basis for X' then $(e_i \otimes e'_j)$ is a basis for $X \otimes X'$ and that, if $\dim(X) = n$, then we can think of $X \otimes X'$ as n copies of X.
- If $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(X')$ then $(T \otimes S)(x \otimes x') = (Tx \otimes Sx')$ and, if $T = [a_{ij}]$ then we can think of $T \otimes S$ as $[a_{ij}S]$.

• We recall that the tensor product of two Hilbert spaces X and X' is defined by setting

$$< x \otimes x', y \otimes y' > = < x, y > < x', y' >$$

for $x, y \in X$; $x', y' \in X'$ to obtain an inner product on the algebraic tensor product and then completing.

- We also recall, that, if (e_i) is a basis for X and (e'_i) a basis for X' then $(e_i \otimes e'_j)$ is a basis for $X \otimes X'$ and that, if $\dim(X) = n$, then we can think of $X \otimes X'$ as n copies of X.
- If $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(X')$ then $(T \otimes S)(x \otimes x') = (Tx \otimes Sx')$ and, if $T = [a_{ij}]$ then we can think of $T \otimes S$ as $[a_{ij}S]$.
- This means that the inflation $T \otimes I_n$ can be written

$$\begin{pmatrix}
T & 0 & 0 & \cdots \\
0 & T & 0 & \cdots \\
0 & 0 & \cdots & \cdots
\end{pmatrix}$$

Proposition: Suppose B is an inner function. Then the formula

$$h\otimes f\mapsto h(f\circ B) \tag{3}$$

defined for $h \in K_B$, $f \in L^{\infty}$, can be extended linearly to a unitary operator Ω_B from $K_B \otimes L^2$ onto L^2 . The operator Ω_B maps $K_B \otimes H^2$ onto H^2 .

Proposition: Suppose B is an inner function. Then the formula

$$h\otimes f\mapsto h(f\circ B) \tag{3}$$

defined for $h \in K_B$, $f \in L^{\infty}$, can be extended linearly to a unitary operator Ω_B from $K_B \otimes L^2$ onto L^2 . The operator Ω_B maps $K_B \otimes H^2$ onto H^2 . Moreover, if Θ is a second inner function, then

$$\Omega_B(K_B\otimes \Theta H^2)=(\Theta\circ B)H^2, \qquad \Omega_B(K_B\otimes K_\Theta)=K_{\Theta\circ B}.$$

Proposition: Suppose B is an inner function. Then the formula

$$h\otimes f\mapsto h(f\circ B) \tag{3}$$

defined for $h \in K_B$, $f \in L^{\infty}$, can be extended linearly to a unitary operator Ω_B from $K_B \otimes L^2$ onto L^2 . The operator Ω_B maps $K_B \otimes H^2$ onto H^2 . Moreover, if Θ is a second inner function, then

$$\Omega_B(K_B\otimes \Theta H^2)=(\Theta\circ B)H^2, \qquad \Omega_B(K_B\otimes K_\Theta)=K_{\Theta\circ B}.$$

We denote by $\omega_B : K_B \otimes K_\theta \to K_{\theta \circ B}$ the restriction of Ω_B to $K_B \otimes K_\theta$.

Proposition: Suppose B is an inner function. Then the formula

$$h\otimes f\mapsto h(f\circ B) \tag{3}$$

defined for $h \in K_B$, $f \in L^{\infty}$, can be extended linearly to a unitary operator Ω_B from $K_B \otimes L^2$ onto L^2 . The operator Ω_B maps $K_B \otimes H^2$ onto H^2 . Moreover, if Θ is a second inner function, then

$$\Omega_B(K_B\otimes \Theta H^2)=(\Theta\circ B)H^2, \qquad \Omega_B(K_B\otimes K_\Theta)=K_{\Theta\circ B}.$$

We denote by $\omega_B : K_B \otimes K_\theta \to K_{\theta \circ B}$ the restriction of Ω_B to $K_B \otimes K_\theta$.

Our formula

We (with D Timotin and M Zarrabi) recently obtained the following formula:

Proposition: Suppose B is an inner function. Then the formula

$$h\otimes f\mapsto h(f\circ B) \tag{3}$$

defined for $h \in K_B$, $f \in L^{\infty}$, can be extended linearly to a unitary operator Ω_B from $K_B \otimes L^2$ onto L^2 . The operator Ω_B maps $K_B \otimes H^2$ onto H^2 . Moreover, if Θ is a second inner function, then

$$\Omega_B(K_B\otimes \Theta H^2)=(\Theta\circ B)H^2, \qquad \Omega_B(K_B\otimes K_\Theta)=K_{\Theta\circ B}.$$

We denote by $\omega_B: K_B \otimes K_\theta \to K_{\theta \circ B}$ the restriction of Ω_B to $K_B \otimes K_\theta$.

Our formula

We (with D Timotin and M Zarrabi) recently obtained the following formula:

• Suppose B, Θ are inner functions, $\psi, \phi \in L^2$, and the operators $A^B_{\bar{B}^j\psi}$ are nonzero only for a finite number of $j \in \mathbb{Z}$. Then

$$A_{\psi(\phi\circ B)}^{\Theta\circ B}\omega_B = \omega_B\left(\sum_j (A_{ar{B}^j\psi}^B\otimes A_{z^j\phi}^\Theta)\right).$$
 (4)

Consequences

Inflations			

• The first question we wished to solve was the one posed by CGRW:

• The first question we wished to solve was the one posed by CGRW: Is every inflation $A_{\phi}^{\theta}\otimes I_n$ $(n\in\mathbb{N}\cup\{\infty\})$ of a truncated Toeplitz unitarily equivalent to a truncated Toeplitz operator?

• The first question we wished to solve was the one posed by CGRW: Is every inflation $A_{\phi}^{\theta} \otimes I_n$ $(n \in \mathbb{N} \cup \{\infty\})$ of a truncated Toeplitz unitarily equivalent to a truncated Toeplitz operator? And the answer is YES:

- The first question we wished to solve was the one posed by CGRW: Is every inflation $A_{\phi}^{\theta} \otimes I_n$ $(n \in \mathbb{N} \cup \{\infty\})$ of a truncated Toeplitz unitarily equivalent to a truncated Toeplitz operator? And the answer is YES:
- If Θ and B are inner functions, $\phi \in L^2$ such that A_{ϕ}^{Θ} is bounded and dim $K_B = k$ then $A_{\phi \circ B}^{\Theta \circ B}$ is unitarily equivalent to $I_k \otimes A_{\phi}^{\Theta}$.

- The first question we wished to solve was the one posed by CGRW: Is every inflation $A_{\phi}^{\theta} \otimes I_n$ $(n \in \mathbb{N} \cup \{\infty\})$ of a truncated Toeplitz unitarily equivalent to a truncated Toeplitz operator? And the answer is YES:
- If Θ and B are inner functions, $\phi \in L^2$ such that A_{ϕ}^{Θ} is bounded and dim $K_B = k$ then $A_{\phi \circ B}^{\Theta \circ B}$ is unitarily equivalent to $I_k \otimes A_{\phi}^{\Theta}$.

Unitary equivalence between truncated Toeplitz

We were also able to show that the analogy of a motivating result from Carl Cowen was true for truncated Toeplitz:

- The first question we wished to solve was the one posed by CGRW: Is every inflation $A_{\phi}^{\theta} \otimes I_n$ $(n \in \mathbb{N} \cup \{\infty\})$ of a truncated Toeplitz unitarily equivalent to a truncated Toeplitz operator? And the answer is YES:
- If Θ and B are inner functions, $\phi \in L^2$ such that A_{ϕ}^{Θ} is bounded and dim $K_B = k$ then $A_{\phi \circ B}^{\Theta \circ B}$ is unitarily equivalent to $I_k \otimes A_{\phi}^{\Theta}$.

Unitary equivalence between truncated Toeplitz

We were also able to show that the analogy of a motivating result from Carl Cowen was true for truncated Toeplitz:

Suppose Θ an inner function and $\phi \in L^2$, such that A_{ϕ}^{Θ} is bounded. If B_1, B_2 are two inner functions with dim $K_{B_1} = \dim K_{B_2}$, then $A_{\phi \circ B_1}^{\Theta \circ B_1}$ and $A_{\phi \circ B_2}^{\Theta \circ B_2}$ are bounded and unitarily equivalent.

Nice looking block Toeplitz

Since block Toeplitz are largely used by applied mathematicians, we were happy to find that some of them were unitarily equivalent to truncated Toeplitz.

Nice looking block Toeplitz

Since block Toeplitz are largely used by applied mathematicians, we were happy to find that some of them were unitarily equivalent to truncated Toeplitz.

Example 1

• If θ is any inner function and $\phi_0, \phi_1, \dots, \phi_n$ are chosen so that the appropriate operators are bounded then

Nice looking block Toeplitz

Since block Toeplitz are largely used by applied mathematicians, we were happy to find that some of them were unitarily equivalent to truncated Toeplitz.

Example 1

• If θ is any inner function and $\phi_0, \phi_1, \dots, \phi_n$ are chosen so that the appropriate operators are bounded then

$$\begin{pmatrix} A_{\phi_0}^{\Theta} & A_{z\phi_{n-1}}^{\Theta} & \dots & A_{z\phi_1}^{\Theta} \\ A_{\phi_1}^{\Theta} & A_{\phi_0}^{\Theta} & \dots & A_{z\phi_2}^{\Theta} \\ \dots & \dots & \dots & \dots \\ A_{\phi_{n-1}}^{\Theta} & A_{\phi_{n-2}}^{\Theta} & \dots & A_{\phi_0}^{\Theta} \end{pmatrix}$$

is unitarily equivalent to $A_{\sum_{m=0}^{n-1} z^m(\phi_m(z^n))}^{\theta \circ B}$

Example 2

And if *B* is any inner functions and $\psi_i \in K_B$ ($-n \le i \le n-1$) such that $A_{\psi_i}^B$ is bounded then

Example 2

And if *B* is any inner functions and $\psi_i \in K_B$ ($-n \le i \le n-1$) such that $A_{\psi_i}^B$ is bounded then

$$\begin{pmatrix} A^{B}_{\psi_{0}+\bar{B}\psi_{-1}} & A^{B}_{\psi_{-1}+\bar{B}\psi_{-2}} & \dots & A^{B}_{\psi_{-(n-1)}+\bar{B}\psi_{-n}} \\ A^{B}_{\psi_{1}+\bar{B}\psi_{0}} & A^{B}_{\psi_{0}+\bar{B}\psi_{-1}} & \dots & A^{B}_{\psi_{-(n-2)}+\bar{B}\psi_{-(n-1)}} \\ \dots & \dots & \dots & \dots \\ A^{B}_{\psi_{n-1}+\bar{B}\psi_{n-2}} & A^{B}_{\psi_{n-2}+\bar{B}\psi_{n-3}} & \dots & A^{B}_{\psi_{0}+\bar{B}\psi_{-1}} \end{pmatrix}$$

is unitarily equivalent to $A^{B^n}_{\sum_{m=-n}^{n-1} \psi_m(z)B^m}$.

A Motivating example

The simple case

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by

A Motivating example

The simple case

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by $\omega_B(h \otimes f) \to h(f \circ B)$.

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by $\omega_B(h \otimes f) \to h(f \circ B)$. For me, a nice motivation for this definition is found in looking at the m-inflation of an $n \times n$ Toeplitz matrice:

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by $\omega_B(h \otimes f) \to h(f \circ B)$. For me, a nice motivation for this definition is found in looking at the m-inflation of an $n \times n$ Toeplitz matrice:

$$\begin{pmatrix} a_0 & a_{-1} & \cdots & a_{-(n-1)} & 0 & 0 & 0 & 0 & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots & 0 & 0 & 0 & 0 & \cdots & \cdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 & 0 & 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & a_0 & a_{-1} & \cdots & a_{-(n-1)} & 0 & \cdots \\ 0 & 0 & \cdots & 0 & a_1 & a_0 & \cdots & a_{-(n-2)} & 0 & \cdots \\ \vdots & \vdots \end{pmatrix}$$

and rearranging it into a Toeplitz matrix:

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by $\omega_B(h \otimes f) \to h(f \circ B)$. For me, a nice motivation for this definition is found in looking at the m-inflation of an $n \times n$ Toeplitz matrice:

$$\begin{pmatrix}
a_0 & a_{-1} & \cdots & a_{-(n-1)} & 0 & 0 & 0 & 0 & \cdots & \cdots \\
\vdots & \ddots & \ddots & \vdots & 0 & 0 & 0 & 0 & \cdots & \cdots \\
a_{n-1} & a_{n-2} & \cdots & a_0 & 0 & 0 & 0 & 0 & \cdots & \cdots \\
0 & 0 & \cdots & 0 & a_0 & a_{-1} & \cdots & a_{-(n-1)} & 0 & \cdots \\
0 & 0 & \cdots & 0 & a_1 & a_0 & \cdots & a_{-(n-2)} & 0 & \cdots \\
\vdots & \vdots
\end{pmatrix}$$

and rearranging it into a Toeplitz matrix:

by making the basis change

$$(e_{11}, e_{12}, \cdots, e_{1n}, e_{21}, \cdots, e_{mn}) \rightarrow (e_{11}, e_{21}, \cdots, e_{n1}, e_{12}, e_{22}, \cdots, e_{mn})$$

Recall that the unitary map ω_B that we use to take the tensor product $K_B \otimes K_\theta$ to $K_{\theta \circ B}$ is defined by $\omega_B(h \otimes f) \to h(f \circ B)$. For me, a nice motivation for this definition is found in looking at the m-inflation of an $n \times n$ Toeplitz matrice:

and rearranging it into a Toeplitz matrix:

by making the basis change

 $(e_{11},e_{12},\cdots,e_{1n},e_{21},\cdots,e_{mn}) \rightarrow (e_{11},e_{21},\cdots,e_{n1},e_{12},e_{22},\cdots,e_{mn})$ which, since $e_{ij}=z^{i-1}\otimes z^{j-1}$, is indeed done by the map ω_{z^n} that sends $z^i\otimes z^j$ to $z^i(z^j\circ z^n)$

Bibliography

- Cima J., Garcia R., Ross W., Wogen W., Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana J, to appear Indiana J.
- Cowen, C., On equivalence of Toeplitz operators, JOT, 7 (1982), no. 1, 167–172.
- Sarason D., Algebraic properties of truncated Toeplitz operators, OAM (2007), 491–526.
- Strouse, E. Timotin, T., Zarrabi M., Unitary Equivalence of truncated Toeplitz, to appear Indiana J.